626
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Biotransformation and bioactivation reactions – 2018 literature highlights

, , , , , & show all
Pages 121-161 | Received 25 Apr 2019, Accepted 03 May 2019, Published online: 06 Aug 2019

References

  • Baillie TA, Dalvie D, Rietjens IMCM, Khojasteh SC. 2016. Biotransformation and bioactivation reactions – 2015 literature highlights. Drug Metab Rev. 48:113–138.
  • Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. 2018. Biotransformation and bioactivation reactions – 2017 literature highlights. Drug Metab Rev. 50:221–255.
  • Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. 2017. Biotransformation and bioactivation reactions – 2016 literature highlights. Drug Metab Rev. 49:285–317.

References

  • Gautier R, Douguet D, Antonny B, Drin GH. 2008. A web server to screen sequences with specific α-helical properties. Bioinformatics. 24:2101–2102.
  • Walport LJ, Obexer R, Suga H. 2017. Strategies for transitioning macrocyclic peptides to cell-permeable drug leads. Curr Opin Biotechnol. 48:242–250.

References

  • St. Jean DJ Jr, Fotsch C. 2012. Mitigating heterocycle metabolism in drug discovery. J Med Chem. 55:6002–6020.
  • Kalgutkar AS, Vaz ADN, Lame ME, Henne KR, Soglia J, Zhao SX, Abramov YA, Lombardo F, Collin C, Hendsch ZS, et al. 2004. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos. 33:243–253.
  • Orr STM, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, Sun H, Kalgutkar AS. 2012. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem. 55:4896–4933.
  • Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West M, Claire Collins C, Ekins S. 2010. Integrated in silico − in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem Res Toxicol. 23:664–676.

References

  • Abdullah R, Alhusainy W, Woutersen J, Rietjens IMCM, Punt A. 2016. Predicting points of departure for risk assessment based on in vitro cytotoxicity data and Physiologically based Kinetic (PBK) Modeling: the case of kidney toxicity induced by aristolochic acid I. Fd Chem Toxicol. 92:104–116.
  • Bessems J, Coecke S, Gouliarmou V, Whelan M, Worth A. 2015. EURL ECVAM strategy for achieving 3Rs impact in the assessment of toxicokinetics and systemic toxicity. Toxicol Lett. 238:S115.
  • Bosgra S, van de Steeg E, Vlaming ML, Verhoeckx KC, Huisman MT, Verwei M, Wortelboer HM. 2014. Predicting carrier-mediated hepatic disposition of rosuvastatin in man by scaling from individual transfected cell-lines in vitro using absolute transporter protein quantification and PBPK modeling. Eur J Pharm Sci. 65:156–166.
  • Chen L, Ning J, Louisse J, Wesseling S, Rietjens IMCM. 2018. Use of physiologically based kinetic modelling-facilitated reverse dosimetry to convert in vitro cytotoxicity data to predicted in vivo liver toxicity of lasiocarpine and riddelliine in rat. Fd Chem Toxicol. 116:216–226.
  • Dave RA, Morris ME. 2014. Quantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humans. Drug Metab Dispos. 43:73–81.
  • Doddareddy MR, Cho YS, Koh HY, Kim DH, Pae AN. 2006. In silico renal clearance model using classical Volsurf approach. J Chem Inf Model. 46:1312–1320.
  • Ishida K, Ullah M, Toth B, Juhasz V, Unadkat JD. 2018. Successful prediction of in vivo hepatobiliary clearances and hepatic concentrations of rosuvastatin using sandwich-cultured rat hepatocytes, transporter-expressing cell lines, and quantitative proteomics. Drug Metab Dispos. 46:66–74.
  • Kumar V, Tot Bui N, Toth B, Juhasz V, Unadkat JD. 2017. Optimization and application of a biotinylation method for quantification of plasma membrane expression of transporters in cells. AAPS J. 19:1377–1386.
  • Kumar V, Yin J, Billington S, Prasad B, Brown CDA, Wang J, Unadkat JD. 2018. The importance of incorporating OCT2 plasma membrane expression and membrane potential in IVIVE of metformin renal secretory clearance. Drug Metab Dispos. 46:1441–1445.
  • Li H, Zhang M, Vervoort J, Rietjens IMCM, van Ravenzwaay B, Louisse J. 2017. Use of physiologically based kinetic modeling-facilitated reverse dosimetry of in vitro toxicity data for prediction of in vivo developmental toxicity of tebuconazole in rats. Toxicol Lett. 266:85–93.
  • Louisse J, Beekmann K, Rietjens IMCM. 2017. Use of physiologically based kinetic modeling-based reverse dosimetry to predict in vivo toxicity from in vitro data. Chem Res Toxicol. 30:114–125.
  • Louisse J, Bosgra S, Blaauboer BJ, Rietjens IMCM, Verwei M. 2015. Prediction of in vivo developmental toxicity of all-trans-retinoic acid based on n vitro toxicity data and in silico physiologically based kinetic modeling. Arch Toxicol. 89:1135–1148.
  • Louisse J, de Jong E, van de Sandt JJM, Blaauboer BJ, Woutersen RA, Piersma AH, Rietjens IMCM, Verwei M. 2010. The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol Sci. 118:470–484.
  • Paine SW, Menochet K, Denton R, McGinnity DF, Riley RJ. 2011. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 39:1008–1013.
  • Strikwold M, Spenkelink B, de Haan LHJ, Woutersen RA, Punt A, Rietjens IMCM. 2017. Integrating in vitro data and Physiologically Based Kinetic (PBK) modelling to assess the in vivo potential developmental toxicity of a series of phenols. Arch Toxicol. 91:2119–2133.
  • Vildhede A, Mateus A, Khan EK, Lai Y, Karlgren M, Artursson P, Kjellsson MC. 2016. Mechanistic modeling of pitavastatin disposition in sandwich-cultured human hepatocytes: a proteomics-informed bottom-up approach. Drug Metab Dispos. 44:505–516.

References

References

  • He H, Tran P, Yin H, Smith H, Flood D, Kramp R, Filipeck R, Fischer V, Howard D. 2009. Disposition of vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in rats and dogs. Drug Metab Dispos. 37:545–554.

References

  • He H, Tran P, Yin H, Smith H, Batard Y, Wang L, Einolf H, Gu H, Mangold JB, Fischer V, et al. 2009. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos. 37:536–544.
  • Bauer RA. 2015. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today. 20:1061–1073.
  • Wang Y-H, Zhang F, Diao H, Wu R. 2019. Covalent inhibition mechanism of antidiabetic drugs – vildagliptin vs saxagliptin. ACS Catal. 9:2292–2302.
  • Dahal UP, Obach RS, Gilber AM. 2013. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs. Chem Res Toxicol. 26:1739–1745.

References

  • Narita N, Morohashi A, Tohyama K, Takeuchi T, Tagawa Y, Kondo T, Asahi S. 2018. Mechanism for covalent binding of MLN3126, an oral chemokine C-C motif receptor 9 antagonist, to serum albumins. Drug Metab Dispos. 46:204–213.
  • Wang J, Li-Chan XX, Atherton J, Deng L, Espina R, Yu L, Horwatt P, Ross S, Lockhead S, Ahmad S. 2010. Characterization of HKI-272 covalent binding to human serum albumin. Drug Metab Dispos. 38:1083–1093.
  • Zhang D, Krishna R, Wang L, Zeng J, Mitroka J, Dai R, Narasimhan N, Reeves RA, Srinivas NR, Klunk LJ. 2004. Metabolism, pharmacokinetics, and protein covalent binding of radiolabeled MaxiPost (BMS-204352) in humans. Drug Metab Dispos. 33:83–93.

References

  • Gu C, Artelsmair M, Elmore CS, Lewis RJ, Davis P, Hall JE, Dembofsky BT, Christoph G, Smith MA, Chapdelaine M, et al. 2018. Late-occurring and long-circulating metabolites of GABAAα2,3 receptor modulator AZD7325involving metabolic cyclization and aromatization: relevance to MIST analysis and application for patient compliance. Drug Metab Dispos. 46:303–315.
  • Gong J, Eley T, He B, Arora V, Philip T, Jiang H, Easter J, Humphreys WG, Iyer RA, Li W. 2016. Characterization of ADME properties of [(14)C]asunaprevir (BMS-650032) in humans . Xenobiotica. 46:52–64.
  • Ma S, Chowdhury SK. 2011. Analytical strategies for assessment of human metabolites in preclinical safety testing. Anal Chem. 83:5028–5036.
  • Yu C-P, Chen CL, Gorycki FL, Neiss TG. 2007. Rapid method for quantitatively estimating metabolites in human plasma in the absence of synthetic standards using a combination of liquid chromatography/mass spectrometry and radiometric detection. Rapid Commun Mass Spectrom. 21:497–502.
  • Zhang D, Raghavan N, Chando T, Gambardella J, Fu Y, Zhang D, Unger S, Humphreys W. 2007. LC-MS/MS-based approach for obtaining exposure estimates of metabolites in early clinical trials using radioactive metabolites as reference standards. Drug Metab Lett. 1:293–298.
  • Zhu M, Zhang D, Zhang H, Shyu W. 2009. Integrated strategies for assessment of metabolite exposure in humans during drug development: analytical challenges and clinical development considerations. Biopharm Drug Dispos. 30:163–184.

References

  • Hua W, Zhang H, Ryu S, Yang X, Di L. 2017. Human tissue distribution of carbonyl reductase 1 using proteomic approach with liquid chromatography-tandem mass spectrometry. J Pharm Sci. 106:1405–1411.
  • Ramsden D, Smith D, Arenas R, Frederick K, Cerny MA. 2018. Identification and characterization of a selective human carbonyl reductase 1 substrate. Drug Metab Dispos. 46:1434–1440.
  • Shi SM, Di L. 2017. The role of carbonyl reductase 1 in drug discovery and development. Expert Opin Drug Metab Toxicol. 13:859–870.
  • Yang X, Hua W, Ryu S, Yates P, Chang C, Zhang H, Di L, 2018. Hydroxysteroid dehydrogenase 1 human tissue distribution, selective inhibitor, and role in doxorubicin metabolism. Drug Metab Dispos. 46:1023–1029.

References

  • Dennison JB, Jones DR, Renbarger JL, Hall SD. 2007. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther. 321:553–563.
  • Hsu MH, Savas U, Johnson EF. 2018. The X-ray crystal structure of the human mono-oxygenase cytochrome P450 3A5-ritonavir complex reveals active site differences between P450s 3A4 and 3A5. Mol Pharmacol. 93:14–24.
  • Huang W, Lin YS, McConn DJ, 2nd, Calamia JC, Totah RA, Isoherranen N, Glodowski M, Thummel KE. 2004. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 32:1434–1445.
  • Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, et al. 2001. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 11:773–779.
  • Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, et al. 2001. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 27:383–391.
  • Lamba JK, Lin YS, Schuetz EG, Thummel KE. 2002. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 54:1271–1294.
  • Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thummel KE. 2002. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol. 62:162–172.
  • McConn DJ 2nd, Lin YS, Allen K, Kunze KL, Thummel KE. 2004. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos. 32:1083–1091.
  • Pearson JT, Wahlstrom JL, Dickmann LJ, Kumar S, Halpert JR, Wienkers LC, Foti RS, Rock DA. 2007. Differential time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene: a key role for C239 in quenching reactive intermediates. Chem Res Toxicol. 20:1778–1786.

References

  • Bart AG, Scott EE. 2018. Structures of human cytochrome P450 1A1 with bergamottin and erlotinib reveal active-site modifications for binding of diverse ligands. J Biol Chem. 293:19201–19210.
  • Mescher M, Haarmann-Stemmann T. 2018. Modulation of CYP1A1 metabolism: from adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther. 187:71–87.
  • Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, Sutter TR. 1996. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 56:2979–2984.
  • Walsh AA, Szklarz GD, Scott EE. 2013. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J Biol Chem. 288:12932–12943.

References

  • Glauser TA, Kerremans AL, Weinshilboum RM. 1992. Human hepatic-microsomal thiol methyltransferase - assay conditions, biochemical-properties, and correlation studies. Drug Metab Dispos. 20:247–255.
  • Liu C, Chen Z, Zhong K, Li L, Zhu W, Chen X, Zhong D. 2015. Human liver cytochrome P450 enzymes and microsomal thiol methyltransferase are involved in the stereoselective formation and methylation of the pharmacologically active metabolite of clopidogrel. Drug Metab Dispos. 43:1632–1641.
  • Maw HH, Zeng XZ, Campbell S, Taub ME, Teitelbaum AM. 2018. N-methylation of BI 187004 by thiol S-methyltransferase. Drug Metab Dispos. 46:770–778.
  • Weinshilboum RM. 1992. Methylation pharmacogenetics - thiopurine methyltransferase as a model system. Xenobiotica. 22:1055–1071.
  • Weinshilboum RM. 2006. Pharmacogenomics: catechol O-methyltransferase to thiopurine S-methyltransferase. Cell Mol Neurobiol. 26:539–561.
  • Weinshilboum RM, Otterness DM, Szumlanski CL. 1999. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol. 39:19–52.

References

  • Feng Z, Chu F, Guo Z, Sun P. 2009. Synthesis and anti-inflammatory activity of the major metabolites of imrecoxib. Bioorg Med Chem Lett. 19:2270–2272.
  • Hou X, Zhou J, Yu S, Zhou L, Zhang Y, Zhong D, Chen X. 2018. Differences in the in vivo and in vitro metabolism of imrecoxib in humans: formation of the rate-limiting aldehyde intermediate. Drug Metab Dispos. 46:1320.
  • Xu H-Y, Xie Z-Y, Zhang P, Sun J, Chu F-M, Guo Z-R, Zhong D-F. 2006a. Role of rat liver cytochrome P450 3A and 2D in metabolism of imrecoxib. Acta Pharmacol Sin. 27:372.
  • Xu H-Y, Zhang P, Gong A-S, Sun Y-M, Chu F-M, Guo Z-R, Zhong D-F. 2006b. Formation of 4′-carboxyl acid metabolite of imrecoxib by rat liver microsomes. Acta Pharmacol Sin. 27:506.
  • Xu H, Zhang Y, Sun Y, Zhang P, Chu F, Guo Z, Zhang H, Zhong D. 2006c. Metabolism and excretion of imrecoxib in rat. Xenobiotica. 36:441–455.

References

  • Ginsel C, Plitzko B, Froriep D, Stolfa DA, Jung M, Kubitza C, Scheidig AJ, Havemeyer A, Clement B. 2018. The involvement of the mitochondrial amidoxime reducing component (mARC) in the reductive metabolism of hydroxamic acids. Drug Metab Dispos. 46:1396.
  • Hinson JA, Mitchell JR. 1976. N-hydroxylation of phenacetin by hamster liver microsomes. Drug Metab Dispos. 4:430.
  • Jakobs H, Mikula M, Havemeyer A, Strzalkowska A, Borowa-Chmielak M, Dzwonek A, Gajewska M, Hennig EE, Ostrowski J, Clement B. 2014. The N-reductive system composed of Mitochondrial Amidoxime Reducing Component (mARC), cytochrome B75 (CYB5B) and cytochrome B75 reductase (CYB5R) is regulated by fasting and high fat diet in mice. PLoS One. 9:e105371.
  • Wahl B, Reichmann D, Niks D, Krompholz N, Havemeyer A, Clement B, Messerschmidt T, Rothkegel M, Biester H, Hille R, et al. 2010. Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components hmARC-1 and hmARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes. J Biol Chem. 285:37847–37859.
  • Wirth PJ, Dybing E, Von Bahr C, Thorgeirsson SS. 1980. Mechanism of N-hydroxyacetylarylamine mutagenicity in the Salmonella test system: metabolic activation of N-hydroxyphenacetin by liver and kidney fractions from rat, mouse, hamster, and man. Mol Pharmacol. 18:117.

References

  • Chang JH, Plise E, Cheong J, Ho Q, Lin M. 2013. Evaluating the in vitro inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in predicting drug-induced hyperbilirubinemia. Mol Pharm. 10:3067–3075.
  • Usui T, Mise M, Hashizume T, Yabuki M, Komuro S. 2009. Evaluation of the potential for drug-induced liver injury based on in vitro covalent binding to human liver proteins drug. Metab Dispos. 37:2383–2392.

References

  • Jin Y, Regev A, Kam J, Phipps K, Smith C, Henck J, Campanale K, Hu L, Hall DG, Yang XY, et al. 2018. Dose- dependent acute liver injury with hypersensitivity features in humans due to a novel microsomal prostaglandin E synthase 1 inhibitor. Br J Clin Pharmacol. 84:179–188.
  • Donald C, Hobbs DC, Thomas M, Twomey TM. 1977. Metabolism of Sudoxicam by the rat, dog, and monkey. Drug Metab Dispos. 5:75–81.
  • Kalgutkar AS, Driscoll AS, Zhao J, Walker SX, Shepard GS, John R Soglia RM, Atherton JR, LinningYu J, Mutlib L, Munchhof AE, et al. 2007. A rational chemical intervention strategy to circumvent bioactivation liabilities associated with a nonpeptidyl thrombopoietin receptor agonist containing a 2-amino-4-arylthiazole motif. Chem Res Toxicol. 20:1954–1965.
  • Rettie AE, Rettenmeier AW, Howald WN, Baillie TA. 1987. Cytochrome P-450-catalyzed formation of delta 4-VPA, a toxic metabolite of valproic acid. Science. 235:890–893.
  • Srivastava A, Ramachandran S, Hameed SP, Ahuja V, Hosagrahara VP. 2014. Identification and mitigation of a reactive metabolite liability associated with aminoimidazoles. Chem Res Toxicol. 27:1586–1597.
  • Ryan E, Morrow BJ, Hemley CF, Pinson J, Charman SA, Chiu FCK, Foitzik RC. 2015. Evidence for the in vitro bioactivation of aminopyrazole derivatives: trapping reactive aminopyrazole intermediates using glutathione ethyl ester in human liver microsomes. Chem Res Toxicol. 28:1747–1752.
  • Obach RS, Kalgutkar AS, Ryder TF, Walker GS. 2008. In vitro metabolism and covalent binding of enol-carboxamide derivatives and anti-inflammatory agents sudoxicam and meloxicam: insights into the hepatotoxicity of sudoxicam. Chem Res Toxicol. 21:1890–1899.

References

  • Chen L, Mulder PPJ, Louisse J, Peijnenburg A, Wesseling S, Rietjens IMCM. 2017. Risk assessment for pyrrolizidine alkaloids detected in (herbal) teas and plant food supplements. Regul Toxicol Pharmacol. 86:292–302.
  • Chen L, Ning J, Louisse J, Wesseling S, Rietjens IMCM. 2018. Use of physiologically based kinetic modelling-facilitated reverse dosimetry to convert in vitro cytotoxicity data to predicted in vivo liver toxicity of lasiocarpine and riddelliine in rat. Fd Chem Toxicol. 116(B):216–226.
  • Fu PP, Xia QS, He XB, Barel S, Edery N, Beland FA, Shimshoni JA. 2017. Detection of pyrrolizidine alkaloid DNA adducts in livers of cattle poisoned with Heliotropium europaeum. Chem Res Toxicol. 30:851–858.
  • He XB, Xia QS, Fu PP. 2017. 7-Glutathione-pyrrole and 7-cysteine-pyrrole are potential carcinogenic metabolites of pyrrolizidine alkaloids. J Environm Sci Health Part C-Environm Carcinogenesis Ecotoxicol Rev. 35:69–83.
  • He XB, Xia QS, Ma L, Fu PP. 2016. 7-Cysteine-pyrrole conjugate: a new potential DNA reactive metabolite of pyrrolizidine alkaloids. J Environ Sci Health Part C Environ Carcinogen Ecotoxicol Rev. 34:57–76.
  • Knutsen HK, Alexander J, Barregard L, Bignami M, Bruschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, et al. 2017. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 15:4908.
  • Merz KH, Schrenk D. 2016. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol Lett. 263:44–57.
  • Ning J, Chen L, Wesseling S, Louisse J, Rietjens IMCM. 2019. Physiologically based kinetic modelling of bioactivation and detoxification of the pyrrolizidine alkaloids lasiocarpine and riddelliine in humans. Arch Toxicol. In press.
  • Paini A, Punt A, Scholz G, Gremaud E, Spenkelink B, Alink G, Schilter B, van Bladeren PJ, Rietjens IMCM. 2012. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling. Mutagenesis. 27:653–663.
  • Xia QS, He XB, Ma L, Chen SJ, Fu PP. 2018. Pyrrolizidine alkaloid secondary pyrrolic metabolites construct multiple activation pathways leading to DNA adduct formation and potential liver tumor initiation. Chem Res Toxicol. 31:619–628.
  • Xia QS, Ma L, He XB, Cai LN, Fu PP. 2015. 7-Glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids. Chem Res Toxicol. 28:615–620.
  • Xia QS, Zhao YW, Von Tungeln LS, Doerge DR, Lin G, Cai LN, Fu PP. 2013. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity. Chem Res Toxicol. 26:1384–1396.
  • Zhu L, Xue JY, Xia QS, Fu PP, Lin G. 2017. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol. 91:949–965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.