846
Views
78
CrossRef citations to date
0
Altmetric
Review Articles

Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application

, , , , ORCID Icon, & show all
Pages 157-184 | Received 22 Jun 2019, Accepted 07 Nov 2019, Published online: 13 Dec 2019

References

  • Ambrosone A, Mattera L, Marchesano V, Quarta A, Susha AS, Tino A, Rogach AL, Tortiglione C. 2012. Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials. 33(7):1991–2000.
  • Abbas W, Ahmad I, Kanwal M, Murtaza G, Ali I, Khan MA, Akhtar MN, Ahmad M. 2015. Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol–gel autocombustion for a variety of applications. J Magn Magn Mater. 374:187–191.
  • Adelsköld V. 1938. X-ray studies on magneto-plumbite, PbO.6Fe2O3, and other substances resembling ‘‘beta-alumina’’, Na2O.11Al2O3. Arkiv for Kemi Mineralogioch Geologi, Series A-12. 29:1–9.
  • Ahmad T, Phul R, Khatoon N, Sardar M. 2017. Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. New J Chem. 41(5):2055–2061.
  • Aidelberg J, Flicstein J, Schieber M. 1974. Cellular growth in BaFe12O19 crystals solidified from flux solvent. J Cryst Growth. 21(2):195–202.
  • Alexiou C, Arnold W, Klein R, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Luebbe AS. 2000. Locoregional cancer treatment with magnetic drug targeting. Can Res. 60:6641–6648.
  • Amani A, Maher Begdelo J, Yaghoubi H, Motallebinia S. 2019. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J Drug Deliv Sci Tec. 49:534–546.
  • Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E. 2009. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small. 5(11):1334–1342.
  • Andra W, D'ambly CG, Hergt R, Hilger I, Kaiser WA. 1999. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater. 194:197–203.
  • Arias JL, Reddy LH, Couvreur P. 2011. Superior preclinical efficacy of gemcitabine developed as chitosan nanoparticulate system. Biomacromolecules. 12(1):97–104.
  • Arularasu MV, Devakumar J, Rajendran TV. 2018. An innovative approach for green synthesis of iron oxide nanoparticles: characterization and its photocatalytic activity. Polyhedron. 156:279–290.
  • Arya G, Vandana M, Acharya S, Sahoo SK. 2011. Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine. 7(6):859–870.
  • Atuchin VV, Vinnik DA, Gavrilova TA, Gudkova SA, Isaenko LI, Jiang X, Pokrovsky LD, Prosvirin IP, Mashkovtseva LS, Lin Z. 2016. Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J Phys Chem C. 120(9):5114–5123.
  • Auwal IA, Güngüneş H, Baykal A, Güner S, Shirsath SE, Sertkol M. 2016. Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceram Int. 42(7):8627–8635.
  • Awadallah A, Mahmood SH, Maswadeh Y, Bsoul I, Awawdeh M, Mohaidat QI, Juwhari H. 2016. Structural, magnetic, and Mössbauer spectroscopy of Cu substituted M-type hexaferrites. Mater Res Bull. 74:192–201.
  • Berkowitz AE, Schuele WJ, Flanders PJ. 1968. Influence of crystallite size on the magnetic properties of acicular γ‐Fe2O3 particles. J Appl Phys. 39(2):1261–1263.
  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. 2007. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7(10):3065–3070.
  • Bastakoti BP, Wu KCW, Inoue M, Yusa SI, Nakashima K, Yamauchi Y. 2013. Multifunctional core-shell-corona-type polymeric micelles for anticancer drug-delivery and imaging. Chem Eur J. 19(15):4812–4817.
  • Bate G. 1980. Recording materials. In: Handbook of ferromagnetic materials. Vol. 2. Elsevier B.V.; p. 381–507.
  • Babincova M. 2004. In vivo heating of magnetic nanoparticles in alternating magnetic field. Medical Physics. 31(8):2219–2221.
  • Bárcena C, Sra AK, Gao J. 2009. Applications of magnetic nanoparticles in biomedicine. In: Liu J, Fullerton E, Gutfleisch O, Sellmyer D, editors. Nanoscale magnetic materials and applications. Boston (MA): Springer; p. 591–626.
  • Bekyarova E, Ni Y, Malarkey EB, Montana V, Mcwilliams JL, Haddon RC, Parpura V. 2005. Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol. 1(1):3–17.
  • Bhattacharya D, Behera B, Sahu SK, Ananthakrishnan R, Maiti TK, Pramanik P. 2016. Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. New J Chem. 40(1):545–557.
  • Bianco A, Kostarelos K, Partidos CD, Prato M. 2005. Biomedical applications of functionalised carbon nanotubes. Chem Commun. 7(5):571–577.
  • Bildstein L, Dubernet C, Marsaud V, Chacun H, Nicolas V, Gueutin C, Sarasin A, Bénech H, Lepêtre-Mouelhi S, Desmaële D, Couvreur P. 2010. Transmembrane diffusion of gemcitabine by a nanoparticulate squalenoyl prodrug: an original drug delivery pathway. J Control Release. 147(2):163–170.
  • Braz L, Rodrigues S, Fonte P, Grenha A, Sarmento B. 2011. Mechanisms of chemical and enzymatic chitosan biodegradability and its application on drug delivery. In: Felton G, editors. In biodegradable polymers: processing, degradation and applications. New York (NY): Nova Science Publisher.
  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science. 281(5385):2013–2016.
  • Buzinaro MaP, Ferreira NS, Cunha F, Macêdo MA. 2016. Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceram Int. 42(5):5865–5872.
  • Cai W, Chen X. 2007. Nanoplatforms for targeted molecular imaging in living subjects. Small. 3(11):1840–1854.
  • Cai W, Hsu A, Li ZB, Chen X. 2007. Are quantum dots ready for in vivo imaging in human subjects?. Nanoscale Res Lett. 2(6):265–281.
  • Cayre OJ, Chagneux N, Biggs S. 2011. Stimulus responsive core-shell nanoparticles: synthesis and applications of polymer based aqueous systems. Soft Matter. 7(6):2211–2234.
  • Chan WCW, Nie S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281(5385):2016–2018.
  • Chavan VC, Shirsath SE, Mane ML, Kadam RH, More SS. 2016. Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J Magn Magn Mater. 398:32–37.
  • Chen W, Bian A, Agarwal A, Liu L, Shen H, Wang L, Xu C, Kotov NA. 2009. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9(5):2153–2159.
  • Chen Y, Ai K, Liu J, Sun G, Yin Q, Lu L. 2015. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials. 60:111–120.
  • Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J. 2010. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano. 4(10):6001–6013.
  • Chen Y-C, Hsiao J-K, Liu H-M, Lai I-Y, Yao M, Hsu S-C, Ko B-S, Chen Y-C, Yang C-S, Huang D-M. 2010. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol. 245(2):272–279.
  • Chitkara D, Mittal A, Behrman SW, Kumar N, Mahato RI. 2013. Self-assembling, amphiphilic polymer–gemcitabine conjugate shows enhanced antitumor efficacy against human pancreatic adenocarcinoma. Bioconjugate Chem. 24(7):1161–1173.
  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. 2010. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 62(2):144–149.
  • Choi HS, Huh KM, Ooya T, Yui N. 2003. pH-and thermosensitive supramolecular assembling system: rapidly responsive properties of β-cyclodextrin-conjugated poly (ε-lysine). J Am Chem Soc. 125(21):6350–6351.
  • Costa DaS, Mambrini RV, Fernandez-Outon LE, Macedo WaA, Moura FCC. 2013. Magnetic adsorbent based on cobalt core nanoparticles coated with carbon filaments and nanotubes produced by chemical vapor deposition with ethanol. Chem Eng J. 229:35–41.
  • Dadfar SMA, Roemhild K, Drude NI, Von Stillfried S, Knüchel R, Kiessling F, Lammers T. 2019. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 138:302–325.
  • Dalla Pozza E, Lerda C, Costanzo C, Donadelli M, Dando I, Zoratti E, Scupoli MT, Beghelli S, Scarpa A, Fattal E, et al. 2013. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochim Biophys Acta. 1828(5):1396–1404.
  • Daniel MC, Astruc D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 104(1):293–346.
  • Dasanu CA. 2008. Gemcitabine: vascular toxicity and prothrombotic potential. Expert Opin Drug Saf. 7(6):703–716.
  • Demirezen DA, Yıldız YŞ, Yılmaz Ş, Yılmaz DD. 2019. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J Biosci Bioeng. 127:241–245.
  • Dhage VN, Mane ML, Babrekar MK, Kale CM, Jadhav KM. 2011. Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J Alloys Compd. 509(12):4394–4398.
  • Dhanalaxmi K, Singuru R, Mondal S, Bai L, Reddy BM, Bhaumik A, Mondal J. 2016. Magnetic nanohybrid decorated porous organic polymer: synergistic catalyst for high performance levulinic acid hydrogenation. ACS Sustain Chem Eng. 5:1033–1045.
  • Diniz KM, Tarley CRT. 2015. Speciation analysis of chromium in water samples through sequential combination of dispersive magnetic solid phase extraction using mesoporous amino-functionalized Fe3O4/SiO2 nanoparticles and cloud point extraction. Microchem J. 123:185–195.
  • Dunlop DJ. 1973. Superparamagnetic and single-domain threshold sizes in magnetite. J Geophys Res. 78(11):1780–1793.
  • Dukhin SS, Labib ME. 2013. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Colloid Interf Sci. 43(23):199–200.
  • Durmus Z, Kavas H, Durmus A, Aktaş B. 2015. Synthesis and micro-structural characterization of graphene/strontium hexaferrite (SrFe12O19) nanocomposites. Mater Chem Phys. 163:439–445.
  • El-Boubbou K. 2018. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine. 13(8):953–971.
  • Eli lilly & Company. 1997. Summary of product characteristics: gemcitabine. UK Prescribing information. Eli Lilly.
  • Erathodiyil N, Ying JY. 2011. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res. 44(10):925–935.
  • Farokhzad OC, Langer RL. 2006. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 58(14):1456–1459.
  • Farrell JJ, Elsaleh H, Garcia M, Lai R, Ammar A, Regine WF, Abrams R, Benson AB, Macdonald J, Cass CE, et al. 2009. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology. 136(1):187–195.
  • Ferrari M. 2005. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 5(3):161–171.
  • Freeman MW, Arrott A, Watson JHL. 1960. Magnetism in medicine. J Appl Phys. 31(5):S404–S405.
  • Fernández-Pacheco R, Valdivia JG, Ibarra MR. 2009. Magnetic nanoparticles for local drug delivery using magnetic implants. In: Micro and nano technologies in bioanalysis. Methods Mol Biol. 544:559–569.
  • Gambino RJ, Leonhard F. 1961. Growth of barium ferrite single crystals. J Am Ceramic Soc. 44(5):221–224.
  • Garg NK, Dwivedi P, Campbell C, Tyagi RK. 2012. Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: an improved understanding of lung cancer therapeutic intervention. Eur J Pharm Sci. 47(5):1006–1014.
  • Gayathri S, Jesurani S, Ashok K, John Peter A. 2018. Structural and magnetic properties of nb-zn doped barium strontium hexaferrite nanocomposite powder prepared by sol-gel method. Int J of Curr Res. 10:70063–70073.
  • Ge Z, Liu S. 2013. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev. 42(17):7289–7325.
  • Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M. 2014. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem. 20(6):3970–3974.
  • Goodwin S, Peterson C, Hoh C, Bittner C. 1999. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J Magn Magn Mater. 194(1–3):132–139.
  • Goto Y, Takada T. 1960. On the phase diagram of the condensed system BaO-Fe2O3. J Jpn Soc Powder Powder Metall. 7(2):35–40.
  • Grodzinski P, Silver M, Molnar LK. 2006. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn. 6(3):307–318.
  • Gui R, Wang Y, Sun J. 2014. Encapsulating magnetic and fluorescent mesoporous silica into thermosensitive chitosan microspheres for cell imaging and controlled drug release in vitro. Colloids Surf B Biointerfaces. 113:1–9.
  • Gupta AK, Gupta M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26(18):3995–4021.
  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. 2010. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 22(25):2729–2742.
  • Hilger I, Hergt R, Kaiser WA. 2000. Effects of magnetic thermoablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol. 35(3):170–179.
  • Hoskins C, Cuschieri A, Wang L. 2012. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnol. 10(1):15.
  • Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV. 2005. Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci. 88(1):12–17.
  • Hoet PH, Brüske-Hohlfeld I, Salata OV. 2004. Nanoparticles—known and unknown health risks. J Nanobiotechnol. 2(1):12.
  • Hoskins C, Wang L, Cheng WP, Cuschieri A. 2012. Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: which tests and what protocols? Nanoscale Res Lett. 7(1):77.
  • Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN. 2012. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomed. 7:1851.
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. 2007. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond). 2(5):681–693.
  • Jang B, Kwon H, Katila P, Lee SJ, Lee H. 2016. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Adv Drug Deliv Rev. 98:113–133.
  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. 2011. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 6(4):715–728.
  • Jones F, Cölfen H, Antonietti M. 2000. Interaction of κ-carrageenan with nickel, cobalt, and iron hydroxides. Biomacromolecules. 1(4):556–563.
  • Joubert JC. 1997. Magnetic micro composites as vectors for bioactive agents: the state of art. Anales de Quimica (1990). 93:70–76.
  • Kam NWS, O'connell M, Wisdom JA, Dai H. 2005. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci. 102:11600–11605.
  • Kanagesan S, Hashim M, Jesurani S, Kalaivani T, Ismail I. 2014. Microwave sintering of Zn-Nb doped barium hexaferrite synthesized via Sol-Gel Method. MSA. 05(04):171–176.
  • Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JWM. 2010. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med. 63(4):1031–1043.
  • Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte J. 2004. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 17(7):513–517.
  • Kruse AM, Meenach SA, Anderson KW, Hilt JZ. 2014. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater. 10(6):2622–2629.
  • Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. 2010. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination. 261:52–60.
  • Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K, Miwa N, Tsutsui H, Vogler H, Weinmann HJ. 1997. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting: pre-clinical profile of SH U555A. Acta Radiol. 38:584–597.
  • Lee H, Shin TH, Cheon J, Weissleder R. 2015. Recent developments in magnetic diagnostic systems. Chem Rev. 115(19):10690–10724.
  • Lee KH, Galloway JF, Park JH, Dvoracek CM, Dallas M, Konstantopoulos K, Maitra A, Searson PC. 2012. Quantitative molecular profiling of biomarkers for pancreatic cancer with functionalized quantum dots. Nanomed Nanotechnol. 8(7):1043–1051.
  • Leslie-Pelecky DL, Rieke RD. 1996. Magnetic properties of nanostructured materials. Chem Mater. 8(8):1770–1783.
  • Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden DT, Weissleder R. 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 18(4):410.
  • Lei W, Liu Y, Si X, Xu J, Du W, Yang J, Zhou T, Lin J. 2017. Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route. Phys Lett A. 381(4):314–318.
  • Li L, Mak KY, Shi J, Leung CH, Wong CM, Leung CW, Mak CSK, Chan KY, Chan NMM, Wu EX, Pong PWT. 2013. Sterilization on dextran-coated iron oxide nanoparticles: effects of autoclaving, filtration, UV irradiation, and ethanol treatment. Microelectron Eng. 111:310–313.
  • Li N, Chen J, Shi YP. 2017. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice. Anal Chim. 949:23–34.
  • Li W, Qiao X, Li M, Liu T, Peng HX. 2013. La and Co substituted M-type barium ferrites processed by sol–gel combustion synthesis. Mater Res Bull. 48(11):4449–4453.
  • Li X, Zhao W, Liu X, Chen K, Zhu S, Shi P, Chen Y, Shi J. 2016. Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomater. 30:378–387.
  • Liberti PA, Rao CG, Terstappen LW. 2001. Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater. 225(1-2):301–307.
  • Licci F, Besagni T, Lábár J. 1987. Growth and characterization of Ba (Mn, Ti)xFe12−xO19 crystals. Mater Res Bull. 22(4):467–476.
  • Lin Y, Taylor S, Li H, Fernando KaS, Qu L, Wang W, Gu L, Zhou B, Sun YP. 2004. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 14(4):527–541.
  • Liu X, Yu D, Jin C, Song X, Cheng J, Zhao X, Qi X, Zhang G. 2014. A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J Chem. 38(10):4830–4836.
  • Lowe LB, Brewer SH, Krämer S, Fuierer RR, Qian G, Agbasi-Porter CO, Moses S, Franzen S, Feldheim DL. 2003. Laser-induced temperature jump electrochemistry on gold nanoparticle-coated electrodes. J Am Chem Soc. 125(47):14258–14259.
  • Maeda H. 2001. The enhanced permeability and retention (EPR) effect intumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 41(1):189–207.
  • Mao Z, Xu B, Ji X, Zhou K, Zhang X, Chen M. 2015. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. Nano. 7(18):8466–8475.
  • Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E. 2006. Magnetic nanoparticle design for medical applications. Prog Solid State Chem. 34(2-4):237–247.
  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. 2011. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 63(1-2):24–46.
  • Mak SY, Chen DH. 2005. Binding and sulfonation of poly (acrylic acid) on Iron oxide nanoparticles: a novel, magnetic, strong acid cation nano‐adsorbent. Macromol Rapid Commun. 26(19):1567–1571.
  • Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM, Pal T. 2005. Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci. 286(1):187–194.
  • Marino-Castellanos PA, Anglada-Rivera J, Cruz-Fuentes A, Lora-Serrano R. 2004. Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrite. J Magn Magn Mater. 280:214–220.
  • Martínez-Carmona M, Colilla M, Vallet-Regí M. 2015. Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials. 5(4):1906–1937.
  • Mendes RG, Koch B, Bachmatiuk A, El-Gendy AA, Krupskaya Y, Springer A, Klingeler R, Schmidt O, Büchner B, Sanchez S, Rümmeli MH. 2014. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim Biophys Acta. 1840(1):160–169.
  • Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF, Zink JI, Nel AE. 2010. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc. 132(36):12690–12697.
  • Meyers PH, Cronic FR, Nice C. Jr, 1963. Experimental approach in the use and magnetic control of metallic IRON particles in the lymphatic and vascular system of dogs as a contrast and isotropic agent. Am J Roentgenol. 90:1068–1977.
  • Miller T, Van Colen G, Sander B, Golas MM, Uezguen S, Weigandt M, Goepferich A. 2013. Drug loading of polymeric micelles. Pharm Res. 30(2):584–595.
  • Minotti G, Aust SD. 1987. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biolo Chem. 262(3):1098–1104.
  • Mocuta H, Lechevallier L, Le Breton JM, Wang JF, Harris IR. 2004. Structural and magnetic properties of hydrothermally synthesised Sr1−xNdxFe12O19 hexagonal ferrites. J Alloys Compd. 364(1–2):48–52.
  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. 2014. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 4(4):385–392.
  • Moghimi SM, Hunter AC, Murray JC. 2001. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 53(2):283–318.
  • Mondal J, Sen T, Bhaumik A. 2012. Fe3O4@ mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones via the Biginelli reaction. Dalton Trans. 41(20):6173–6181.
  • Mosbach K, Schröder U. 1979. Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett. 102(1):112–116.
  • Moses MA, Brem H, Langer R. 2003. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell. 4(5):337–341.
  • Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O. 2019a. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metab Rev. 51(1):12–41.
  • Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, Babapoor A, Arjmand O. 2018. Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol. 46(sup3):S855–S872.
  • Mousavi SM, Soroshnia S, Hashemi SA, Babapoor A, Ghasemi Y, Savardashtaki A, Amani AM. 2019b. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab Rev. 51(1):91–104.
  • Panyam J, Labhasetwar V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 55(3):329–347.
  • Park JH, Saravanakumar G, Kim K, Kwon IC. 2010. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 62(1):28–41.
  • Nguyen KC, Rippstein P, Tayabali AF, Willmore WG. 2015. Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci. 146(1):31–42.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2(1):8.,
  • Park J-H, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MICHAEL J. 2008. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed. 47(38):7284–7288.
  • Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. 2016. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol. 784:121–128.
  • Patitsa M, Karathanou K, Kanaki Z, Tzioga L, Pippa N, Demetzos C, Verganelakis DA, Cournia Z, Klinakis A. 2017. Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Sci Rep. 7(1):775.
  • Pawar RA, Desai SS, Tamboli QY, Shirsath SE, Patange SM. 2015. Ce3+ incorporated structural and magnetic properties of M type barium hexaferrites. J Magn Magn Mater. 378:59–63.
  • Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. 2001. Poly (lactic acid)-poly (ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release. 75(1–2):211–224.
  • Peng Xiang-Hong, Qian Ximei, Mao Hui, Wang Andrew Y, Chen Zhuo Georgia, Nie Shuming, Shin Dong M. 2008. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed. 3(3):311.
  • Pourabhari Langeroudi M, Binaeian E. 2018. Tannin-APTES modified Fe3O4 nanoparticles as a carrier of Methotrexate drug: kinetic, isotherm and thermodynamic studies. Mater Chem Phys. 218:210–217.
  • Prabhu VM, Hudson SD. 2009. Nanoparticle assembly: DNA provides control. Nature Mater. 8(5):365–366.
  • Puppi J, Mitry RR, Modo M, Dhawan A, Raja K, Hughes RD. 2011. Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes. Cell Transplant. 20(6):963–976.
  • Reddy LH, Couvreur P. 2008. Novel approaches to deliver gemcitabine to cancers. CPD. 14(11):1124–1137.
  • Rezvani Jalal N, Madrakian T, Afkhami A, Ghamsari M. 2019. Polyethylenimine@ Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples. Electroanal Chem. 833:281–289.
  • Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, Illum L, Davis SS. 1999. Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids Surfaces B. 16(1-4):147–159.
  • Ring CJA, Blouin P, Martin LA, Hurst HC, Lemoine NR. 1997. Use of transcriptional regulatory elements of the MUC1 and ERBB2 genes to drive tumour-selective expression of a prodrug activating enzyme. Gene Ther. 4(10):1045–1052.
  • Rosensweig RE. 2002. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 252:370–374.
  • Rodrigues S, Dionísio M, López CR, Grenha A. 2012. Biocompatibility of chitosan carriers with application in drug delivery. JFB. 3(3):615–641.
  • Roger J, Pons JN, Massart R, Halbreich A, Bacri JC. 1999. Some biomedical applications of ferrofluids. Eur Phys J Ap. 5(3):321–325.
  • Roy D, Brooks WLA, Sumerlin BS. 2013. New directions in thermos-responsive polymers. Chem Soc Rev. 42(17):7214–7243.
  • Radomski ANNA, Jurasz PAUL, Alonso-Escolano DAVID, Drews MAGDALENA, Morandi MARIA, Malinski TADEUSZ, Radomski MarekW. 2005. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 146(6):882–893.
  • Ruenraroengsak PAKATIP, Novak PAVEL, Berhanu DEBORAH, Thorley AndrewJ, Valsami-Jones EUGENIA, Gorelik JULIA, Korchev YuriE, Tetley TeresaD. 2012. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology. 6(1):94–108.
  • Salem M, Xia Y, Allan A, Rohani S, Gillies ER. 2015. Curcumin-loaded, folic acid-functionalized magnetite particles for targeted drug delivery. RSC Adv. 5(47):37521–37532.
  • Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. 2001. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir. 17(10):2900–2906.
  • Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V. 2014. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release. 194:82–91.
  • Senyei A, Widder K, Czerlinski G. 1978. Magnetic guidance of drug-carrying microspheres. J Appl Phys. 49(6):3578–3583.
  • Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X. 2012. Preparation of Fe3O4@SiO2@layered double hydroxide core–shell microspheres for magnetic separation of proteins. J Am Chem Soc. 134(2):1071–1077.
  • Shen B, Ma Y, Yu S, Ji C. 2016. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Appl Mater Interfaces. 8:24502–24508.
  • Shen L, Stachowiak A, Fateen SEK, Laibinis PE, Hatton TA. 2001. Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis. Langmuir. 17(2):288–299.
  • Shubayev Veronica I, Pisanic Thomas R, Jin Sungho. 2009. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 61(6):467–477.
  • Silva WMS, Ferreira NS, Soares JM, Da Silva RB, Macêdo MA. 2015. Investigation of structural and magnetic properties of nanocrystalline Mn-doped SrFe12O19 prepared by proteic sol–gel process. J Magn Magn Mater. 395:263–270.
  • Silver FH, Christiansen DL. 1999. Biomaterials science and biocompatibility. New York (NY): Springer.
  • Singh J, Singh C, Kaur D, Narang SB, Joshi R, Mishra SR, Jotania R, Ghimire M, Chauhan CC. 2016. Tunable microwave absorption in CoAl substituted M-type BaSr hexagonal ferrite. Mater Des. 110:749–761.
  • Singh R, & Lillard J. W Jr. 2009. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 86(3):215–223.
  • Singh BR, Singh BN, Khan W, Singh HB, Naqvi AH. 2012. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials. 33(23):5753–5767.
  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. 2018. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 13(1):44.
  • Soppimath KS, Tan DCW, Yang YY. 2005. pH-triggered thermally responsive polymer core–shell nanoparticles for drug delivery. Adv Mater. 17(3):318–323.
  • Sudimack J, Lee RJ. 2000. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 41(2):147–162.
  • Sun C, Lee JSH, Zhang M. 2008. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 60(11):1252–1265.
  • Sun YP, Sai H, Spoth KA, Tan KW, Werner-Zwanziger U, Zwanziger J, Gruner SM, Kourkoutis LF, Wiesner U. 2016. Stimuli-responsive shapeshifting mesoporous silica nanoparticles. Nano Lett. 16(1):651–655.
  • Taghdisi SM, Lavaee P, Ramezani M, Abnous K. 2011. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharma. 77(2):200–206.
  • Tartaj P, Del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ. 2003. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 36:182–197.
  • Thakur A, Singh RR, Barman PB. 2013. Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J Magn Magn Mater. 326:35–40.
  • Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 34(1):23–38.
  • Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, Pöttler M, Dürr S, Alexiou C. 2015. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 468(3):463–470.
  • Tromsdorf UlrichI, Bigall NadjaC, Kaul MichaelG, Bruns OliverT, Nikolic MarijaS, Mollwitz BIRGIT, Sperling RalphA, Reimer RUDOLPH, Hohenberg HEINZ, Parak WolfgangJ, et al. 2007. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 7(8):2422–2427.
  • Trukhanov AV, Turchenko VO, Bobrikov IA, Trukhanov SV, Kazakevich IS, Balagurov AM. 2015. Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x= 0.1–1.2) solid solutions. J Magn Magn Mater. 393:253–259.
  • Trukhanov SV, Trukhanov AV, Turchenko VA, Kostishin VG, Panina LV, Kazakevich IS, Balagurov AM. 2016. Crystal structure and magnetic properties of the BaFe12−xInxO19 (x= 0.1–1.2) solid solutions. J Magn Magn Mater. 417:130–136.
  • Tudorache F, Brinza F, Popa PD, Petrila I, Grigoras M, Tascu S. 2012. Comparison between powders of strontium hexaferrite processed by dynamic gas heat treatment and re-calcination. Acta Phys Pol A. 121(1):92–94.
  • Tudorache F, Popa PD, Brinza F, Tascu S. 2012. Structural investigations and magnetic properties of BaFe12O19 crystals. Acta Phys Pol A. 121(1):95–97.
  • Veiseh O, Gunn JW, Zhang M. 2010. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 62(3):284–304.
  • Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY. 2011. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev. 63(14-15):1228–1246.
  • Vinnik DA, Gudkova SA, Niewa R. 2016. Growth of lead and aluminum substituted barium hexaferrite single crystals from lead oxide fluxed. MSF. 843:3–9.
  • Wang X, Zhou L, Ma Y, Li X, Gu H. 2009. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2(5):365–372.
  • Wang T, Bai J, Jiang X, Nienhaus GU. 2012. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 6(2):1251–1259.
  • Wang YS, Jiang Q, Li RS, Liu LL, Zhang QQ, Wang YM, Zhao J. 2008. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel. Nanotechnology. 19(14):145101–145108.
  • Wang Z, Liu R, Zhao F, Liu X, Lv M, Meng J. 2010. Facile synthesis of porous Fe7Co3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support. Langmuir. 26(12):10135–10140.
  • Wang Z, Liu X, Lv M, Meng J. 2010. A new kind of mesoporous Fe7Co3/carbon nanocomposite and its application as magnetically separable adsorber. Mater Lett. 64(10):1219–1221.
  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 134(4):2139–2147.
  • Wu X, Tan Y, Mao H, Zhang M. 2010. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine. 5:385–399.
  • Wu X, Wang Z, Zhu D, Zong S, Yang L, Zhong Y, Cui Y. 2013. pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer–lipid bilayer. ACS Appl Mater Interfaces. 5:10895–10903.
  • Xu Y, Du Y. 2003. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 250(1):215–226.
  • Yang Y, Wang F, Shao J, Huang D, Cao Q. 2018. Investigating the influence of Cr-Zn substitution on magnetic and structural properties of M-type SrBaSm hexaferrites Sr0.6Ba0.1Sm0.3Fe12.0-x (Cr0.6Zn0.4)xO19. Chin J Phys. 56(1):67–74.
  • Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. 2009. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem. 19(18):2710–2714.
  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, et al. 2006. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 314(5801):964–967.
  • Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX. 2016. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett. 11(1):276–282.
  • Yu Q, Sun J, Zhu XU, Qiu L, Xu M, Liu S, Ouyang J, Liu J. 2017. Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J Mater Chem B. 5(30):6081–6096.
  • Yu X, Shavel A, An X, Luo Z, Ibáñez M, Cabot A. 2014. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc. 136(26):9236–9239.
  • Zhang L, Guo R, Yang M, Jiang X, Liu B. 2007. Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv Mater. 19(19):2988–2992.
  • Zheng B, Zhang M, Xiao D, Jin Y, Choi MMF. 2010. Fast microwave synthesis of Fe3O4 and Fe3O4/Ag magnetic nanoparticles using Fe2+ as precursor. Inorg Mater. 46(10):1106–1111.
  • Zhu Y, Ikoma T, Hanagata N, Kaskel S. 2010. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small. 6(3):471–478.
  • Zou W, Liu C, Chen Z, Zhang N. 2009. Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA. Nanoscale Res Lett. 4(9):982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.