499
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Novel advances in biotransformation and bioactivation research—2019 year in review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 333-365 | Received 04 May 2020, Accepted 14 May 2020, Published online: 09 Jul 2020

References

  • Khojasteh SC, Bumpus NN, Driscoll JP, Miller GP, Mitra K, Rietjens IMCM, Zhang D. 2019. Biotransformation and bioactivation reactions - 2018 literature highlights. Drug Metab Rev. 51(2):121–161.
  • Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. 2018. Biotransformation and bioactivation reactions - 2017 literature highlights *. Drug Metab Rev. 50(3):221–255.
  • Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. 2017. Biotransformation and bioactivation reactions - 2016 literature highlights. Drug Metab Rev. 49(3):285–317.
  • Baillie TA, Dalvie D, Rietjens IMCM, Khojasteh SC. 2016. Biotransformation and bioactivation reactions - 2015 literature highlights. Drug Metab Rev. 48(2):113–138.

References

  • Johansson A, Löfberg C, Antonsson M, von Unge S, Hayes MA, Judkins R, Ploj K, Benthem L, Lindén D, Brodin P, et al 2016. Discovery of (3-(4-(2-Oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone (AZD1979), a melanin concentrating hormone receptor 1 (MCHr1) antagonist with favorable physicochemical properties. J Med Chem. 59(6):2497–2511.
  • Li XQ, Grönberg G, Bangur EH, Hayes MA, Castagnoli N, Jr, Weidolf L. 2019. Metabolism of strained rings: glutathione S-transferase-catalyzed formation of a glutathione-conjugated spiro-azetidine without prior bioactivation. Drug Metab Dispos. 47(11):1247–1256.
  • Li XQ, Hayes MA, Grönberg G, Berggren K, Castagnoli N, Jr, Weidolf L. 2016. Discovery of a novel microsomal epoxide hydrolase-catalyzed hydration of a spiro oxetane. Drug Metab Dispos. 44(8):1341–1348.
  • Zheng YJ, Tice CM, Singh SB. 2014. The use of spirocyclic scaffolds in drug discovery. Bioorg Med Chem Lett. 24(16):3673–3682.

References

  • Hashida K, Makino R, Ohara S. 2009. Amination of pyrogallol nucleus of condensed tannins and related polyphenols by ammonia water treatment. Holzforschung. 63(3):319–326. DOI:10.1515/HF.2009.043
  • Zhang S, Zhao Y, Ohland C, Jobin C, San S. 2019. Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radic Biol Med. 131:332–344.
  • Zhang S, Wang R, Zhao Y, Tareq FS, Sang S. 2019. Biotransformation of myricetin: a novel metabolic pathway to produce aminated products in mice. Mol Nutr Food Res. 63(14):1900203. DOI:10.1002/mnfr.201900203

References

  • Shimizu M, Fukami T, Nakajima M, Yokoi T. 2014. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab Dispos. 42(7):1103–1109.

References

  • Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. 2018. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 24(1):59.
  • Kim NY, Goddard TN, Sohn S, Spiegel DA, Crawford JM. 2019. Biocatalytic reversal of advanced glycation end product modification. Chembiochem. 20(18):2402–2410.
  • Kim S, Miura S, Ferri S, Tsugawa W, Sode K. 2009. Cumulative effect of amino acid substitution for the development of fructosyl valine-specific fructosyl amine oxidase. Enzyme Microb Technol. 44(1):52–56. DOI:10.1016/j.enzmictec.2008.09.001
  • Li J, Liu D, Sun L, Lu Y, Zhang Z. 2012. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 317(1–2):1–5.
  • Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart J-C, Jurkunas UV, Nadal M, Bouloc P, et al 2017. Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science. 357(6347):208–211.

References

  • He F, Mori T, Morita I, Nakamura H, Alblova M, Hoshino S, Awakawa T, Abe I. 2019. Molecular basis for the P450-catalyzed C-N bond formation in indolactam biosynthesis. Nat Chem Biol. 15(12):1206–1213.
  • Irie K, Iguchi M, Oda T, Suzuki Y, Okuno S, Ohigashi H, Koshimizu K, Hayashi H, Arai M, Nishino H, et al 1995. Synthesis of 6-substituted indolactams by microbial conversion. Tetrahedron. 51(22):6255–6266. DOI:10.1016/0040-4020(95)00298-M

References

  • Baillie TA. 2016. Targeted covalent inhibitors for drug design. Angew Chem Int Ed Engl. 55(43):13408–13421.
  • Jackson PA, Widen JC, Harki DA, Brummond KM. 2017. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with Thiols via Hetero-Michael Addition Reactions. J Med Chem. 60(3):839–885.
  • Barf T, Covey T, Izumi R, van de Kar B, Gulrajani M, van Lith B, van Hoek M, de Zwart E, Mittag D, Demont D, et al 2017. Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 363(2):240–252.

References

  • Zhang D, Fourie-O’Donohue A, Dragovich PS, Pillow TH, Sadowsky JD, Kozak KR, Cass RT, Liu L, Deng Y, Liu Y, et al 2019. Catalytic cleavage of disulfide bonds in small molecules and linkers of antibody-drug conjugates. Drug Metab Dispos. 47(10):1156–1163.
  • Holmgren A, Bjornstedt M. 1995. Thioredoxin and thioredoxin reductase. Meth Enzymol. 252:199–208.
  • Amengual JE, Lichtenstein R, Lue J, Sawas A, Deng C, Lichtenstein E, Khan K, Atkins L, Rada A, Kim HA, et al 2018. A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T-cell lymphoma. Blood. 131(4):397–407.
  • Caldarelli SA, Hamel M, Duckert JF, Ouattara M, Calas M, Maynadier M, Wein S, Perigaud C, Pellet A, Vial HJ, et al 2012. Disulfide prodrugs of albitiazolium (T3/SAR97276): synthesis and biological activities. J Med Chem. 55(10):4619–4628.
  • Pillow TH, Sadowsky JD, Zhang D, Yu SF, Del Rosario G, Xu K, He J, Bhakta S, Ohri R, Kozak KR, et al 2017. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci. 8(1):366–370.

References

  • Guo Y, Jia Y, Han L, Zhao Y, Li W, Zhang Z, Peng Y, Zheng J. 2019. Metabolic activation of tofacitinib mediated by myeloperoxidase in vitro. Chem Res Toxicol. 32(12):2459–2465.

References

  • Tailor A, Waddington J, Hamlett J, Maggs J, Kafu L, Farrell J, Dear G, Whitaker P, Naisbitt D, Park K, Meng X. 2019. Definition of haptens derived from sulfamethoxazole: in vitro and in vivo. Chem Res Toxicol. 32(10):2095–2106.
  • Alzahrani A, Ogese M, Meng X, Waddington J, Tailor A, Farrell J, Maggs J, Betts C, Park B, Naisbitt D. 2017. Dapsone and nitroso dapsone activation of naı¨ve T-cells from healthy donors. Chem Res Toxicol. 30(12):2174–2186.

References

  • Ji C, Guha M, Zhu X, Whritenour J, Hemkens M, Tse S, Walker G, Evans E, Khan N, Finkelstein M, Callegari E, Obach RS. 2019. Enzalutamide and apalutamide: in vitro chemical reactivity studies and activity in a mouse drug allergy model. Chem Res Toxicol. 32:2095–2106.
  • Oballa R, Truchon J, Bayly C, Chauret N, Day S, Crane S, Berthelette C. 2007. A generally applicable method for assessing the electrophilicity and reactivity of diverse nitrile-containing compounds. Bioorg Med Chem Lett. 17(4):998–1002.
  • Sharma A, Saito Y, Hung SI, Naisbitt D, Uetrecht J, Bussiere J. 2019. The skin as a metabolic and immune-competent organ: implications for drug-induced skin rash. J Immunotoxicol. 16(1):1–12. DOI:10.1080/1547691X.2018.1514444

References

  • Baer BR, Rettie AE, Henne KR. 2005. Bioactivation of 4-ipomeanol by CYP4B1: adduct characterization and evidence for an enedial intermediate. Chem Res Toxicol. 18(5):855–864.
  • Boelsterli UA. 2003. Bioactivation of xenobiotics to reactive metabolites. In Mechanistic toxicology: the molecular basis of how chemicals disrupt biological targets. New York: Taylor and Francis; p. 62–63.
  • Boyd MR, Burka LT, Harris TM, Wilson BJ. 1974. Lung-toxic furanoterpenoids produced by sweet potatoes (Ipomoea batatas) following microbial infection. Biochim Biophys Acta. 337(2):184–195. DOI:10.1016/0005-2760(74)90200-8
  • Czerwinski M, McLemore TL, Philpot RM, Nhamburo PT, Korzekwa K, Gelboin HV, Gonzalez FJ. 1991. Metabolic activation of 4-ipomeanol by complementary DNA-expressed human cytochromes-P450: evidence for species-specific metabolism. Cancer Res. 51(17):4636–4638.
  • Kowalski JP, McDonald MG, Whittington D, Guttman M, Scian M, Girhard M, Hanenberg H, Wiek, Rettie AE. 2019. Structure-activity relationships of CYP4B1 bioactivation of 4-ipomeanol congeners: Direct correlation between cytotoxicity and trapped reactive intermediates. Chem Res Toxicol. 32(12):2488–2498.
  • Parkinson OT, Teitelbaum AM, Whittington D, Kelly EJ, Rettie AE. 2016. Species differences in microsomal oxidation and glucuronidation of 4-ipomeanol: Relationship to target organ toxicity. Drug Metab Dispos. 44(10):1598–1602.
  • Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, et al. 2016. Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther. 23(7):615-626.
  • Rowinsky EK, Noe DA, Ettinger DS, Christian MC, Lubejko BG, Fishman EK, Sartorius SE, Boyd MR, Donehower RC. 1993. Phase I and pharmacological study of the pulmonary cytotoxin 4-ipomeanol on a single dose schedule in lung cancer patients: hepatotoxicity is dose limiting in humans. Cancer Res. 53(8):1794–1801.
  • Statham CN, Dutcher JS, Kim SH, Boyd MR. 1982. Ipomeanol 4-glucuronide, a major urinary metabolite of 4-ipomeanol in the rat. Drug Metab Dispos. 10(3):264–267.
  • Teitelbaum AM, McDonald MG, Kowalski JP, Parkinson OT, Scian M, Whittington D, Roellecke K, Hanenberg H, Wiek C, Rettie AE. 2019. Influence of stereochemistry on the bioactivation and glucuronidation of 4-ipomeanol. J Pharmacol Exp Ther. 368(2):308–316.

References

  • Duckett DR, Cameron MD. 2010. Metabolism considerations for kinase inhibitors in cancer treatment. Expert Opin Drug Metab Toxicol. 6(10):1175–1193.
  • Jackson KD, Durandis R, Vergne MJ. 2018. Role of cytochrome P450 enzymes in the metabolic activation of tyrosine kinase inhibitors. Int J Mol Sci. 19(8):2367.
  • Kalgutkar AS. 2017. Liabilities associated with the formation of “hard” electrophiles in reactive metabolite trapping screens. Chem Res Toxicol. 30(1):220–238.
  • Paludetto MN, Stigliani JL, Robert A, Bernardes-Genisson V, Chatelut E, Puisset F, Arellano C. 2020. Involvement of pazopanib and sunitinib aldehyde reactive metabolites in toxicity and drug-drug interactions in vitro and in patient samples. Chem Res Toxicol. 33(1):181–190.
  • Teo YL, Ho HK, Chan A. 2013. Risk of tyrosine kinase inhibitors-induced hepatotoxicity in cancer patients: A meta-analysis. Cancer Treat Rev. 39(2):199–206.
  • Teo YL, Ho HK, Chan A. 2015. Formation of reactive metabolites and management of tyrosine kinase inhibitor-induced hepatotoxicity: a literature review. Expert Opin Drug Metab Toxicol. 11(2):231–242.
  • Wang Y-K, Yang X-N, Liang W-Q, Xiao Y, Zhao Q, Xiao X-R, Gonzalez FJ, Li F. 2019. A metabolomic perspective of pazopanib-induced acute hepatotoxicity in mice. Xenobiotica. 49(6):655–670.

References

  • Bailey CM, Kasiviswanathan R, Copeland WC, Anderson KS. 2009. R964C mutation of DNA polymerase gamma imparts increased stavudine toxicity by decreasing nucleoside analog discrimination and impairing polymerase activity. Antimicrob Agents Chemother. 53(6):2610–2612.
  • Berson A, Fau D, Fornacciari R, Degove-Goddard P, Sutton A, Descatoire V, Haouzi D, Lettéron P, Moreau A, Feldmann G, et al 2001. Mechanisms for experimental buprenorphine hepatotoxicity: major role of mitochondrial dysfunction versus metabolic activation. J Hepatol. 34(2):261–269.
  • Cho T, Uetrecht J. 2020. Response to the letter to the editor concerning the article “rotenone increases isoniazid toxicity but does not cause liver injury: implications for the hypothesis that inhibition of the mitochondrial electron transport chain is a common mechanism of idiosyncratic drug-induced liver injury” by Bernard Fromenty. Chem Res Toxicol. 33(1):5–6.
  • Cho T, Wang X, Uetrecht J. 2019. Rotenone increases isoniazid toxicity but does not cause significant liver injury: implications for the hypothesis that inhibition of the mitochondrial electron transport chain is a common mechanism of idiosyncratic drug-induced liver injury. Chem Res Toxicol. 32(7):1423–1431.
  • Deschamps D, DeBeco V, Fisch C, Fromenty B, Guillouzo A, Pessayre D. 1994. Inhibition by perhexiline of oxidative phosphorylation and the beta-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions. Hepatology. 19(4):948–961. DOI:10.1002/hep.1840190422
  • Felser A, Blum K, Lindinger PW, Bouitbir J, Krähenbühl S. 2013. Mechanisms of hepatocellular toxicity associated with dronedarone-a comparison to amiodarone. Toxicol Sci. 131(2):480–490.
  • Fromenty B. 2020. Letter to the editor regarding the article rotenone increases isoniazid toxicity but does not cause significant liver injury: implications for the hypothesis that inhibition of the mitochondrial electron transport chain is a common mechanism of idiosyncratic drug-induced liver injury by cho and co-workers, 2019. Chem Res Toxicol. 33(1):2–4.
  • Fromenty B, Fisch C, Berson A, Letteron P, Larrey D, Pessayre D. 1990. Dual effect of amiodarone on mitochondrial respiration. Initial protonophoric uncoupling effect followed by inhibition of the respiratory chain at the levels of complex I and complex II. J Pharmacol Exp Ther. 255(3):1377–1384.
  • Gokhale YA, Vaidya MS, Mehta AD, Rathod NN. 2009. Isoniazid toxicity presenting as status epilepticus and severe metabolic acidosis. J Assoc Phys India. 57:70–71.
  • Jiang X-W, Qiao L, Feng X-X, Liu L, Wei Q-W, Wang X-W, Yu W-H. 2017. Rotenone induces nephrotoxicity in rats: oxidative damage and apoptosis. Toxicol Mech Methods. 27(7):528–536.
  • Labbe G, Pessayre D, Fromenty B. 2008. Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundam Clin Pharmacol. 22(4):335–353.
  • Lucena MI, García-Martín E, Andrade RJ, Martínez C, Stephens C, Ruiz JD, Ulzurrun E, Fernandez MC, Romero-Gomez M, Castiella A, Planas R, et al 2010. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology. 52(1):303–312.
  • Mak A, Uetrecht J. 2015. The combination of anti-CTLA-4 and PD1-/- mice unmasks the potential of isoniazid and nevirapine to cause liver injury. Chem Res Toxicol. 28(12):2287–2291.
  • Ong MMK, Latchoumycandane C, Boelsterli UA. 2007. Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci. 97(1):205–213.
  • Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, Fontana RJ, Day CP, Chinnery PF. 2010. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology. 52(5):1791–1796.
  • Watkins RC, Hambrick EL, Benjamin G, Sn C. 1990. Isoniazid toxicity presenting as seizures and metabolic acidosis. J Natl Med Assoc. 82:57, 62, 64.
  • Zimmerman HJ, Ishak KG. 1982. Valproate-induced hepatic injury: analyses of 23 fatal cases. Hepatology. 2(5):591–597.

References

  • Benet LZ, Spahn-Langguth H, Iwakawa S, Volland C, Mizuma T, Mayer S, Mutschler E, Lin ET. 1993. Predictability of the covalent binding of acidic drugs in man. Life Sciences. 53:PL141–PL146.
  • Bolze S, Bromet N, Gay-Feutry C, Massiere F, Boulieu R, Hulot T. 2002. Development of an in vitro screening model for the biosynthesis of acyl glucuronide metabolites and the assessment of their reactivity toward human serum albumin. Drug Metab Dispos. 30:404–413.
  • Harada H, Toyoda Y, Abe Y, Endo T, Takeda H. 2019. Quantitative Evaluation of Reactivity and Toxicity of Acyl Glucuronides by [35S]Cysteine Trapping. Chem Res Toxicol. 32:1955–1964.
  • Harada H, Toyoda Y, Endo T, Kobayashi M. 2015. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes. Pharmazie. 70:678–683.
  • Isin EM, Elmore CS, Nilsson GN, Thompson RA, Weidolf L. 2012. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem Res Toxicol. 25:532–542.
  • Iwamura A, Nakajima M, Oda S, Yokoi T. 2017. Toxicological potential of acyl glucuronides and its assessment. Drug Metab Pharmacokinet. 32:2–11.
  • Van Vleet TR, Liu H, Lee A, Blomme EAG. 2017. Acyl glucuronide metabolites: Implications for drug safety assessment. Toxicol Lett. 272:1–7.
  • Wang J, Davis M, Li F, Azam F, Scatina J, Talaat R. 2004. A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements. Chem Res Toxicol. 17:1206–1216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.