1,339
Views
42
CrossRef citations to date
0
Altmetric
Review Article

Novel insights into the complex pharmacokinetics of voriconazole: a review of its metabolism

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 247-265 | Received 04 Mar 2019, Accepted 12 Jun 2019, Published online: 16 Aug 2019

References

  • Adams AIH, Gosmann G, Schneider PH, Bergold AM. 2009. LC stability studies of voriconazole and structural elucidation of its major degradation product. Chroma. 69:115–122.
  • Allegra S, Fatiguso G, De Francia S, Favata F, Pirro E, Carcieri C, De Nicolò A, Cusato J, Di Perri G, D'Avolio A, et al. 2018. Therapeutic drug monitoring of voriconazole for treatment and prophylaxis of invasive fungal infection in children. Br J Clin Pharmacol. 84:197–203.
  • Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. 2014. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 69:1162–1176.
  • Barbarino JM, Owusu Obeng A, Klein TE, Altman RB. 2017. PharmGKB summary: voriconazole pathway, pharmacokinetics. Pharmacogenet Genomics. 27:201–209.
  • Bartelink IH, Wolfs T, Jonker M, et al. 2013. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother. 57:235–240.
  • Batchelor HK, Marriott JF. 2013. Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol. 79:395–404.
  • Bourcier K, Hyland R, Kempshall S, Jones R, Maximilien J, Irvine N, Jones B. 2010. Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes. Drug Metab Dispos. 38:923–929.
  • Boyd NK, Zoellner CL, Swancutt MA, Bhavan KP. 2012. Utilization of omeprazole to augment subtherapeutic voriconazole concentrations for treatment of aspergillus infections. Antimicrob Agents Chemother. 56:6001–6002.
  • Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. 2006. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother. 50:2455–2463.
  • Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, Scott SA, Rehm HL, Williams MS, Klein TE, et al. 2016. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 19:215–223.
  • Celik IH, Demirel G, Oguz SS, Uras N, Erdeve O, Dilmen U. 2013. Compassionate use of voriconazole in newborn infants diagnosed with severe invasive fungal sepsis. Eur Rev Med Pharmacol Sci. 17:729–734.
  • Chen L, Zhu L, Li M, Li N, Qi F, Wang N. 2019. Predicting the effects of different triazole antifungal agents on the pharmacokinetics of tamoxifen. AAPS PharmSciTech. 20:24.
  • Cordonnier C, Rovira M, Maertens J, Olavarria E, Faucher C, Bilger K, Pigneux A, Cornely OA, Ullmann AJ, Bofarull RM, et al. 2010. Voriconazole for secondary prophylaxis of invasive fungal infections in allogeneic stem cell transplant recipients: results of the VOSIFI study. Haematologica. 95:1762–1768.
  • Damle B, Varma MV, Wood N. 2011. Pharmacokinetics of voriconazole administered concomitantly with fluconazole and population-based simulation for sequential use. Antimicrob Agents Chemother. 55:5172–5177.
  • Desta Z, Metzger IF, Thong N, Lu JBL, Callaghan JT, Skaar TC, Flockhart DA, Galinsky RE. 2016. Inhibition of cytochrome P450 2B6 activity by voriconazole profiled using efavirenz disposition in healthy volunteers. Antimicrob Agents Chemother. 60:6813–6822.
  • Doby EH, Benjamin DK, Blaschke AJ, Ward RM, Pavia AT, Martin PL, Driscoll TA, Cohen-Wolkowiez M, Moran C. 2012. Therapeutic monitoring of voriconazole in children less than three years of age: a case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 31:632–635.
  • Dolton MJ, McLachlan AJ. 2014. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents. 44:183–193.
  • Dowell JA, Schranz J, Baruch A, et al. 2005. Safety and Pharmacokinetics of Coadministered Voriconazole and Anidulafungin. J Clin Pharmacol. 45:1373–1382.
  • Dressman JB, Thelen K. 2009. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 61:541–558.
  • Duflot T, Schrapp A, Bellien J, Lamoureux F. 2018. Impact of CYP3A4 genotype on voriconazole exposure. Clin Pharmacol Ther. 103:185–186.
  • Eljaaly K, Nix DE. 2016. Voriconazole dosing in obese patients. Clin Infect Dis. 63:286–287.
  • Encalada Ventura MA, Span LFR, van den Heuvel ER, Groothuis GMM, Alffenaar J-WC. 2015. Influence of inflammation on voriconazole metabolism. Antimicrob Agents Chemother. 59:2942–2943.
  • European Medicines Agency. 2012. European public assessment reports: VFEND, 1–154.
  • European Pharmacopoeia Commission. 2016. European pharmacopoeia. 9th ed. Strasbourg: Council of Europe.
  • Ferguson MJ, Randles ML, de Freitas DG. 2017. A suspected case of autoinduction of voriconazole metabolism in a patient with cerebral aspergillosis. Drug Healthc Patient Saf. 9:89–91.
  • Fihlman M, Hemmilä T, Hagelberg NM, Kuusniemi K, Backman JT, Laitila J, Laine K, Neuvonen PJ, Olkkola KT, Saari TI, et al. 2016. Voriconazole more likely than posaconazole increases plasma exposure to sublingual buprenorphine causing a risk of a clinically important interaction. Eur J Clin Pharmacol. 72:1363–1371.
  • Friberg LE, Ravva P, Karlsson MO, Liu P. 2012. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 56:3032–3042.
  • Gautier-Veyret E, Bailly S, Fonrose X, Tonini J, Chevalier S, Thiebaut-Bertrand A, Stanke-Labesque F. 2017. Pharmacogenetics may influence the impact of inflammation on voriconazole trough concentrations. Pharmacogenomics. 18:1119–1123.
  • Gautier-Veyret E, Fonrose X, Stanke-Labesque F. 2017. Pharmacogenetics of voriconazole: CYP2C19 but also CYP3A4 need to be genotyped. Clin Pharmacol Ther. 102:189.
  • Gautier‐Veyret E, Truffot A, Bailly S, Fonrose X, Thiebaut‐Bertrand A, Tonini J, Cahn J‐Y, Stanke‐Labesque F. 2018. Inflammation is a potential risk factor of voriconazole overdose in hematological patients. Fundam Clin Pharmacol. 33:232–238.
  • Geist MJP, Egerer G, Burhenne J, Mikus G. 2006. Safety of voriconazole in a patient with CYP2C9*2/CYP2C9*2 genotype [4]. Antimicrob Agents Chemother. 50:3227–3228.
  • Geist MJP, Egerer G, Burhenne J, Riedel K-D, Mikus G. 2007. Induction of voriconazole metabolism by rifampin in a patient with acute myeloid leukemia: importance of interdisciplinary communication to prevent treatment errors with complex medications. Antimicrob Agents Chemother. 51:3455–3456.
  • Geist MJP, Egerer G, Burhenne J, Riedel K-D, Weiss J, Mikus G. 2013. Steady-state pharmacokinetics and metabolism of voriconazole in patients. J Antimicrob Chemother. 68:2592–2599.
  • Germovsek E, Barker CIS, Sharland M, Standing JF. 2017. Scaling clearance in paediatric pharmacokinetics: all models are wrong, which are useful? Br J Clin Pharmacol. 83:777–790.
  • Giri P, Naidu S, Patel N, Patel H, Srinivas NR. 2017. Evaluation of in vitro cytochrome P450 inhibition and in vitro fate of structurally diverse N-oxide metabolites: case studies with clozapine, levofloxacin, roflumilast, voriconazole and zopiclone. Eur J Drug Metab Pharmacokinet. 42:677–688.
  • Groll AH, Townsend R, Desai A, Azie N, Jones M, Engelhardt M, Schmitt-Hoffman A-H, Brüggemann RJM. 2017. Drug-drug interactions between triazole antifungal agents used to treat invasive aspergillosis and immunosuppressants metabolized by cytochrome P450 3A4. Transpl Infect Dis. 19:e12751–11.
  • Han K, Capitano B, Bies R, Potoski BA, Husain S, Gilbert S, Paterson DL, McCurry K, Venkataramanan R. 2010. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 54:4424–4431.
  • Hassan A, Burhenne J, Riedel K-D, Weiss J, Mikus G, Haefeli WE, Czock D. 2011. Modulators of very low voriconazole concentrations in routine therapeutic drug monitoring. Ther Drug Monit. 33:86–93.
  • Hayton WL. 2002. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci. 2:E3.
  • Hines RN, McCarver DG. 2002. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther. 300:355–360.
  • Hines RN. 2007. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 21:169–175.
  • Hines RN. 2013. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm. 452:3–7.
  • Hohmann N, Kocheise F, Carls A, Burhenne J, Weiss J, Haefeli WE, Mikus G. 2016. Dose-dependent bioavailability and CYP3A inhibition contribute to non-linear pharmacokinetics of voriconazole. Clin Pharmacokinet. 55:1535–1545.
  • Hohmann N, Kreuter R, Blank A, Weiss J, Burhenne J, Haefeli WE, Mikus G. 2017. Autoinhibitory properties of the parent but not of the N-oxide metabolite contribute to infusion rate-dependent voriconazole pharmacokinetics. Br J Clin Pharmacol. 83:1954–1965.
  • Hsu AJ, Dabb A, Arav-Boger R. 2015. Autoinduction of voriconazole metabolism in a child with invasive pulmonary aspergillosis. Pharmacotherapy. 35:e20–e26.
  • Hyland R, Jones BC, Smith DA. 2003. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 31:540–547.
  • Jeong S, Nguyen PD, Desta Z. 2009. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 53:541–551.
  • Johnson TN, Rostami-Hodjegan A, Tucker GT. 2006. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 45:931–956.
  • Karlsson MO, Lutsar I, Milligan PA. 2009. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 53:935–944.
  • Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. 2003. Developmental pharmacology-drug disposition, action, and therapy in infants and children. N Engl J Med. 349:1157–1167.
  • Kees MG, Wicha SG, Seefeld A, Kees F, Kloft C. 2014. Unbound fraction of vancomycin in intensive care unit patients. J Clin Pharmacol. 54:318–323.
  • Kirbs C, Kluwe F, Drescher F, Lackner E, Matzneller P, Weiss J, Zeitlinger M, Kloft C. 2019. High voriconazole target-site exposure after approved sequence dosing due to nonlinear pharmacokinetics assessed by long-term microdialysis. Eur J Pharm Sci. 131:218–229.
  • Kofla G, Ruhnke M. 2005. Voriconazole: review of a broad spectrum triazole antifungal agent. Expert Opin Pharmacother. 6:1215–1229.
  • Koselke E, Kraft S, Smith J, Nagel J. 2012. Evaluation of the effect of obesity on voriconazole serum concentrations. J Antimicrob Chemother. 67:2957–2962.
  • Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, Hines RN. 2003. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 308:965–974.
  • Koukouritaki SB, Simpson P, Yeung CK. 2002. Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res. 51:236–243.
  • Leeder JS, Kearns GL, Spielberg SP, van den Anker J. 2010. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol. 50:1377–1387.
  • Lempers VJC, van den Heuvel JJMW, Russel FGM, Aarnoutse RE, Burger DM, Brüggemann RJ, Koenderink JB. 2016. Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother. 60:3372–3379.
  • Li M, Zhu L, Chen L, Li N, Qi F. 2018. Assessment of drug-drug interactions between voriconazole and glucocorticoids. J Chemother. 30:296–303.
  • Li N, Zhu L, Qi F, Li M, Xu G, Ge T. 2018. Prediction of the effect of voriconazole on the pharmacokinetics of non-steroidal anti-inflammatory drugs. J Chemother. 30:240–246.
  • Li T-Y, Liu W, Chen K, Liang S-Y, Liu F. 2017. The influence of combination use of CYP450 inducers on the pharmacokinetics of voriconazole: a systematic review. J Clin Pharm Ther. 42:135–146.
  • Lin X-B, Li Z-W, Yan M, Zhang B-K, Liang W, Wang F, Xu P, Xiang D-X, Xie X-B, Yu S-J, et al. 2018. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 84:1587–1597.
  • Liu P, Foster G, Gandelman K, LaBadie RR, Allison MJ, Gutierrez MJ, Sharma A. 2007. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother. 51:3617–3626.
  • Luo X, Li T, Yu Z, et al. 2019. The impact of azole antifungal drugs on imatinib metabolism in human liver microsomes. Xenobiotica. 49:753–761.
  • Lutsar I, Roffey S, Troke P. 2003. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin Infect Dis. 37:728–732.
  • Maharaj AR, Gonzalez D, Cohen-Wolkowiez M, et al. 2017 Aug. Improving pediatric protein binding estimates: an evaluation of α1-acid glycoprotein maturation in healthy and infected subjects. Clin Pharmacokinet. 57:577–589.
  • Mahmood I. 2014. Dosing in children: a critical review of the pharmacokinetic allometric scaling and modelling approaches in paediatric drug development and clinical settings. Clin Pharmacokinet. 53:327–346.
  • Marks DI, Pagliuca A, Kibbler CC, Glasmacher A, Heussel C-P, Kantecki M, Miller PJS, Ribaud P, Schlamm HT, Solano C, et al. 2011. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. Br J Haematol. 155:318–327.
  • McNamara PJ, Alcorn J. 2002. Protein binding predictions in infants. AAPS PharmSci. 4:19–26.
  • Michelet R, Van Bocxlaer J, Vermeulen A. 2018. PBPK in preterm and term neonates: a review. Curr Pharm Des. 23:5943–5954.
  • Mikus G, Schöwel V, Drzewinska M, Rengelshausen J, Ding R, Riedel K-D, Burhenne J, Weiss J, Thomsen T, Haefeli WE, et al. 2006. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther. 80:126–135.
  • Minichmayr IK, Schaeftlein A, Kuti JL, Zeitlinger M, Kloft C. 2017. Clinical determinants of target non-attainment of linezolid in plasma and interstitial space fluid: a pooled population pharmacokinetic analysis with focus on critically ill patients. Clin Pharmacokinet. 56:617–633.
  • Moody DE, Liu F, Fang WB. 2015. Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism. J Anal Toxicol. 39:374–386.
  • Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, Agúndez J, Wingard JR, McLeod HL, Klein TE, et al. 2017. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 102:45–51.
  • Morlière P, Silva AMS, Seixas RSGR, Boscá F, Mazière J-C, Ferreira J, Santus R, Filipe P. 2018. Photosensitisation by voriconazole-N-oxide results from a sequence of solvent and pH-dependent photochemical and thermal reactions. J Photochem Photobiol B Biol. 187:1–9.
  • Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H. 2007. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol. 73:2020–2026.
  • Naito T, Yamada T, Mino Y, Kawakami J. 2015. Impact of inflammation and concomitant glucocorticoid administration on plasma concentration of triazole antifungals in immunocompromised patients. Clin Chim Acta. 441:127–132.
  • Niece KL, Boyd NK, Akers KS. 2015. In vitro study of the variable effects of proton pump inhibitors on voriconazole. Antimicrob Agents Chemother. 59:5548–5554.
  • Niwa T, Imagawa Y, Yamazaki H. 2014. Drug interactions between nine antifungal agents and drugs metabolized by human cytochromes P450. Curr Drug Metab. 15:651–679.
  • Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A. 2005. Effect of antifungal drugs on cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull. 28:1813–1816.
  • Niwa T, Shiraga T, Takagi A. 2005. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 28:1805–1808.
  • Ona K, Oh DH. 2015. Voriconazole N-oxide and its ultraviolet B photoproduct sensitize keratinocytes to ultraviolet A. Br J Dermatol. 173:751–759.
  • Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, Marchetti O. 2012. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 55:381–390.
  • Pasqualotto AC, Xavier MO, Andreolla HF, Linden R. 2010. Voriconazole therapeutic drug monitoring: focus on safety. Expert Opin Drug Saf. 9:125–137.
  • Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, et al. 2016. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 63:e1–e60.
  • Pearson MM, Rogers PD, Cleary JD, Chapman SW. 2003. Voriconazole: a new triazole antifungal agent. Ann Pharmacother. 37:420–432.
  • Pfizer. 2018. VFEND Summary of product characteristics.
  • Pieper S, Kolve H, Gumbinger HG, Goletz G, Würthwein G, Groll AH. 2012. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. J Antimicrob Chemother. 67:2717–2724.
  • Purkins L, Wood N, Ghahramani P, Kleinermans D, Layton G, Nichols D. 2003. No clinically significant effect of erythromycin or azithromycin on the pharmacokinetics of voriconazole in healthy male volunteers. Br J Clin Pharmacol. 56:30–36.
  • Purkins L, Wood N, Ghahramani P, Love ER, Eve MD, Fielding A. 2003. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol. 56(Suppl 1):37–44.
  • Purkins L, Wood N, Kleinermans D, Nichols D. 2003. Voriconazole potentiates warfarin-induced prothrombin time prolongation. Br J Clin Pharmacol. 56(Suppl)1:24–29.
  • Qi F, Zhu L, Li N, Ge T, Xu G, Liao S. 2017. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents. 49:403–409.
  • Rengelshausen J, Banfield M, Riedel K, Burhenne J, Weiss J, Thomsen T, Waltersack I, Haefeli W, Mikus G. 2005. Opposite effects of short-term and long-term St John’s wort intake on voriconazole pharmacokinetics. Clin Pharmacol Ther. 78:25–33.
  • Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman ANR, Smith DA, Walker DK, Wood N. 2003. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 31:731–741.
  • Scholz I, Oberwittler H, Riedel K-D, Burhenne J, Weiss J, Haefeli WE, Mikus G. 2009. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 68:906–915.
  • Shah RR, Smith RL. 2015. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 43:400–410.
  • Shi C, Xiao Y, Mao Y, Wu J, Lin N. 2019. Voriconazole: a review of population pharmacokinetic analyses. Clin Pharmacokinet. 58:687.
  • Simmel F, Kirbs C, Erdogan Z, Lackner E, Zeitlinger M, Kloft C. 2013. Pilot investigation on long-term subcutaneous microdialysis: proof of principle in humans. AAPS J. 15:95–103.
  • Simmel F, Kloft C. 2010. Microdialysis feasibility investigations with the non-hydrophilic antifungal voriconazole for potential applications in nonclinical and clinical settings. Int J Clin Pharmacol Ther. 48:695–704.
  • Simmel F, Soukup J, Zoerner A, Radke J, Kloft C. 2008. Development and validation of an efficient HPLC method for quantification of voriconazole in plasma and microdialysate reflecting an important target site. Anal Bioanal Chem. 392:479–488.
  • Smits A, Annaert P, Allegaert K. 2013. Drug disposition and clinical practice in neonates: cross talk between developmental physiology and pharmacology. Int J Pharm. 452:8–13.
  • Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, Manns MP. 2002. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 50:259–265.
  • Theuretzbacher U, Ihle F, Derendorf H. 2006. Pharmacokinetic/pharmacodynamic profile of Voriconazole. Clin Pharmacokinet. 45:649–663.
  • Tucker L, Higgins T, Egelund EF, Zou B, Vijayan V, Peloquin CA. 2015. Voriconazole monitoring in children with invasive fungal infections. J Pediatr Pharmacol Ther. 20:17–23.
  • Turner RB, Martello JL, Malhotra A. 2015. Worsening renal function in patients with baseline renal impairment treated with intravenous voriconazole: a systematic review. Int J Antimicrob Agents. 46:362–366.
  • Upreti VV, Wahlstrom JL. 2016. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 56:266–283.
  • Vadlapatla RK, Patel M, Paturi DK, Pal D, Mitra AK. 2014. Clinically relevant drug-drug interactions between antiretrovirals and antifungals. Expert Opin Drug Metab Toxicol. 10:561–580.
  • Van Booven D, Marsh S, McLeod H, et al. 2010. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 20:1.
  • Vanstraelen K, Wauters J, De Loor H, Vercammen I, Annaert P, Lagrou K, Spriet I. 2014. Protein-binding characteristics of voriconazole determined by high-throughput equilibrium dialysis. J Pharm Sci. 103:2565–2570.
  • Venkataramanan R, Zang S, Gayowski T, Singh N. 2002. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. Antimicrob Agents Chemother. 46:3091–3093.
  • Veringa A, ter Avest M, Span LFR, van den Heuvel ER, Touw DJ, Zijlstra JG, Kosterink JGW, van der Werf TS, Alffenaar J-WC. 2017. Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother. 72:261–267.
  • Veringa A, Geling S, Span LFR, Vermeulen KM, Zijlstra JG, van der Werf TS, Kosterink JGW, Alffenaar J-WC. 2017. Bioavailability of voriconazole in hospitalised patients. Int J Antimicrob Agents. 49:243–246.
  • Vreugdenhil B, van der Velden WJFM, Feuth T, Kox M, Pickkers P, van de Veerdonk FL, Blijlevens NMA, Brüggemann RJM. 2018. Moderate correlation between systemic IL-6 responses and CRP with trough concentrations of voriconazole. Br J Clin Pharmacol. 84:1980–1988.
  • Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, Vora AJ, Arrieta AC, Blumer J, Lutsar I, et al. 2004. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 48:2166–2172.
  • Walsh TJ, Moriyama B, Penzak SR, Klein TE, Caudle KE. 2017. Response to “pharmacogenetics of voriconazole: CYP2C19 but also CYP3A4 need to be genotyped - the role of CYP3A4 and CYP3A5 polymorphisms in clinical pharmacokinetics of voriconazole”. Clin Pharmacol Ther. 102:190.
  • Walsh TJ, Moriyama B, Penzak SR, Klein TE, Caudle KE. 2018. Response to “impact of CYP3A4 genotype on voriconazole exposure: new insights into the contribution of CYP3A4*22 to metabolism of voriconazole.”. Clin Pharmacol Ther. 103:187.
  • Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC, et al. 2012. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos. 40:1051–1065.
  • Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, Wang X, Xing J, Dong W, Yao H, et al. 2014. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother. 69:463–470.
  • Wang T, Yan M, Tang D, Xue L, Zhang T, Dong Y, Zhu L, Wang X, Dong Y. 2018a. A retrospective, multicenter study of voriconazole trough concentrations and safety in patients with Child-Pugh class C cirrhosis. J Clin Pharm Ther. 43:849–854.
  • Wang T, Yan M, Tang D, Xue L, Zhang T, Dong Y, Zhu L, Wang X, Dong Y. 2018b. Therapeutic drug monitoring and safety of voriconazole therapy in patients with Child-Pugh class B and C cirrhosis: a multicenter study. Int J Infect Dis. 72:49–54.
  • Van Wanrooy MJP, Span LFR, Rodgers MGG, et al. 2014. Inflammation is associated with voriconazole trough concentrations. Antimicrob Agents Chemother. 58:7099–7101.
  • Werk AN, Cascorbi I. 2014. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 96:340–348.
  • World Health Organization. 2017a. WHO model list of essential medicines.
  • World Health Organization. 2017b. WHO model list of essential medicines for children.
  • Yamada T, Imai S, Koshizuka Y, Tazawa Y, Kagami K, Tomiyama N, Sugawara R, Yamagami A, Shimamura T, Iseki K, et al. 2018. Necessity for a significant maintenance dosage reduction of voriconazole in patients with severe liver cirrhosis (Child–Pugh Class C). Biol Pharm Bull. 41:1112–1118.
  • Yamazaki H, Nakamoto M, Shimizu M, Murayama N, Niwa T. 2010. Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol. 69:593–597.
  • Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. 2007. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 8:676–684.
  • Yanni SB, Annaert PP, Augustijns P, Bridges A, Gao Y, Benjamin DK, Thakker DR. 2008. Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos. 36:1119–1125.
  • Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin DK, Thakker DR. 2010. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos. 38:25–31.
  • Yasu T, Konuma T, Kato S, Kurokawa Y, Takahashi S, Tojo A. 2017. Serum C-reactive protein levels affect the plasma voriconazole trough levels in allogeneic hematopoietic cell transplant recipients. Leuk Lymphoma. 58:2731–2733.
  • Zane NR, Thakker DR. 2014. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 53:1171–1182.
  • Zhang S, Pillai VC, Mada SR, Strom S, Venkataramanan R. 2012. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes. Xenobiotica. 42:409–416.
  • Zhu L, Brüggemann RJ, Uy J, Colbers A, Hruska MW, Chung E, Sims K, Vakkalagadda B, Xu X, van Schaik RHN, et al. 2017. CYP2C19 genotype-dependent pharmacokinetic drug interaction between voriconazole and ritonavir-boosted atazanavir in healthy subjects. J Clin Pharmacol. 57:235–246.
  • Zonios D, Yamazaki H, Murayama N, Natarajan V, Palmore T, Childs R, Skinner J, Bennett JE. 2014. Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis. 209:1941–1948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.