303
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Mechanistic investigation of resistance via drug-inactivating enzymes in Mycobacterium tuberculosis

, &
Pages 448-465 | Received 02 Jul 2018, Accepted 01 Oct 2018, Published online: 18 Nov 2018

References

  • Aad G, Abajyan T, Abbott B, Abdallah J, Khalek SA, Abdelalim A, Abdinov O, Aben R, Abi B, Abolins M. 2012. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Lett B. 716:1–29.
  • Abuhammad A, Fullam E, Bhakta S, Russell AJ, Morris GM, Finn PW, Sim E. 2014. Exploration of piperidinols as potential antitubercular agents. Molecules. 19:16274–16290.
  • Abuhammad A, Fullam E, Lowe ED, Staunton D, Kawamura A, Westwood IM, Bhakta S, Garner AC, Wilson DL, Seden PT, et al. 2012. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages. PloS One. 7:e52790.
  • Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart P, Kolek SA, Sim E, Garman EF. 2013. Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum: triumph over adversity. Acta Crystallographica D Biol Crystallo. 69:1433–1446.
  • Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martín C. 1998. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol. 180:5836–5843.
  • Aínsa JA, Pérez E, Pelicic V, Berthet FX, Gicquel B, Martín C. 1997. Aminoglycoside 2′‐N‐acetyltransferase genes are universally present in mycobacteria: characterization of the aac (2′)‐Ic gene from Mycobacterium tuberculosis and the aac (2′)‐Id gene from Mycobacterium smegmatis. Mol Microbiol. 24:431–441.
  • Brooke EW, Davies SG, Mulvaney AW, Pompeo F, Sim E, Vickers RJ. 2003. An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorg Med Chem. 11:1227–1234.
  • Chambers HF, Moreau D, Yajko D, Miick C, Wagner C, Hackbarth C, Kocagöz S, Rosenberg E, Hadley W, Nikaido H. 1995. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother. 39:2620–2624.
  • Chen W, Biswas T, Porter VR, Tsodikov OV, Garneau-Tsodikova S. 2011. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Nat Acad Sci. 108:9804–9808.
  • Chopra S, Matsuyama K, Tran T, Malerich JP, Wan B, Franzblau SG, Lun S, Guo H, Maiga MC, Bishai WR, et al. 2012. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J Antimicrob Chemother. 67:415–421.
  • Danilchanka O, Mailaender C, Niederweis M. 2008. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 52:2503–2511.
  • De Rossi E, Arrigo P, Bellinzoni M, Silva PA, Martín C, Aínsa JA, Guglierame P, Riccardi G. 2002. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med. 8:714.
  • Dubée V, Soroka D, Cortes M, Lefebvre A-L, Gutmann L, Hugonnet J-E, Arthur M, Mainardi J-L. 2015. Impact of β-lactamase inhibition on the activity of ceftaroline against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother. 59:2938–2941.
  • Egesborg P, Carlettini H, Volpato JP, Doucet N. 2015. Combinatorial active‐site variants confer sustained clavulanate resistance in BlaC β‐lactamase from Mycobacterium tuberculosis. Protein Science. 24:534–544.
  • Flores AR, Parsons LM, Pavelka MS. Jr, 2005a. Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology. 151:521–532.
  • Flores AR, Parsons LM, Pavelka MS. 2005b. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to β-lactam antibiotics. J Bacteriol. 187:1892–1900.
  • Garzan A, Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, Posey JE, Garneau-Tsodikova S. 2016a. Sulfonamide-based inhibitors of aminoglycoside acetyltransferase Eis abolish resistance to kanamycin in Mycobacterium tuberculosis. J Med Chem. 59:10619–10628.
  • Garzan A, Willby MJ, Green KD, Tsodikov OV, Posey JE, Garneau-Tsodikova S. 2016b. Discovery and optimization of two Eis inhibitor families as kanamycin adjuvants against drug-resistant M. tuberculosis. ACS Med Chem Lett. 7:1219–1221.
  • Garzan A, Willby MJ, Ngo HX, Gajadeera CS, Green KD, Holbrook SY, Hou C, Posey JE, Tsodikov OV, Garneau-Tsodikova S. 2017. Combating enhanced intracellular survival (Eis)-mediated kanamycin resistance of Mycobacterium tuberculosis by novel pyrrolo [1, 5-a] pyrazine-based Eis inhibitors. ACS Infect Dis. 3:302–309.
  • Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park S-K, Shim TS, et al. 2012. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 366:2151–2160.
  • Green KD, Chen W, Garneau‐Tsodikova S. 2012. Identification and characterization of inhibitors of the aminoglycoside resistance acetyltransferase Eis from Mycobacterium tuberculosis. Chem Med. 7:73–77.
  • Hegde SS, Javid-Majd F, Blanchard JS. 2001. Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2′-N-acetyltransferase (AAC (2′)-Ic) from Mycobacterium tuberculosis. J Biol Chem. 276:45876–45881.
  • Hoagland DT, Liu J, Lee RB, Lee RE. 2016. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Del Rev. 102:55–72.
  • Houghton JL, Biswas T, Chen W, Tsodikov OV, Garneau‐Tsodikova S. 2013a. Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase Eis. Chem Bio Chem.14:2127–2135.
  • Houghton JL, Green KD, Pricer RE, Mayhoub AS, Garneau-Tsodikova S. 2013b. Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. J Antimicrob Chemother. 68:800–805.
  • Hugonnet J-E, Blanchard JS. 2007. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry. 46:11998–12004.
  • Jarlier V, Gutmann L, Nikaido H. 1991. Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother. 35:1937–1939.
  • Johansen SK, Maus CE, Plikaytis BB, Douthwaite S. 2006. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell. 23:173–182.
  • Kashyap A, Singh PK, Satpati S, Verma H, Silakari O. 2018a. Pharmacophore modeling and molecular dynamics approach to identify putative DNA Gyrase B inhibitors for resistant tuberculosis. J Cell Biochem. DOI:10.1002/jcb.27579
  • Kashyap A, Singh PK, Silakari O. 2018b. Chemical classes targeting energy supplying GyrB domain of Mycobacterium tuberculosis. Tuberculosis. 113:43–54.
  • Kashyap A, Singh PK, Silakari O. 2018c. In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis. Tuberculosis. 112:83–88.
  • Kim KH, An DR, Song J, Yoon JY, Kim HS, Yoon HJ, Im HN, Kim J, Lee SJ, Kim K-H. 2012. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc Nat Acad Sci. 109:7729–7734.
  • Kumar B, Sharma D, Sharma P, Katoch VM, Venkatesan K, Bisht D. 2013. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J Proteomics. 94:68–77.
  • M Westwood I, Kawamura A, J Russell A, Sandy J, G Davies S, Sim E. 2011. Novel small-molecule inhibitors of arylamine N-acetyltransferases: drug discovery by high throughput screening. Cchts. 14:117–124.
  • Mishra MN, Daniels L. 2013. Characterization of the MSMEG_2631 gene (mmp) encoding a multidrug and toxic compound extrusion (MATE) family protein in Mycobacterium smegmatis and exploration of its polyspecific nature using biolog phenotype microarray. J Bacteriol. 195:1610–1621.
  • Molodtsov V, Scharf NT, Stefan MA, Garcia GA, Murakami KS. 2017. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol Microbiol. 103:1034–1045.
  • Payton M, Auty R, Delgoda R, Everett M, Sim E. 1999. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol. 181:1343–1347.
  • Payton M, Gifford C, Schartau P, Hagemeier C, Mushtaq A, Lucas S, Pinter K, Sim E. 2001. Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis. Microbiology. 147:3295–3302.
  • Rodrigues L, Villellas C, Bailo R, Viveiros M, Aínsa JA. 2013. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 57:751–757.
  • Samuel LP, Song C-H, Wei J, Roberts EA, Dahl JL, Barry CE, III, Jo E-K, Friedman RL. 2007. Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion. Microbiology. 153:529–540.
  • Sandy J, Mushtaq A, Kawamura A, Sinclair J, Sim E, Noble M. 2002. The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis—an enzyme which inactivates the anti-tubercular drug, isoniazid. J Mol Biol. 318:1071–1083.
  • Sharma D, Bisht D. 2017a. M. tuberculosis hypothetical proteins and proteins of unknown function: hope for exploring novel resistance mechanisms as well as future target of drug resistance. Front Microbiol. 8:465.
  • Sharma D, Bisht D. 2017b. Role of bacterioferritin & ferritin in M. tuberculosis pathogenesis and drug resistance: a future perspective by interactomic approach. Front Cell Infect Microbiol. 7:240.
  • Sharma D, Bisht D, Khan AU. 2018. Potential alternative strategy against drug resistant tuberculosis: a proteomics prospect. Proteomes. 6:26.
  • Sharma D, Kumar B, Lata M, Joshi B, Venkatesan K, Shukla S, Bisht D. 2015. Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PloS One. 10:e0139414.
  • Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc Nat Acad Sci. 98:7534–7539.
  • Sikora AL, Frankel BA, Blanchard JS. 2008. Kinetic and chemical mechanism of arylamine N-acetyltransferase from Mycobacterium tuberculosis. Biochemistry. 47:10781–10789.
  • Sinclair JC, Sandy J, Delgoda R, Sim E, Noble ME. 2000. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Structur Biol. 7:560–564.
  • Singh PK, Silakari O. 2017a. chemotherapeutics-resistance “arms” race: an update on mechanisms involved in resistance limiting Egfr inhibitors in lung cancer. Life Sci. 186:25–32.
  • Singh PK, Silakari O. 2017b. Novel EGFR (T790M)-cMET dual inhibitors: putative therapeutic agents for non-small-cell lung cancer. Future Med Chem. 9:469–483.
  • Speck-Planche A, V Kleandrova V, Luan F, Cordeiro ND. 2012. In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Cchts. 15:666–673.
  • Suarez J, Ranguelova K, Jarzecki AA, Manzerova J, Krymov V, Zhao X, Yu S, Metlitsky L, Gerfen GJ, Magliozzo RS. 2009. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG). J Biol Chem. 284:7017–7029.
  • Tremblay LW, Xu H, Blanchard JS. 2010. Structures of the Michaelis complex (1.2 Å) and the covalent acyl intermediate (2.0 Å) of cefamandole bound in the active sites of the Mycobacterium tuberculosis β-lactamase K73A and E166A mutants. Biochemistry. 49:9685–9687.
  • Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C. 2012. Totally drug-resistant tuberculosis in India. Clin Infect Dis. 54:579–581.
  • Upton A, Mushtaq A, Victor T, Sampson S, Sandy J, Smith DM, Van Helden P, Sim E. 2001. Arylamine N‐acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol. 42:309–317.
  • Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, Hoffner SE. 2009. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest J. 136:420–425.
  • Vetting MW, Hegde SS, Javid-Majd F, Blanchard JS, Roderick SL. 2002. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat Struct Biol. 9:653–658.
  • Wang F, Cassidy C, Sacchettini JC. 2006. Crystal structure and activity studies of the Mycobacterium tuberculosis β-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrob Agents Chemother. 50:2762–2771.
  • Warrier T, Kapilashrami K, Argyrou A, Ioerger TR, Little D, Murphy KC, Nandakumar M, Park S, Gold B, Mi J. 2016. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc Nat Acad Sci. 113:201606590.
  • Whitfield MG, Soeters HM, Warren RM, York T, Sampson SL, Streicher EM, Van Helden PD, Van Rie A. 2015. A global perspective on pyrazinamide resistance: systematic review and meta-analysis. PloS One. 10:e0133869.
  • Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, Posey JE, Garneau-Tsodikova S. 2016. Potent inhibitors of acetyltransferase Eis overcome kanamycin resistance in Mycobacterium tuberculosis. ACS Chem Biol. 11:1639–1646.
  • [WHO] World Health Organization. Global Tuberculosis Report. 2018.
  • Yu S, Girotto S, Lee C, Magliozzo RS. 2003. Reduced affinity for isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. J Biol Chem. 278:14769–14775.
  • Zaunbrecher MA, Sikes RD, Metchock B, Shinnick TM, Posey JE. 2009. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Nat Acad Sci. 106:20004–20009.
  • Zhang Y, Steingrube VA, Wallace RJ. Jr, 1992. Beta-lactamase inhibitors and the inducibility of the beta-lactamase of Mycobacterium tuberculosis. Am Rev Respir Dis. 145:657–660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.