1,080
Views
44
CrossRef citations to date
0
Altmetric
Review Articles

The metabolic effect of gut microbiota on drugs

, , , , , , & show all
Pages 139-156 | Received 27 Aug 2019, Accepted 15 Jan 2020, Published online: 02 Mar 2020

References

  • Adlercreutz H, Martin F. 1980. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem. 13:231–244.
  • Akao T, Che QM, Kobashi K, Hattori M, Namba T. 1996. A purgative action of barbaloin is induced by Eubacterium sp. strain BAR, a human intestinal anaerobe, capable of transforming barbaloin to aloe-emodin anthrone. Biol Pharm Bull. 19:136–138.
  • Akao T, Akao T, Hattori M, Kanaoka M, Yamamoto K, Namba T, Kobashi K. 1991. Hydrolysis of glycyrrhizin to 18 beta-glycyrrhetyl monoglucuronide by lysosomal beta-D-glucuronidase of animal livers. Biochem Pharmacol. 41:1025–1029.
  • Akyildiz BN, Kurtoğlu S, Kondolot M, Tunç A. 2010. Cyanide poisoning caused by ingestion of apricot seeds. Ann Trop Paediatr. 30:39–43.
  • Antila S, Pesonen U, Lehtonen L, Tapanainen P, Nikkanen H, Vaahtera K, Scheinin H. 2004. Pharmacokinetics of levosimendan and its active metabolite OR-1896 in rapid and slow acetylators. Eur J Pharm Sci. 23:213–222.
  • Bachrach WH. 1988. Sulfasalazine: I. An historical perspective. Am J Gastroenterol. 83:487–496.
  • Bae EA, Han MJ, Choo MK, Park SY, Kim DH. 2002. Metabolism of 20 (S)- and 20 (R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull. 25:58–63.
  • Bae EA, Shin JE, Kim DH. 2005. Metabolism of ginsenoside re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull. 28:1903–1908.
  • Bakke OM. 1971. Degradation of DOPA by intestinal microorganisms in vitro. Acta Pharmacol Toxicol. 30:115–121.
  • Basit AW, Lacey LF. 2001. Colonic metabolism of ranitidine; implications for its delivery and absorption. Int J Pharm. 227:157–165.
  • Basit AW, Newton JM, Lacey LF. 2002. Susceptibility of the H2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. Int J Pharm. 237:23–33.
  • Bowey E, Adlercreutz H, Rowland I. 2003. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol. 41:631–636.
  • Calne DB, Karoum F, Ruthven CR, Sandler M. 1969. The metabolism of orally administered l-DOPA in Parkinsonism. Br J Pharmacol. 37:57–68.
  • Carter JH, McLafferty MA, Goldman P. 1980. Role of the gastrointestinal microflora in amygdalin (laetrile)-induced cyanide toxicity. Biochem Pharmacol. 29:301–304.
  • Chan RP, Pope DJ, Gilbert AP, Sacra PJ, Baron JH, Lennard-Jones JE. 1983. Studies of two novel sulfasalazine analogs, ispsalazide and balsalazide. Digest Dis Sci. 28:609–615.
  • Chang HK, Yang HY, Lee TH, Shin MC, Lee MH, Shin MS, Kim CJ, Kim OJ, Hong SP, Cho S. 2005. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cycloosygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Biol Pharm Bull. 28:449–454.
  • Choi J, Shin KM, Park HJ, Jung HJ, Kim HJ, Lee YS, Rew JH, Lee KT. 2004. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 70:1027–1032.
  • Choo MK, Park EK, Yoon HK, Kim DH. 2002. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora. Biol Pharm Bull. 25:1328–1332.
  • Chow JM, Shen SC, Huan SK, Lin HY, Chen YC. 2005. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol. 69:1839–1851.
  • Conlon MA, Bird AR. 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 7:17–44.
  • Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W. 2005. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol. 183:45–55.
  • Deloménie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, Denamur E, Dupret JM. 2001. Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol. 183:3417–3427.
  • Deng Y, Rogers M, Sychterz C, Talley K, Qian Y, Bershas D, Ho M, Shi W, Chen EP, Serabjit-Singh C, et al. 2011. Investigations of hydrazine cleavage of eltrombopag in humans. Drug Metab Dispos. 39:1747–1754.
  • Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 108:4554–4561.
  • Dobkin JF, Saha JR, Butler VP Jr, Neu HC, Lindenbaum J. 1982. Inactivation of digoxin by Eubacterium lentum, an anaerobe of the human gut flora. Trans Assoc Am Physicians. 95:22–29.
  • Dull BJ, Salata K, Goldman P. 1987. Role of the intestinal flora in the acetylation of sulfasalazine metabolites. Biochem Pharmacol. 36:3772–3774.
  • Elkington SG, Floch MH, Conn HO. 1969. Lactulose in the treatment of chronic portal-systemic encephalopathy. N Engl J Med. 281:408–412.
  • Elmer GW, Remmel RP. 1984. Role of intestinal microflora in clonazepam metabolism in the rat. Xenobiotica. 14:829–840.
  • Enright EF, Joyce SA, Gahan CGM, Griffin BT. 2017. Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. Mol Pharm. 14:1251–1263.
  • Filippo CD, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 107:14691–14696.
  • Fouts JR, Kamm JJ, Brodie BB. 1957. Enzymatic reduction of prontosil and other azo dyes. J Pharmacol Exp Ther. 120:291–300.
  • Fujii J, Inotsume N, Nakano M. 1987. Degradation of bromazepam by the intestinal microflora. Chem Pharm Bull. 35:4338–4341.
  • Fuller AT. 1937. Is p-aminobenzene sulphonamide the active agent in prontosil therapy? Lancet. 229:194–198.
  • Gingell R, Bridges JW. 1973. Intestinal azo-reduction and glucuronide conjugation of prontosil. Xenobiotica. 3:599–604.
  • Gingell R, Bridges JW, Williams RT. 1971. The role of the gut flora in the metabolism of prontosil and neoprontasil in the rat. Xenobiotica. 1:143–156.
  • Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe. 6:279–289.
  • Guardia T, Rotelli AE, Juarez AO, Pelzer LE. 2001. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 56:683–687.
  • Han T, Cheng G, Liu Y, Yang H, Hu YT, Huang W. 2012. In vitro evaluation of tectoridin, tectorigenin and tectorigenin sodium sulfonate on antioxidant properties. Food Chem Toxicol. 50:409–414.
  • Han YO, Han MJ, Park SH, Kim DH. 2003. Protective effects of kakkalide from Flos Puerariae on ethanol-induced lethality and hepatic injury are dependent on its biotransformation by human intestinal microflora. J Pharmacol Sci. 93:331–336.
  • Harris BE, Manning BW, Federle TW, Diasio RB. 1986. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother. 29:44–48.
  • Hashim H, Azmin S, Razlan H, Yahya NW, Tan HJ, Manaf MRA, Ibrahim NM. 2014. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One. 9:e112330.
  • Hattori M, Kim G, Motoike S, Kobashi K, Namba T. 1982. Metabolism of sennosides by intestinal flora. Chem Pharm Bull. 30:1338–1346.
  • Hayllar J, Bjarnason I. 1991. Sulphasalazine in ulcerative colitis: in memoriam? Gut. 32:462–463.
  • Holt R. 1967. The bacterial degradation of chloramphenicol. Lancet. 1:1259–1260.
  • Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214.
  • Jensen KF, Nygaard P. 1975. Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur J Biochem. 51:253–265.
  • Jeon SM, Kim HK, Kim HJ, Do GM, Jeong TS, Park YB, Choi MS. 2007. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Transl Res. 149:15–21.
  • Jernberg C, Löfmark S, Edlund C, Jansson JK. 2010. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 156:3216–3223.
  • Jia W, Xie G, Jia W. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128.
  • Jin MJ, Kim U, Kim IS, Kim Y, Kim DH, Han SB, Kim DH, Kwon OS, Yoo HH. 2010. Effects of gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats. J Toxicol Environ Health Part A. 73:1441–1450.
  • Kang MJ, Kim HG, Kim JS, Oh DG, Um YJ, Seo CS, Han JW, Cho HJ, Kim GH, Jeong TC, et al. 2013. The effect of gut microbiota on drug metabolism. Exp Opin Drug Metab Toxicol. 9:1295–1308.
  • Kang NJ, Lee KW, Rogozin EA, Cho YY, Heo YS, Bode AM, Lee HJ, Dong Z. 2007. Equol, a metabolite of the soybean isoflavone daidzein, inhibits neoplastic cell transformation by targeting the MEK/ERK/p90RSK/activator protein-1 pathway. J Biol Chem. 282:32856–32866.
  • Kim DH, Hyun SH, Shim SB, Kobashi K. 1992. The role of intestinal bacteria in the transformation of sodium picosulfate. Jpn J Pharmacol. 59:1–5.
  • Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 21:17–23.
  • Kim DH, Sohng IS, Kobashi K, Han MJ. 1996. Purification and characterization of beta-glucosidase from Bacteroides JY-6, a human intestinal bacterium. Biol Pharm Bull. 19:1121–1125.
  • Kim YP, Yamada M, Lim SS, Lee SH, Ryu N, Shin KH, Ohuchi K. 1999. Inhibition by tectorigenin and tectoridin of prostaglandin E2 production and cyclooxgenase-2 induction in rat peritoneal macrophages. Biochim Biophys Acta. 1438:399–407.
  • Kitamura S, Sugihara K, Kuwasako M, Tatsumi K. 1997. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J Pharm Pharmacol. 49:253–256.
  • Klaassen CD, Cui JY. 2015. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos. 43:1505–1521.
  • Koch RL, Beaulieu BB Jr, Goldman P. 1980. Role of the intestinal flora in the metabolism of misonidazole. Biochem Pharmacol. 29:3281–3284.
  • Koch RL, Chrystal EJ, Beaulieu BB, Goldman P. 1979. Acetamide—a metabolite of metronidazole formed by the intestinal flora. Biochem Pharmacol. 28:3611–3615.
  • Koch RL, Goldman P. 1979. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid. J Pharmacol Exp Ther. 208:406–410.
  • Kodawara T, Higashi T, Negoro Y, Kamitani Y, Igarashi T, Watanabe K, Tsukamoto H, Yano R, Masada M, Iwasaki H, et al. 2016. The inhibitory effect of ciprofloxacin on the β-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G. Basic Clin Pharmacol Toxicol. 118:333–337.
  • Koppel N, Rekdal VM, Balskus EP. 2017. Chemical transformation of xenobiotics by the human gut microbiota. Science. 356:eaag2770.
  • Labib S, Erb A, Kraus M, Wickert T, Richling E. 2004. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids. Mol Nutr Food Res. 48:326–332.
  • Lavrijsen K, Van Dyck D, Van Houdt J, Hendrickx J, Monbaliu J, Woestenborghs R, Meuldermans W, Heykants J. 1995. Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans. Drug Metab Dispos. 23:354–362.
  • Lee NK, Choi SH, Park SH, Park EK, Kim DH. 2004. Antiallergic activity of hesperidin is activated by intestinal microflora. Pharmacology. 71:174–180.
  • Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, Kim JR, Han JI, Bok SH. 2001. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun. 284:681–688.
  • Lee J, Lee E, Kim D, Lee J, Yoo J, Koh B. 2009. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol. 122:143–148.
  • Leung KW, Wong AS. 2010. Pharmacology of ginsenosides: a literature review. Chin Med. 5:20.
  • Lin YJ, Hou YC, Lin CH, Hsu YA, Sheu JJC, Lai CH, Chen BH, Chao PDL, Wan L, Tsai FJ. 2009. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochem Biophys Res Commun. 378:683–688.
  • Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR. 1981. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med. 305:789–794.
  • Liu X, Suzuki N, Laxmi YRS, Okamoto Y, Shibutani S. 2012. Anti-breast cancer potential of daidzein in rodents. Life Sci. 91:415–419.
  • Magnusson JO, Bergdahl B, Bogentoft C, Jonsson UE. 1982. Metabolism of digoxin and absorption site. Br J Clin Pharmacol. 14:284–285.
  • Mathan VI, Wiederman J, Dobkin JF, Lindenbaum J. 1989. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora. Gut. 30:971–977.
  • Matsumoto M, Ishige A, Yazawa Y, Kondo M, Muramatsu K, Watanabe K. 2012. Promotion of intestinal peristalsis by Bifidobacterium spp. capable of hydrolysing sennosides in mice. PLoS One. 7:e31700.
  • Matthies A, Clavel T, Gutschow M, Engst W, Haller D, Blaut M, Braune A. 2008. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol. 74:4847–4852.
  • Meuldermans W, Hendrickx J, Mannens G, Lavrijsen K, Janssen C, Bracke J, Le Jeune L, Lauwers W, Heykants J. 1994. The metabolism and excretion of risperidone after oral administration in rats and dogs. Drug Metab Dispos. 22:129–138.
  • Nakayama H, Kinouchi T, Kataoka K, Akimoto S, Matsuda Y, Ohnishi Y. 1997. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics. 7:35–43.
  • Noh K, Kang YR, Nepal MR, Shakya R, Kang MJ, Kang W, Lee S, Jeong HG, Jeong TC. 2017. Impact of gut microbiota on drug metabolism: an update for safe and effective use of drugs. Arch Pharm Res. 40:1345–1355.
  • Nose M, Ito M, Kamimura K, Shimizu M, Ogihara Y. 1994. A Comparison of antihepatotoxic activity between glycyrrhizin and glycyeehinic acid. Planta Med. 60:136–139.
  • Okuda H, Ogura K, Kato A, Takubo H, Watabe T. 1998. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J Pharmacol Exp Ther. 287:791–799.
  • Orme M L, Back D J. 1990. Factors affecting the enterohepatic circulation of oral contraceptive steroids. Am J Obstet Gynecol. 163:2146–2152.
  • Park EK, Shin J, Bae EA, Lee YC, Kim DH. 2006. Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol Pharm Bull. 29:2432–2435.
  • Peppercorn MA, Goldman P. 1973. Distribution studies of salicylazosulfapyridine and its metabolites. Gastroenterology. 64:240–245.
  • Rafii F, Sutherland JB, Hansen EB Jr, Cerniglia CE. 1997. Reduction of nitrazepam by clostridium leptum, a nitroreductase-producing bacterium isolated from the human intestinal tract. Clin Infect Dis. 25:S121–S122.
  • Roowi S, Mullen W, Edwards CA, Crozier A. 2009. Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol Nutr Food Res. 53:S68–S75.
  • Saha JR, Butler VP Jr, Neu HC, Lindenbaum J. 1983. Digoxin-inactivating bacteria: identification in human gut flora. Science. 220:325–327.
  • Sandler M, Goodwin B. L, Ruthven C. R. J, Calne D. B. 1971. Therapeutic implications in Parkinsonism of m-tyramine formation from L-dopa in man. Nature. 229:414–415.
  • Sasahara K, Nitanai T, Habara T, Kojima T, Kawahara Y, Morioka T, Nakajima E. 1981. Dosage form design for mprovement of bioavailability of levodopa IV: possible causes of low bioavailability of oral levodopa in dogs. J Pharm Sci. 70:730–733.
  • Sasaki I, Tamura T, Shibakawa T, Fujita T, Murakami M, Yamamoto A, Muranishi S. 1997. Metabolism of azetirelin, a new thyrotropin-releasing hormone (TRH) analogue, by intestinal microorganisms. Pharm Res. 14:1004–1007.
  • Sasaki I, Tozaki H, Matsumoto K, Ito Y, Fujita T, Murakami M, Muranishi S, Yamamoto A. 1999. Development of an oral formulation of azetirelin, a new thyrotropin-releasing hormone (TRH) analogue, using n-lauryl-beta-D-maltopyranoside as an absorption enhancer. Biol Pharm Bull. 22:611–615.
  • Satoh T, Hosokawa M. 1998. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol. 38:257–288.
  • Scarmeas N, Stern Y, Mayeux R, Luchsinger JA. 2006. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol. 63:1709–1717.
  • Schroder H, Gustafsson BE. 1973. Azo reduction of salicyl-azosulphapyridine in germ free and conventional rats. Xenobiotica. 3:225–231.
  • Shamat MA. 1993. The role of the gastrointestinal microflora in the metabolism of drugs. Int J Pharm. 97:1–13.
  • Sheldon P.W, Clarke C, Dawson K.B, Simpson W, Simmons D.J.C. 1984. Intestinal microflora as potential modifiers of sensitizer activity in vivo. Int J Radiat Oncol Biol Phys. 10:1371–1375.
  • Shim SB, Kim NJ, Kim DH. 2000. beta-Glucuronidase inhibitory activity and hepatoprotective effect of 18-glycyrrhetinic acid from the rhizomes of Glycyrrhiza uralensis. Planta Med. 66:40–43.
  • Shin J, Bae EA, Lee YC, Ma JY, Kim DH. 2006. Estrogenic effect of main components kakkalide and tectoridin of Puerariae flos and their metabolites. Biol Pharm Bull. 29:1202–1206.
  • Shu YZ, Kingston DG, Van Tassell RL, Wilkins TD. 1991. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica. 21:737–750.
  • Simon GL, Gorbach SL. 1984. Intestinal flora in health and disease. Gastroenterology. 86:174–193.
  • Smith GE, Griffiths LA. 1974. Metabolism of n-acetylated and o-alkylated drugs by the intestinal microflora during anaerobic incubation in vitro. Xenobiotica. 4:477–487.
  • Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. 2008. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 363:1–25.
  • Strong HA, Renwick AG, George CF, Liu YF, Hill MJ. 1987. The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica. 17:685–696.
  • Svartz N. 1988. Sulfasalazine: II. Some notes on the discovery and development of salazopyrin. Am J Gastroenterol. 83:497–503.
  • Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T. 1998. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats. Cancer Chemother Pharmacol. 42:280–286.
  • Takasuna K, Hagiwara T, Watanabe K, Onose S, Yoshida S, Kumazawa E, Nagai E, Kamataki T. 2006. Optimal antidiarrhea treatment for antitumor agent irinotecan hydrochloride (CPT-11)-induced delayed diarrhea. Cancer Chemother Pharmacol. 58:494–503.
  • Takeno S, Hirano Y, Kitamura A, Sakai T. 1993. Comparative development toxicity and metabolism of nitrazepam in rats and mice. Toxicol Appl Pharmacol. 121:233–238.
  • Takeno S, Sakai T. 1991. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology. 44:209–214.
  • Tozaki H, Emi Y, Horisaka E, Fujita T, Yamamoto A, Muranishi S. 1995. Metabolism of peptide drugs by the microorganisms in rat cecal contents. Biol Pharm Bull. 18:929–931.
  • Tozaki H, Emi Y, Horisaka E, Fujita T, Yamamoto A, Muranishi S. 1997. Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: implications in peptide delivery to the colon. J Pharm Pharmacol. 49:164–168.
  • Trinh HT, Joh EH, Kwak HY, Baek NI, Kim DH. 2010. Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice. Acta Pharmacol Sin. 31:718–724.
  • Truelove SC. 1988. Evolution of olsalazine. Scand J Gastroenterol. 148:3–6.
  • Valerino DM, Johns DG, Zaharko DS, Oliverio VT. 1972. Studies of the metabolism of methotrexate by intestinal flora-I: identification and study of biological properties of the metabolite 4-amino-4-deoxy-N10-methylpteroic acid. Biochem Pharmacol. 21:821–831.
  • Van Hogezand RA, Kennis HM, Van Schaik A, Koopman JP, van Hees PA, van Tongeren JH. 1992. Bacterial acetylation of 5-aminosalicylic acid in faecal suspensions cultured under aerobic and anaerobic conditions. Eur J Clin Pharmacol. 43:189–192.
  • Vermes A, Kuijper EJ, Guchelaar HJ, Dankert J. 2003. An in vitro study on the active conversion of flucytosine to fluorouracil by microorganisms in the human intestinal microflora. Chemotherapy. 49:17–23.
  • Wadworth AN, Fitton A. 1991. Olsalazine—a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in inflammatory bowel disease. Drugs. 41:647–664.
  • Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. 1998. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun. 246:725–730.
  • Wang Y, Jiang Y, Wang BX, Qiu QY. 2002. Effects of ginsenoside Rg1 and its metabolite Rh1 on the function of immunocyte in mice. Acta Pharm Sin. 37:927–929.
  • Wang Y, Liu TH, Wang W, Wang BX. 2001. Research on the transformation of ginsenoside Rg1 by intestinal flora. Zhongguo Zhong Yao Za Zhi. 26:188–190.
  • Watanabe K, Yamashita S, Furuno K, Kawasaki H, Gomita Y. 1995. Metabolism of omeprazole by gut flora in rats. J Pharm Sci. 84:516–517.
  • Wienkers L C, Heath T G. 2005. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 4:825–833.
  • Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. 2004. Drug-drug interactions for udp-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (Auci/Auc) ratios. Drug Metab Dispos. 32:1201–1208.
  • Wilson ID, Nicholson JK. 2017. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Trans Res. 179:204–222.
  • Yang W, Zhang F, Wu W, Deng Z, Ma Q, Yu X, Zhao L, Kang S. 2010. Changes of intestina lflora microecology in model rats of radical plateau. Chin J Gastroenterol Hepatol. 19:543–545.
  • Yang XW, Zhao J, Cui JR, Guo W. 2004. Studies on the biotransformation of escin Ia by human intestinal bacteria and the anti-tumor activities of desacylescin I. Beijing Da Xue Xue Bao. 36:31–35.
  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. 2012. Human gut microbiome viewed across age and geography. Nature. 486:222–227.
  • Zaharko DS, Bruckner H, Oliverio VT. 1969. Antibiotics alter methotrexate metabolism and excretion. Science. 166:887–888.
  • Zhang J, Chen Y, Sun Y, Wang R, Zhang J, Jia Z. 2018. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv. 25:1175–1181.
  • Zhang M, Peng CS, Li XB. 2015. In vivo and in vitro metabolites from the main diester and monoester diterpenoid alkaloids in a traditional Chinese herb, the aconitum species. Evid Based Complement Alternat Med. 2015:252434.
  • Zhu JX, Wang Y, Kong LD, Yang C, Zhang X. 2004. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol. 93:133–140.
  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. 2019. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science. 363:eaat9931.
  • Zu XP. 2016. Interaction of effective ingredients from traditional Chinese medicines with intestinal microbiota. Chin J Chin Meter Med. 41:1766–1772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.