913
Views
71
CrossRef citations to date
0
Altmetric
Review Articles

Gold nanostars-diagnosis, bioimaging and biomedical applications

ORCID Icon, , , , , ORCID Icon & show all
Pages 299-318 | Received 03 Jan 2020, Accepted 19 Feb 2020, Published online: 09 Mar 2020

References

  • Abadeer NS, Murphy CJ. 2016. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C. 120(9):4691–4716.
  • Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK. 2018. Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev. 82:353–368.
  • Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P. 2018. Gold nanoparticle-based colorimetric biosensors. Nanoscale. 10(1):18–33.
  • Amjad S, Naeem A, Sabahat S. 2020. In vitro investigation of anti-cancer activity of ferrocene-functionalized gold nanoparticles. Chem Pap. 74(1):125–131.
  • Bao C, Conde J, Polo E, del Pino P, Moros M, Baptista PV, Grazu V, Cui D, de la Fuente JM. 2014. A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine. 9(15):2353–2370.
  • Barbosa S, Agrawal A, Rodríguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzán LM, 2010. Tuning size and sensing properties in colloidal gold nanostars. Langmuir. 26(18):14943–14950.
  • Barbosa S, Topete A, Alatorre-Meda M, Villar-Alvarez EM, Pardo A, Alvarez-Lorenzo C, Concheiro A, Taboada P, Mosquera V. 2014. Targeted combinatorial therapy using gold nanostars as theranostic platforms. J Phys Chem C. 118(45):26313–26323.
  • Bello JM, Narayanan VA, Stokes DL, Tuan VD. 1990. Fiber-optic remote sensor for in situ surface-enhanced Raman scattering analysis. Anal Chem. 62(22):2437–2441.
  • Bhamidipati M, Cho H-Y, Lee K-B, Fabris L. 2018. SERS-based quantification of biomarker expression at the single cell level enabled by gold nanostars and truncated aptamers. Bioconjugate Chem. 29(9):2970–2981.
  • Bibikova O, Popov A, Bykov A, Fales A, Yuan H, Skovorodkin I, Kinnunen M, Vainio S, Vo-Dinh T, Tuchin VV, et al. 2016. Plasmon-resonant gold nanostars with variable size as contrast agents for imaging applications. IEEE J Select Topics Quantum Electron. 22(3):13–20.
  • Blanch AJ, Döblinger M, Rodríguez‐Fernández J. 2015. Simple and rapid high‐yield synthesis and size sorting of multibranched hollow gold nanoparticles with highly tunable NIR plasmon resonances. Small. 11(35):4550–4559.
  • Borzenkov M, Chirico G, D’Alfonso L, Sironi L, Collini M, Cabrini E, Dacarro G, Milanese C, Pallavicini P, Taglietti A, et al. 2015. Thermal and chemical stability of thiol bonding on gold nanostars. Langmuir. 31(29):8081–8091.
  • Borzenkov M, Määttänen A, Ihalainen P, Collini M, Cabrini E, Dacarro G, Pallavicini P, Chirico G. 2016. Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability. Beilstein J Nanotechnol. 7(1):1480–1485.
  • Borzenkov M, Moros M, Tortiglione C, Bertoldi S, Contessi N, Faré S, Taglietti A, D’Agostino A, Pallavicini P, Collini M, et al. 2018. Fabrication of photothermally active poly (vinyl alcohol) films with gold nanostars for antibacterial applications. Beilstein J Nanotechnol. 9(1):2040–2048.
  • Chatterjee S, Ringane AB, Arya A, Das GM, Dantham VR, Laha R, Hussian S. 2016. A high-yield, one-step synthesis of surfactant-free gold nanostars and numerical study for single-molecule SERS application. J Nanopart Res. 18(8):242.
  • Chen C-C, Chang D-Y, Li J-J, Chan H-W, Chen J-T, Chang C-H, Liu R-S, Chang CA, Chen C-L, Wang H-E. 2020. Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J Mater Chem B. 8(1):65–77.
  • Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL. 2003. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc. 125(52):16186–16187.
  • Chirico G, Pallavicini P, Collini M. 2014. Gold nanostars for superficial diseases: a promising tool for localized hyperthermia? Nanomedicine. 9(1):1–3.
  • Chithrani B, Ghazani AA, Chan WCW. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4):662–668.
  • Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. 2010. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med. 16(12):561–573.
  • Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, Child H, Berry CC, Ibarra MR, Baptista PV, et al. 2012. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. Acs Nano. 6(9):8316–8324.
  • Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. 2014. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2:48.
  • Conde J, Oliva N, Artzi N. 2015. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc Natl Acad Sci USA. 112(11):E1278–E1287.
  • Conde J, Oliva N, Zhang Y, Artzi N. 2016. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat Mater. 15(10):1128–1138.
  • Conde J, Tian F, Hernández Y, Bao C, Cui D, Janssen K-P, Ibarra MR, Baptista PV, Stoeger T, de la Fuente JM. 2013. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 34(31):7744–7753.
  • Dacarro G, Pallavicini P, Bertani SM, Chirico G, D’Alfonso L, Falqui A, Marchesi N, Pascale A, Sironi L, Taglietti A, et al. 2017. Synthesis of reduced-size gold nanostars and internalization in SH-SY5Y cells. J Colloid Interface Sci. 505:1055–1064.
  • Dam DHM, Culver KSB, Kandela I, Lee RC, Chandra K, Lee H, Mantis C, Ugolkov A, Mazar AP, Odom TW. 2015. Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars. Nanomed Nanotechnol Biol Med. 11(3):671–679.
  • Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. 2016. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 44(1):410–422.
  • Duan X, Chan C, Lin W. 2019. Nanoparticle‐mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed. 58(3):670–680.
  • Duong HD, Vo-Dinh T, Rhee JI. 2019. Synthesis and functionalization of gold nanostars for singlet oxygen production. J Ind Eng Chem. 69:233–240.
  • Elahi N, Kamali M, Baghersad MH. 2018. Recent biomedical applications of gold nanoparticles: a review. Talanta. 184:537–556.
  • Elci A, Demirtas O, Ozturk IM, Bek A, Nalbant Esenturk E. 2018. Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities. J Mater Sci. 53(24):16345–16356.
  • Espinosa A, Silva AKA, Sánchez-Iglesias A, Grzelczak M, Péchoux C, Desboeufs K, Liz-Marzán LM, Wilhelm C. 2016. Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: toward a plasmonic thermal fingerprint in tumoral environment. Adv Healthcare Mater. 5(9):1040–1048.
  • Farazi Z, Oromiehie A, Mousavi SM, Hashemi SA. 2018. Preparation of LDPE/EVA/PE-MA, nano clay blend composite in the stage potassium sorbate (KS) and garlic oil (GO) as an antimicrobial substance. Polym Sci. 4:1–12.
  • Feng B, Zhou F, Wang D, Xu Z, Yu H, Li Y. 2016. Gold nanomaterials for treatment of metastatic cancer. Sci China Chem. 59(8):984–990.
  • Fortuni B, Fujita Y, Ricci M, Inose T, Aubert R, Lu G, Hutchison J. A, Hofkens J, Latterini L, Uji-I H. 2017. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chem Commun. 53(37):5121–5124.
  • Gao J, Sanchez-Purra M, Huang H, Wang S, Chen Y, Yu X, Luo Q, Hamad-Schifferli K, Liu S. 2017. Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Sci China Chem. 60(9):1219–1229.
  • García-Álvarez R, Hadjidemetriou M, Sánchez-Iglesias A, Liz-Marzán LM, Kostarelos K. 2018. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale. 10(3):1256–1264.
  • Gherman AMM, Boca S, Vulpoi A, Cristea MV, Farcau C, Tosa V. 2020. Plasmonic photothermal heating of gold nanostars in a real-size container: multiscale modelling and experimental study. Nanotechnology. 31(12):125701.
  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. 2010. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 49(19):3280–3294.
  • González-Rubio G, Kumar V, Llombart P, Díaz-Núñez P, Bladt E, Altantzis T, Bals S, Peña-Rodríguez O, Noya EG, MacDowell LG, et al. 2019. Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods. ACS Nano. 13(4):4424–4435.
  • Goodarzian N, Amini P, Mousavi SM, Hashemi SA. 2018. Modification of physical, mechanical and electrical properties of reinforced epoxy phenol novolac with nano cobalt acrylate and carbon nanotubes. Prog Rubber Plast Recycl Technol. 34(2):105–114.
  • Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzan LM. 2011. Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci. 16(2):118–127.
  • Guo W, Zhang S, Chen Y, Zhang D, Yuan L, Cong H, Liu S. 2015. An important role of the hepcidin–ferroportin signaling in affecting tumor growth and metastasis. Acta Biochim Biophys Sin. 47(9):703–715.
  • Guo W, Zhang S, Liu S. 2015. Establishment of a novel orthotopic model of breast cancer metastasis to the lung. Oncol Rep. 33(6):2992–2998.
  • Hao E, Bailey RC, Schatz GC, Hupp JT, Li S. 2004. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 4(2):327–330.
  • Hao F, Nehl CL, Hafner JH, Nordlander P. 2007. Plasmon resonances of a gold nanostar. Nano Lett. 7(3):729–732.
  • Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, et al. 2015. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med. 7(271):271ra7.
  • Hasan J, Crawford RJ, Ivanova EP. 2013. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31(5):295–304.
  • Hassan S, Prakash G, Bal Ozturk A, Saghazadeh S, Farhan Sohail M, Seo J, Remzi Dokmeci M, Zhang YS, Khademhosseini A. 2017. Evolution and clinical translation of drug delivery nanomaterials. Nano Today. 15:91–106.
  • Hernández Montoto A, Llopis‐Lorente A, Gorbe M, Terrés JM, Cao‐Milán R, Díaz de Greñu B, Alfonso M, Ibañez J, Marcos MD, Orzáez M, et al. 2019. Janus gold nanostars-mesoporous silica nanoparticles for NIR-light-triggered drug delivery. Chem Eur J. 25:8471–8478.
  • Hou F, Zhu Y, Zou Q, Zhang C, Wang H, Liao Y, Wang Q, Yang X, Yang Y. 2019. One-step preparation of multifunctional alginate microspheres loaded with in situ-formed gold nanostars as a photothermal agent. Mater Chem Front. 3(10):2018–2024.
  • Hrynchak I, Reis-Mendes A, Palmeira A, Lourdes Bastos M, Pinto M, Costa V, Sousa E. 2017. Old pharmaceuticals with new applications: the case studies of lucanthone and mitoxantrone. MDPI AG in 3rd International Electronic Conference on Medicinal Chemistry session ECMC-3. sciforum.net.
  • Jafarizadeh-Malmiri H, Sayyar Z ,Anarjan N ,Berenjian A. 2019. Future prospects of nanobiotechnology. In: Jafarizadeh-Malmiri H, Sayyar Z, Anarjan N, Berenjian A, editors. Nanobiotechnology in food: concepts, applications and perspectives. Cham (Switzerland): Springer. p. 153–155.
  • Jesna KK, Ilanchelian M. 2019. Photophysical insights and in vitro cytotoxicity of dyes-gold nanostars system towards MCF-7 and A-549 cancer cells. Dyes Pigm. 162:916–925.
  • Jimenez de Aberasturi D, Serrano-Montes AB, Langer J, Henriksen-Lacey M, Parak WJ, Liz-Marzán LM. 2016. Surface enhanced Raman scattering encoded gold nanostars for multiplexed cell discrimination. Chem Mater. 28(18):6779–6790.
  • Kedia A, Kumar PS. 2013. Controlled reshaping and plasmon tuning mechanism of gold nanostars. J Mater Chem C. 1(30):4540–4549.
  • Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA. 2011. A new era for cancer treatment: gold‐nanoparticle‐mediated thermal therapies. Small. 7(2):169–183.
  • Khan HI, Khalid MU, Abdullah A, Ali A, Bhatti AS, Khan SU, Ahmed W. 2018. Facile synthesis of gold nanostars over a wide size range and their excellent surface enhanced Raman scattering and fluorescence quenching properties. J Vacuum Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenomena. 36(3):03E101.
  • Khlebtsov N, Dykman L. 2011. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 40(3):1647–1671.
  • Khoury CG, Vo-Dinh T. 2008. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C. 112(48):18849–18859.
  • Kim GW, Ha JW. 2019. Polarization-and wavelength-dependent defocused scattering imaging of single gold nanostars with multiple long branches. Photochem Photobiol Sci. 18: 1430–1435.
  • Koning GA, Eggermont AMM, Lindner LH, ten Hagen TLM. 2010. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res. 27(8):1750–1754.
  • Kumar PS, Pastoriza-Santos I, Rodríguez-González B, Javier García de Abajo F, Liz-Marzán LM. 2007. High-yield synthesis and optical response of gold nanostars. Nanotechnology. 19(1):015606.
  • Lenzi E, Jimenez de Aberasturi D, Liz-Marzán L.M. 2019. Surface-enhanced Raman scattering tags for three-dimensional bioimaging and biomarker detection. ACS Sens. 4(5):1126–1137.
  • Li D, Zhang Y, Wen S, Song Y, Tang Y, Zhu X, Shen M, Mignani S, Majoral J-P, Zhao Q, et al. 2016. Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. J Mater Chem B. 4(23):4216–4226.
  • Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X. 2015. Hyaluronic acid-modified Fe3O4@ Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 38:10–21.
  • Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM. 2014. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 8(10):10682–10686.
  • Li X, Xing L, Zheng K, Wei P, Du L, Shen M, Shi X. 2017. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl Mater Interfaces. 9(7):5817–5827.
  • Li Y, Wang X, Gao L, Hu P, Jiang L, Ren T, Fu R, Yang D, Jiang X. 2018. Aptamer-conjugated gold nanostars for targeted cancer photothermal therapy. J Mater Sci. 53(20):14138–14148.
  • Liang X-J, Chen C, Zhao Y, Wang C. 2010. Circumventing tumor resistance to chemotherapy by nanotechnology. In: Multi-drug resistance in cancer. New York: Humana Press. p. 467–488.
  • Liaw J-W, Kuo M, Liao C. 2005. Plasmon resonances of spherical and ellipsoidal nanoparticles. J Electromagn Waves Appl. 19(13):1787–1794.
  • Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F. 2012. Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near‐infrared laser light. Adv Mater. 24(6):755–761.
  • Liu J, Wang P, Zhang X, Wang L, Wang D, Gu Z, Tang J, Guo M, Cao M, Zhou H, et al. 2016. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano. 10(4):4587–4598.
  • Liu X-L, Liang S, Nan F, Yang Z-J, Yu X-F, Zhou L, Hao Z-H, Wang Q-Q. 2013. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale. 5(12):5368–5374.
  • Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L. 2012. A high‐performance ytterbium‐based nanoparticulate contrast agent for in vivo X‐ray computed tomography imaging. Angew Chem Int Ed. 51(6):1437–1442.
  • Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, Choi J, Whitley MJ, Zhao X, Qi Y, et al. 2015. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 5(9):946–960.
  • Liu Y, Chang Z, Yuan H, Fales AM, Vo-Dinh T. 2013. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale. 5(24):12126–12131.
  • Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R. 2004. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat. 3(1):33–40.
  • Luo P, Liu Y, Xia Y, Xu H, Xie G. 2014. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron. 54:217–221.
  • Maier SA, Atwater HA. 2005. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys. 98(1):011101.
  • Manjunath HM, Joshi CG, Raju NG. 2017. Biofabrication of gold nanoparticles using marine endophytic fungus–Penicillium citrinum. IET Nanobiotechnology. 11(1):40–44.
  • Mazloum-Ardakani M, Barazesh B, Khoshroo A, Moshtaghiun M, Sheikhha MH. 2018. A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia. Bioelectrochemistry. 121:38–45.
  • Meada H. 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular targeting. Adv Enzyme Regul. 41:189–207.
  • Millenbaugh NJ, Baskin JB, DeSilva MN, Elliott WR, Glickman RD. 2015. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomed. 10:1953–1960.
  • Mohamed MA. 2020. Myco-engineered gold nanoparticles from Jahnula aquatica coated with ampicillin/amoxicillin and their antibacterial and anticancer activity against cancer cells. Biotechnol Lett. 42(1):151–170.
  • Mohamed MB, Volkov V, Link S, El-Sayed MA. 2000. Thelightning’gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett. 317(6):517–523.
  • Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. 2017. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B. 5(22):3995–4018.
  • Moukarzel W, Fitremann J, Marty J-D. 2011. Seed-less amino-sugar mediated synthesis of gold nanostars. Nanoscale. 3(8):3285–3290.
  • Mousavi SM, Hashemi SA, Salahi S, Hosseini M, Mohammad Amani A, Babapoor A. 2018. Development of clay nanoparticles toward bio and medical applications. In: Zoveidavianpoor M, editor. Current topics in the utilization of clay in industrial and medical applications. London: InTechOpen; p. 167–191.
  • Mousavi SM, Hashemi SA, Zarei M, Amani AM, Babapoor A. 2018. Nanosensors for chemical and biological and medical applications. Med Chem. 08(08):205.
  • Mulder DW, Phiri MM, Jordaan A, Vorster BC. 2019. Modified HEPES one-pot synthetic strategy for gold nanostars. R Soc Open Sci. 6(6):190160.
  • Mulder DW, Phiri MM, Vorster BC. 2019. Gold nanostar colorimetric detection of fructosyl valine as a potential future point of care biosensor candidate for glycated haemoglobin detection. Biosensors. 9(3):100.
  • Mura S, Nicolas J, Couvreur P. 2013. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 12(11):991–1003.
  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC. 2008. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 41(12):1721–1730.
  • Narang J, Malhotra N, Singh G, Pundir CS. 2015. Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens Bioelectron. 66:332–337.
  • Niu W, Chua YAA, Zhang W, Huang H, Lu X. 2015. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J Am Chem Soc. 137(33):10460–10463.
  • Ovid’Ko I, Valiev R, Zhu Y. 2018. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 94:462–540.
  • Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA. 2007. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 18(5):1490–1497.
  • Pallavicini P, Bassi B, Chirico G, Collini M, Dacarro G, Fratini E, Grisoli P, Patrini M, Sironi L, Taglietti A, et al. 2017. Modular approach for bimodal antibacterial surfaces combining photo-switchable activity and sustained biocidal release. Sci Rep. 7(1):1–10.
  • Pallavicini P, Cabrini E, Cavallaro G, Chirico G, Collini M, D’Alfonso L, Dacarro G, Donà A, Marchesi N, Milanese C, et al. 2015. Gold nanostars coated with neutral and charged polyethylene glycols: a comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells. J Inorg Biochem. 151:123–131.
  • Pallavicini P, Donà A, Taglietti A, Minzioni P, Patrini M, Dacarro G, Chirico G, Sironi L, Bloise N, Visai L, et al. 2014. Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chem Commun. 50(16):1969–1971.
  • Palonpon AF, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, Fujita K. 2013. Raman and SERS microscopy for molecular imaging of live cells. Nat Protoc. 8(4):677–692.
  • Patel KJ, Trédan O, Tannock IF. 2013. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. Cancer Chemother Pharmacol. 72(1):127–138.
  • Pazos-Pérez N, Barbosa S, Rodríguez-Lorenzo L, Aldeanueva-Potel P, Pérez-Juste J, Pastoriza-Santos I, Alvarez-Puebla RA, Liz-Marzán LM. 2010. Growth of sharp tips on gold nanowires leads to increased surface-enhanced Raman scattering activity. J Phys Chem Lett. 1(1):24–27.
  • Pazos-Perez N, Guerrini L, Alvarez-Puebla R.A. 2018. Plasmon tunability of gold nanostars at the tip apexes. ACS Omega. 3(12):17173–17179.
  • Phiri MM, Mulder DW, Vorster BC. 2019. Seedless gold nanostars with seed-like advantages for biosensing applications. R Soc Open Sci. 6(2):181971.
  • Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, et al. 2013. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J. 104(4):835–840.
  • Quaresma P. 2014. Star-shaped magnetite@ gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv. 4(8):3659–3667.
  • Ravanshad R, Karimi Zadeh A, Mohammad Amani A, Mojtaba Mousavi S, Alireza Hashemi S, Savar Dashtaki A, Mirzaei E, Zare B. 2018. Application of nanoparticles in cancer detection by Raman scattering based techniques. 9:1373551.
  • Register JK, Fales AM, Wang H-N, Norton SJ, Cho EH, Boico A, Pradhan S, Kim J, Schroeder T, Wisniewski NA, et al. 2015. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models. Anal Bioanal Chem. 407(27):8215–8224.
  • Reguera J, Jiménez de Aberasturi D, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B, Wilhelm C, Liz-Marzán LM. 2017. Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale. 9(27):9467–9480.
  • Riley RS, Day ES. 2017. Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wires Nanomed Nanobiotechnol. 9(4):e1449.
  • Sardo C, Bassi B, Craparo EF, Scialabba C, Cabrini E, Dacarro G, D’Agostino A, Taglietti A, Giammona G, Pallavicini P, et al. 2017. Gold nanostar–polymer hybrids for siRNA delivery: polymer design towards colloidal stability and in vitro studies on breast cancer cells. Int J Pharm. 519(1–2):113–124.
  • Serrano-Montes AB, Langer J, Henriksen-Lacey M, Jimenez de Aberasturi D, Solís DM, Taboada JM, Obelleiro F, Sentosun K, Bals S, Bekdemir A, et al. 2016. Gold nanostar-coated polystyrene beads as multifunctional nanoprobes for SERS bioimaging. J Phys Chem C. 120(37):20860–20868.
  • Shan F, Zhang T. 2018. Preparation and Raman enhancement properties of gold nanostars. IOP conference series: materials science and engineering. Vol. 322, No. 2. IOP Publishing; p. 022018.
  • Shevtsov M, Zhou Y, Khachatryan W, Multhoff G, Gao H. 2018. Recent advances in gold nanoformulations for cancer therapy. CDM. 19(9):768–780.
  • Song C, Li F, Guo X, Chen W, Dong C, Zhang J, Zhang J, Wang L. 2019. Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows. J Mater Chem B. 7(12):2001–2008.
  • Strobbia P, Crawford BM, Wang H-N, Zentella R, Boyanov MI, Pei ZM, Sun TP, Kemner KM, Vo-Dinh T. 2019. Application of plasmonic nanoprobes for SERS sensing and imaging of biotargets in plant systems. In: Plasmonics in biology and medicine XVI. Vol. 10894. International Society for Optics and Photonics; p. 108940C.
  • Tebyetekerwa M, Ramakrishna S. 2020. What is next for electrospinning? Matter. 2(2):279–283.
  • Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. 2016. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 106:87–97.
  • Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T. 2004. Ciprofloxacin-protected gold nanoparticles. Langmuir. 20(5):1909–1914.
  • Tong S, Fine EJ, Lin Y, Cradick TJ, Bao G. 2014. Nanomedicine: tiny particles and machines give huge gains. Ann Biomed Eng. 42(2):243–259.
  • Verma MS, Chen PZ, Jones L, Gu FX. 2014. Branching and size of CTAB-coated gold nanostars control the colorimetric detection of bacteria. RSC Adv. 4(21):10660–10668.
  • Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD. 2010. Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C. 114(16):7480–7488.
  • Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang H-N, Yuan H. 2013. Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale. 5(21):10127–10140.
  • Vo‐Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, Yuan H, Norton SJ, Griffin GD. 2015. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 7(1):17–33.
  • Vo‐Dinh T, Wang H.N, Scaffidi J. 2010. Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophoton. 3(1‐2):89–102.
  • Vo-Dinh T. 2018. Shining gold nanostars: from cancer diagnostics to photothermal treatment and immunotherapy. J Immunological Sci. 2(1):1–8.
  • Wabuyele M.B, Vo-Dinh T. 2005. Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal Chem. 77(23):7810–7815.
  • Wang H.-N, Vo-Dinh T. 2009. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology. 20(6):065101.
  • Wang H-N, Crawford BM, Fales AM, Bowie ML, Seewaldt VL, Vo-Dinh T. 2016. Multiplexed detection of microRNA biomarkers using SERS-based inverse molecular sentinel (iMS) nanoprobes. J Phys Chem C. 120(37):21047–21055.
  • Wang H-N, Fales AM, Vo-Dinh T. 2015. Plasmonics-based SERS nanobiosensor for homogeneous nucleic acid detection. Nanomed Nanotechnol Biol Med. 11(4):811–814.
  • Wang J, Liang D, Jin Q, Feng J, Tang X. 2020. Bioorthogonal SERS nanotags as a precision theranostic platform for in vivo SERS imaging and cancer photothermal therapy. Bioconjugate Chem. 31(2):182–193.
  • Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, et al. 2012. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano. 6(6):5070–5077.
  • Wang P, Wan Y, Ali A, Deng S, Su Y, Fan C, Yang S. 2016. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem. 59(2):237–242.
  • Wang P, Wang X, Wang L, Hou X, Liu W, Chen C. 2015. Interaction of gold nanoparticles with proteins and cells. Sci Technol Adv Mater. 16(3):034610.
  • Wang S, Shang L, Li L, Yu Y, Chi C, Wang K, Zhang J, Shi R, Shen H, Waterhouse GIN, et al. 2016. Metal–Organic‐framework‐derived mesoporous carbon nanospheres containing porphyrin‐like metal centers for conformal phototherapy. Adv Mater. 28(38):8379–8387.
  • Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S-Y, Li M, Kim P, et al. 2013. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 7(3):2068–2077.
  • Wang Y, Polavarapu L, Liz-Marzán LM. 2014. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS Appl Mater Interfaces. 6(24):21798–21805.
  • Wei Q, Song H-M, Leonov AP, Hale JA, Oh D, Ong QK, Ritchie K, Wei A. 2009. Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J Am Chem Soc. 131(28):9728–9734.
  • Wu Y, Ali MRK, Chen K, Fang N, El-Sayed MA. 2019. Gold nanoparticles in biological optical imaging. Nano Today. 24:120–140.
  • Xie J, Lee JY, Wang DI. 2007. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem Mater. 19(11):2823–2830.
  • Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. 2005. Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chem Mater. 17(22):5391–5393.
  • Yang X, Yang M, Pang B, Vara M, Xia Y. 2015. Gold nanomaterials at work in biomedicine. Chem Rev. 115(19):10410–10488.
  • Yin T, Xie WJ, Sun J, Yang L, Liu J. 2016. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer’s disease using ultralow irradiance. ACS Appl Mater Interfaces. 8(30):19291–19302.
  • Yoon S, Lee B, Kim C, Lee JH. 2018. Controlled heterogeneous nucleation for synthesis of uniform mesoporous silica-coated gold nanorods with tailorable rotational diffusion and 1 nm-scale size tunability. Crystal Growth Des. 18(8):4731–4736.
  • You J-O, Rafat M, Ye GJC, Auguste DT. 2011. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 11(9):3643–3648.
  • Yougbare S, Chang T-K, Tan S-H, Kuo J-C, Hsu P-H, Su C-Y, Kuo T-R. 2019. Antimicrobial gold nanoclusters: recent developments and future perspectives. IJMS. 20(12):2924.
  • Yuan H, Fales A.M, Vo-Dinh T. 2012. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 134(28):11358–11361.
  • Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T. 2013. Spectral characterization and intracellular detection of Surface‐Enhanced Raman Scattering (SERS)‐encoded plasmonic gold nanostars. J Raman Spectrosc. 44(2):234–239.
  • Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T. 2012. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology. 23(7):075102.
  • Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T. 2012. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomed Nanotechnol Biol Med. 8(8):1355–1363.
  • Yuan H, Wilson CM, Xia J, Doyle SL, Li S, Fales AM, Liu Y, Ozaki E, Mulfaul K, Hanna G, et al. 2014. Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. Nanoscale. 6(8):4078–4082.
  • Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, et al. 2018. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exper. 9:1488497.
  • Zeng L, Pan Y, Wang S, Wang X, Zhao X, Ren W, Lu G, Wu A. 2015. Raman reporter-coupled Agcore@ Aushell nanostars for in vivo improved surface enhanced Raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. ACS Appl Mater Interfaces. 7(30):16781–16791.
  • Zhang Y, Chu W, Foroushani A, Wang H, Li D, Liu J, Barrow C, Wang X, Yang W. 2014. New gold nanostructures for sensor applications: a review. Materials. 7(7):5169–5201.
  • Zhang Z, Chen Z, Cheng F, Zhang Y, Chen L. 2017. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens Bioelectron. 89:932–936.
  • Zhou H, Qiu C, Yu F, Yang H, Chen M, Hu L, Sun L. 2011. Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes. J Phys Chem C. 115(23):11348–11354.
  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. 2012. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol. 10(1):19.
  • Zhou Y, Wang CY, Zhu YR, Chen ZY. 1999. A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater. 11(9):2310–2312.
  • Zhu J, Chen X-H, Li J-J, Zhao J-W. 2019. The synthesis of Ag-coated tetrapod gold nanostars and the improvement of surface-enhanced Raman scattering. Spectrochim Acta A. 211:154–165.
  • Zhu J, Liu M-J, Li J-J, Li X, Zhao J-W. 2018. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Spectrochim Acta, Part A. 189:586–593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.