276
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 91-104 | Received 14 Nov 2018, Accepted 11 Feb 2019, Published online: 03 May 2019

References

  • Abbaszadegan A, Gholami A, Abbaszadegan S, Aleyasin ZS, Ghahramani Y, Dorostkar S, Hemmateenejad B, Ghasemi Y, Sharghi H. 2017. The effects of different ionic liquid coatings and the length of alkyl chain on antimicrobial and cytotoxic properties of silver nanoparticles. Iran Endod J. 12:481–487.
  • Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Boey F, Zhang H, Chen P. 2010. Interfacing live cells with nanocarbon substrates. Langmuir. 26:2244–2247.
  • Ahmed T, Kilina S, Das T, Haraldsen JT, Rehr JJ, Balatsky AV. 2012. Electronic fingerprints of DNA bases on graphene. Nano Lett. 12:927–931.
  • Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. 2009. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon. 47:3280–3287.
  • Akhavan O, Choobtashani M, Ghaderi E. 2012. Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J Phys Chem C. 116:9653–9659.
  • Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. 2012. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem. 22:13773–13781.
  • Akhavan O, Ghaderi E, Emamy H, Akhavan F. 2013. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon. 54:419–431.
  • Akhavan O, Ghaderi E, Emamy H. 2012. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. J Mater Chem. 22:20626–20633.
  • Akhavan O, Ghaderi E, Rahighi R. 2012. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano. 6:2904–2916.
  • Akhavan O, Ghaderi E. 2009. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C. 113:20214–20220.
  • Akhavan O, Ghaderi E. 2010. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 4:5731–5736.
  • Akhavan O, Ghaderi E. 2012. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon. 50:1853–1860.
  • Alton EWFW, Middleton PG, Caplen NJ, Smith SN, Steel DM, Munkonge FM, Jeffery PK, Geddes DM, Hart SL, Williamson R, et al. 1993. Non–invasive liposome–mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat Genet. 5:135.
  • Amani AM, Hashemi SA, Mousavi SM, Abrishamifar SM, Vojood A. 2017. Electric field induced alignment of carbon nanotubes: methodology and outcomes. Carbon nanotubes-recent progress. IntechOpen.
  • Aslani A, Arefi MR, Babapoor A, Amiri A, Beyki-Shuraki K. 2011. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO–MgO and ZnO–NiO, mixed oxide nanoparticles. Appl Surf Sci. 257:4885–4889.
  • Barone V, Hod O, Scuseria GE. 2006. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6:2748–2754.
  • Behr JP. 1993. Synthetic gene-transfer vectors. Acc Chem Res. 26:274–278.
  • Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci. 92:7297–7301.
  • Castro EV, Novoselov K, Morozov S, Peres N, Dos Santos JL, Nilsson J, Guinea F, Geim A, Neto AC. 2007. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett. 99(21):216802.
  • Cavalieri F, Chiessi E, Villa R, Viganò L, Zaffaroni N, Telling MF, Paradossi G. 2008. Novel PVA-based hydrogel microparticles for doxorubicin delivery. Biomacromolecules. 9:1967–1973.
  • Chan Y, Wong T, Byrne F, Kavallaris M, Bulmus V. 2008. Acid-labile core cross-linked micelles for pH-triggered release of antitumor drugs. Biomacromolecules. 9:1826–1836.
  • Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, Liu Y, Wang H. 2011. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 200:201–210.
  • Choi S-M, Jhi S-H, Son Y-W. 2010. Controlling energy gap of bilayer graphene by strain. Nano Lett. 10:3486–3489.
  • Chowdhury I, Mansukhani ND, Guiney LM, Hersam MC, Bouchard D. 2015. Aggregation and stability of reduced graphene oxide: complex roles of divalent cations, pH, and natural organic matter. Environ Sci Technol. 49:10886–10893.
  • Chowdhury SM, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B. 2013. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials. 34(1):283–293.
  • Chowdhury SM, Surhland C, Sanchez Z, Chaudhary P, Kumar MS, Lee S, Peña LA, Waring M, Sitharaman B, Naidu M. 2015. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine. 11(1):109–118.
  • Chowdhury SM, Manepalli P, Sitharaman B. 2014. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater. 10:4494–4504.
  • Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox RM, Tattersall MHN. 1983. On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol. 19:203–208.
  • Colvin VL. 2003. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 21:1166.
  • De Jong WH, Borm PJ. 2008. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 3:133.
  • Dodart J-C, Marr RA, Koistinaho M, Gregersen BM, Malkani S, Verma IM, Paul SM. 2005. Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci. 102(4):1211–1216.
  • Dong H, Ding L, Yan F, Ji H, Ju H. 2011. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials. 32:3875–3882.
  • Ebrahiminezhad A, Bagheri M, Taghizadeh S-M, Berenjian A, Ghasemi Y. 2016. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol. 7:015018.
  • Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A. 2016. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chem Ind Chem Eng Q. 23:31–37.
  • Emadi F, Amini A, Gholami A, Ghasemi Y. 2017. Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci Rep. 7:42258.
  • Gholami A, Rasoul-Amini S, Ebrahiminezhad A, Abootalebi N, Niroumand U, Ebrahimi N, Ghasemi Y. 2016. Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnologica. 28(4):177–186.
  • Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R, Olson J, Guthold M, Gmeiner WH. 2009. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano. 3:2667–2673.
  • Gottesman MM, Fojo T, Bates SE. 2002. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer. 2:48.
  • Goudarzian N, Amini P, Mousavi SM, Hashemi SA. 2018. Modification of physical, mechanical and electrical properties of reinforced epoxy phenol novolac with nano cobalt acrylate and carbon nanotubes. Prog Rubber Plast Recycl Technol. 34:105–114.
  • Goudarzian N, Sadeghi Z, Mousavi SM, Hashemi SA, Banaei N. 2017. Chemical constituent and determination of antimicrobial and antifungal activities of Ulva lactuca species obtained from Iranian Gheshm Island. Int J Sci Eng Res. 8:1275–1279.
  • Han MY, Özyilmaz B, Zhang Y, Kim P. 2007. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett. 98(20):206805.
  • Hashemi SA, Mousavi SM, Arjmand M, Yan N, Sundararaj U. 2018. Electrified single‐walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym Compos. 39:E1139–E1148.
  • Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S, Amani AM. 2018. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat Phys Chem. 146:77–85.
  • Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M. 2011. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 32:19–27.
  • Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM. 2010. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano. 4:2059–2069.
  • Hu SH, Chen YW, Hung WT, Chen IW, Chen SY. 2012. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater. 24(13):1748–1754.
  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. 2010. Graphene-based antibacterial paper. ACS Nano. 4:4317–4323.
  • Hussain M, Kabir M, Sood A. 2009. On the cytotoxicity of carbon nanotubes. Curr Sci. 96:664–673.
  • Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z. 2007. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett. 7:2976–2980.
  • Jiao L, Zhang L, Wang X, Diankov G, Dai H. 2009. Narrow graphene nanoribbons from carbon nanotubes. Nature. 458:877.
  • Kang S, Herzberg M, Rodrigues DF, Elimelech M. 2008. Antibacterial effects of carbon nanotubes: size does matter! Langmuir. 24:6409–6413.
  • Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, Ding H, Patil R, Portilla-Arias JA, Modo M, et al. 2011. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage. 54:S106–S124.
  • Kawabata K, Takakura Y, Hashida M. 1995. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res. 12:825–830.
  • Kim BY, Rutka JT, Chan WC. 2010. Nanomedicine. N Engl J Med. 363:2434–2443.
  • Koh YK, Bae M-H, Cahill DG, Pop E. 2010. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10:4363–4368.
  • Kostarelos K, Bianco A, Prato M. 2009. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotech. 4:627.
  • Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM. 2009. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 458:872.
  • Levasseur DN, Ryan TM, Pawlik KM, Townes TM. 2003. Correction of a mouse model of sickle cell disease: lentiviral/antisickling β-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood. 102(13):4312–4319.
  • Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G, et al. 2011. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials. 32:9374–9382.
  • Li X, Wang X, Zhang L, Lee S, Dai H. 2008. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 319:1229–1232.
  • Lin J, Teweldebrhan D, Ashraf K, Liu G, Jing X, Yan Z, Li R, Ozkan M, Lake RK, Balandin AA, et al. 2010. Gating of single‐layer graphene with single‐stranded deoxyribonucleic acids. Small. 6:1150–1155.
  • Liu Y, Wu D-C, Zhang W-D, Jiang X, He C-B, Chung TS, Goh SH, Leong KW. 2005. Polyethylenimine‐grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed. 44:4782–4785.
  • Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. 2007. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2:47.
  • Liu Z, Liang X-J. 2012. Nano-carbons as theranostics. Theranostics. 2:235.
  • Liu Z, Robinson JT, Sun X, Dai H. 2008. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 130:10876–10877.
  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H. 2007. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 1:50–56.
  • Liu Z, Winters M, Holodniy M, Dai H. 2007. siRNA delivery into human T cells and primary cells with carbon‐nanotube transporters. Angew Chem. 119:2069–2073.
  • Lo SL, Wang S. 2008. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials. 29:2408–2414.
  • Lu Y-J, Lin C-W, Yang H-W, Lin K-J, Wey S-P, Sun C-L, Wei K-C, Yen T-C, Lin C-I, Ma C-CM, et al. 2014. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon. 74:83–95.
  • Lu Y-J, Wei K-C, Ma C-C, Yang S-Y, Chen J-P. 2012. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B. 89:1–9.
  • Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS. 2011. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem. 21:3350–3352.
  • Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. 2012. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 5(3):199–212.
  • Manohar S, Mantz AR, Bancroft KE, Hui C-Y, Jagota A, Vezenov DV. 2008. Peeling single-stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy. Nano Lett. 8:4365–4372.
  • Margaritis P, Arruda VR, Aljamali M, Camire RM, Schlachterman A, High KA. 2004. Novel therapeutic approach for hemophilia using gene delivery of an engineered secreted activated Factor VII. J Clin Invest. 113:1025–1031.
  • Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepić DP, Arsikin KM, Jovanović SP, Pantovic AC, Dramićanin MD, Trajkovic VS. 2011. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 32:1121–1129.
  • Min H, Sahu B, Banerjee SK, MacDonald A. 2007. Ab initio theory of gate induced gaps in graphene bilayers. Phys Rev B. 75(15):155115.
  • Mohanty N, Berry V. 2008. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8:4469–4476.
  • Moon HK, Lee SH, Choi HC. 2009. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 3:3707–3713.
  • Morozov S, Novoselov K, Schedin F, Jiang D, Firsov A, Geim A. 2005. Two-dimensional electron and hole gases at the surface of graphite. Phys Rev B. 72(20):201401.
  • Mullick Chowdhury S, Zafar S, Tellez V, Sitharaman B. 2016. Graphene nanoribbon-based platform for highly efficacious nuclear gene delivery. ACS Biomater Sci Eng. 2(5):798–808.
  • Nabavizadeh M, Abbaszadegan A, Gholami A, Kadkhoda Z, Mirhadi H, Ghasemi Y, Safari A, Hemmateenejad B, Dorostkar S, Sharghi H. 2017. Antibiofilm efficacy of positively charged imidazolium-based silver nanoparticles in enterococcus faecalis using quantitative real-time PCR. Jundishapur J Microbiol. 10(10):e55616.
  • Nelson T, Zhang B, Prezhdo OV. 2010. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10:3237–3242.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438:197.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. 2004. Electric field effect in atomically thin carbon films. Science. 306:666–669.
  • Oberdörster G. 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 267:89–105.
  • Okuda T, Sugiyama A, Niidome T, Aoyagi H. 2004. Characters of dendritic poly (L-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials. 25:537–544.
  • Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, Cai W, Dreyer DR, Berry V, Ruoff RS, et al. 2010. Biocompatible, robust free‐standing paper composed of a TWEEN/graphene composite. Adv Mater. 22:1736–1740.
  • Ravanshad R, Karimi Zadeh A, Amani AM, Mousavi SM, Hashemi SA, Savar Dashtaki A, Mirzaei E, Zare B. 2018. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev Exp. 9(1):1373551.
  • Reuven DG, Suggs K, Williams MD, Wang X-Q. 2012. Self-assembly of biofunctional polymer on graphene nanoribbons. ACS Nano. 6(2):1011–1017.
  • Reuven DG, Mihiri Shashikala HB, Mandal S, Williams MNV, Chaudhary J, Wang X-Q. 2013. Supramolecular assembly of DNA on graphene nanoribbons. J Mater Chem B. 1:3926–3931.
  • Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, Dai H. 2011. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 133:6825–6831.
  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. 2006. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 312:1027–1030.
  • Roth JA, Cristiano RJ. 1997. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 89:21–39.
  • Samarakoon DK, Wang X-Q. 2010. Tunable band gap in hydrogenated bilayer graphene. ACS Nano. 4:4126–4130.
  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C. 2010. DNA translocation through graphene nanopores. Nano Lett. 10:3163–3167.
  • Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Yuehe. 2010. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 22:1027–1036.
  • Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand J-P, Prato M, Bianco A, Kostarelos K, et al. 2005. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc. 127:4388–4396.
  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, et al. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432:173.
  • Splinter R. 2007. An introduction to biomedical optics. London: CRC Press, Taylor & Francis Group. Light-tissue interaction variables; p. 121–154.
  • Sun C-L, Chang C-T, Lee H-H, Zhou J, Wang J, Sham T-K, Pong W-F. 2011. Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano. 5:7788–7795.
  • Sun W, Zhang N, Li A, Zou W, Xu W. 2008. Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int J Pharm. 353:243–250.
  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. 2008. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1:203–212.
  • Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. 2006. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5:219.
  • Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. 2008. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett. 100(20):206803.
  • Xu S, Liu Y, Wang T, Li J. 2011. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem. 83:3817–3823.
  • Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. 2012. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 33(7):2206–2214.
  • Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. 2012. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater. 24:1868–1872.
  • Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. 2010. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10:3318–3323.
  • Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y. 2008. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C. 112:17554–17558.
  • Yin D, Li Y, Lin H, Guo B, Du Y, Li X, Jia H, Zhao X, Tang J, Zhang L, et al. 2013. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology. 24:105102.
  • Youn H-C, Bak S-M, Kim M-S, Jaye C, Fischer DA, Lee C-W, Yang X-Q, Roh KC, Kim K-B. 2015. High‐surface‐area nitrogen‐doped reduced graphene oxide for electric double‐layer capacitors. ChemSusChem. 8:1875–1884.
  • Zachariah B, Balducci L, Venkattaramanabalaji G, Casey L, Greenberg HM, DelRegato JA. 1997. Radiotherapy for cancer patients aged 80 and older: a study of effectiveness and side effects. Int J Radiat Oncol Biol Phys. 39(5):1125–1129.
  • Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, et al. 2018. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 9:1488497.
  • Zelphati O, Szoka FC. 1996. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci. 93:11493–11498.
  • Zhang J, Feng L, Tan X, Shi X, Xu L, Liu Z, Peng R. 2013. Dual-polymer-functionalized nanoscale graphene oxide as a highly effective gene transfection agent for insect cells with cell-type-dependent cellular uptake mechanisms. Part Part Syst Charact. 30(9):794–803.
  • Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. 2010. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 6:537–544.
  • Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. 2011. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 32:8555–8561.
  • Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS. 2010. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 4:3181–3186.
  • Zhang Y, Jiang Z, Small J, Purewal M, Tan Y-W, Fazlollahi M, Chudow J, Jaszczak J, Stormer H, Kim P. 2006. Landau-level splitting in graphene in high magnetic fields. Phys Rev Lett. 96(13):136806.
  • Zhang Y, Tan Y-W, Stormer HL, Kim P. 2005. Experimental observation of the quantum Hall Effect and Berry's phase in graphene. Nature. 438:201.
  • Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR. 2009. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt. 14:021009.
  • Zhou X, Laroche F, Lamers GE, Torraca V, Voskamp P, Lu T, Chu F, Spaink HP, Abrahams JP, Liu Z. 2012. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 5(10):703–709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.