382
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease

ORCID Icon, , , &
Pages 455-471 | Received 21 Jul 2020, Accepted 26 Aug 2020, Published online: 08 Sep 2020

References

  • Abello N, Kerstjens HA, Postma DS, Bischoff R. 2009. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res. 8(7):3222–3238.
  • Aitken AE, Lee CM, Morgan ET. 2008. Roles of nitric oxide in inflammatory downregulation of human cytochromes P450. Free Radic Biol Med. 44(6):1161–1168.
  • Aitken AE, Morgan ET. 2007. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 35(9):1687–1693.
  • Aitken AE, Richardson TA, Morgan ET. 2006. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 46:123–149.
  • Albertolle ME, Kim D, Nagy LD, Yun CH, Pozzi A, Savas U, Johnson EF, Guengerich FP. 2017. Heme-thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. J Biol Chem. 292(27):11230–11242.
  • Albertolle ME, Phan TTN, Pozzi A, Guengerich FP. 2018. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteomics. 17(5):889–900.
  • Ashino T, Oguro T, Shioda S, Horai R, Asano M, Sekikawa K, Iwakura Y, Numazawa S, Yoshida T. 2004. Involvement of interleukin-6 and tumor necrosis factor alpha in CYP3A11 and 2C29 down-regulation by Bacillus Calmette-Guerin and lipopolysaccharide in mouse liver. Drug Metab Dispos. 32(7):707–714.
  • Aulak KS, Koeck T, Crabb JW, Stuehr DJ. 2004. Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol. 286(1):H30–H38.
  • Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ. 2001. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA. 98(21):12056–12061.
  • Barakat MM, El-Kadi AO, Du Souich P. 2001. L-NAME prevents in vivo the inactivation but not the down-regulation of hepatic cytochrome P450 caused by an acute inflammatory reaction. Life Sci. 69(13):1559–1571.
  • Billiar TR, Hoffman RA, Curran RD, Langrehr JM, Simmons RL. 1992. A role for inducible nitric oxide biosynthesis in the liver in inflammation and in the allogeneic immune response. J Lab Clin Med. 120(2):192–197.
  • Blobner M, Kochs E, Fink H, Mayer B, Veihelmann A, Brill T, Stadler J. 1999. Pharmacokinetics and pharmacodynamics of vecuronium in rats with systemic inflammatory response syndrome: treatment with NG-monomethyl-L-arginine. Anesthesiology. 91(4):999–1005.
  • Bredt DS, Snyder SH. 1994. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 63:175–195.
  • Broniowska KA, Diers AR, Hogg N. 2013. S-nitrosoglutathione. Biochim Biophys Acta. 1830(5):3173–3181.
  • Carcillo JA, Doughty L, Kofos D, Frye RF, Kaplan SS, Sasser H, Burckart GJ. 2003. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med. 29(6):980–984.
  • Carlson TJ, Billings RE. 1996. Role of nitric oxide in the cytokine-mediated regulation of cytochrome P-450. Mol Pharmacol. 49(5):796–801.
  • Cerrone Jr J, Lee CM, Mi T, Morgan ET. 2020. Nitric oxide mediated degradation of CYP2A6 via the ubiquitin-proteasome pathway in human hepatoma cells. Drug Metab Dispos. 48(7):544–552.
  • Chamulitrat W, Jordan SJ, Mason RP, Litton AL, Wilson JG, Wood ER, Wolberg G, Vedia LMY. 1995. Targets of nitric oxide in a mouse model of liver inflammation by Corynebacterium parvum. Arch Biochem Biophys. 316(1):30–37.
  • Charles KA, Rivory LP, Brown SL, Liddle C, Clarke SJ, Robertson GR. 2006. Transcriptional repression of hepatic cytochrome P450 3A4 gene in the presence of cancer. Clin Cancer Res. 12(24):7492–7497.
  • Chen D, Lepar G, Kemper B. 1994. A transcriptional regulatory element common to a large family of hepatic cytochrome P450 genes is a functional binding site of the orphan receptor HNF-4. J Biol Chem. 269(7):5420–5427.
  • Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D. 2001. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv Protein Chem. 58:215–276.
  • Correia MA, Sadeghi S, Mundo-Paredes E. 2005. Cytochrome P450 ubiquitination: Branding for the proteolytic slaughter? Annu Rev Pharmacol Toxicol. 45:439–464.
  • Correia MA, Wang Y, Kim SM, Guan S. 2014. Hepatic cytochrome P450 ubiquitination: conformational phosphodegrons for E2/E3 recognition? IUBMB Life. 66(2):78–88.
  • Cotman M, Jezek D, Fon Tacer K, Frangez R, Rozman D. 2004. A functional cytochrome P450 lanosterol 14 alpha-demethylase CYP51 enzyme in the acrosome: transport through the Golgi and synthesis of meiosis-activating sterols. Endocrinology. 145(3):1419–1426.
  • Coutant DE, Hall SD. 2018. Disease–drug interactions in inflammatory states via effects on CYP-mediated drug clearance. J Clin Pharmacol. 58(7):849–863.
  • Curran RD, Billiar TR, Stuehr DJ, Ochoa JB, Harbrecht BG, Flint SG, Simmons RL. 1990. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg. 212(4):462–469. discussion 470–461.
  • Davis KL, Martin E, Turko IV, Murad F. 2001. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 41:203–236.
  • Diatchenko L, Romanov S, Malinina I, Clarke J, Tchivilev I, Li X, Makarov SS. 2005. Identification of novel mediators of NF-kappaB through genome-wide survey of monocyte adherence-induced genes. J Leukoc Biol. 78(6):1366–1377.
  • Donato MT, Guillen MI, Jover R, Castell JV, Gomez-Lechon MJ. 1997. Nitric oxide-mediated inhibition of cytochrome P450 by interferon-gamma in human hepatocytes. J Pharmacol Exp Ther. 281(1):484–490.
  • Doulias PT, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, Ischiropoulos H. 2010. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci USA. 107(39):16958–16963.
  • Duarte MI, Andrade HF, Jr., Mariano ON, Corbett CE, Sesso A. 1989. Baseline volume data of human liver parenchymal cell. J Submicrosc Cytol Pathol. 21(2):275–279.
  • Eum HA, Yeom DH, Lee SM. 2006. Role of nitric oxide in the inhibition of liver cytochrome P450 during sepsis. Nitric Oxide. 15(4):423–431.
  • Faouzi S, Medzihradszky KF, Hefner C, Maher JJ, Correia MA. 2007. Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97?. Biochemistry. 46(26):7793–7803.
  • Ferrari L, Peng N, Halpert JR, Morgan ET. 2001. Role of nitric oxide in down-regulation of CYP2B1 protein, but not RNA, in primary cultures of rat hepatocytes. Mol Pharmacol. 60(1):209–216.
  • Ford PC, Wink DA, Stanbury DM. 1993. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett. 326(1–3):1–3.
  • Franco SJ, Huttenlocher A. 2005. Regulating cell migration: calpains make the cut. J Cell Sci. 118(Pt 17):3829–3838.
  • Fruh K, Yang Y. 1999. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol. 11(1):76–81.
  • Gaston BM, Carver J, Doctor A, Palmer LA. 2003. S-nitrosylation signaling in cell biology. Mol Interv. 3(5):253–263.
  • Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA, Wang SC, Simmons RL, Billiar TR. 1993. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci Usa. 90(2):522–526.
  • Gergel D, Misik V, Riesz P, Cederbaum AI. 1997. Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide. Arch Biochem Biophys. 337(2):239–250.
  • Gharavi N, El-Kadi AO. 2007. Role of nitric oxide in downregulation of cytochrome P450 1a1 and NADPH: Quinone oxidoreductase 1 by tumor necrosis factor-alpha and lipopolysaccharide. J Pharm Sci. 96(10):2795–2807.
  • Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H. 2013. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem. 288(37):26473–26479.
  • Gow AJ, Duran D, Malcolm S, Ischiropoulos H. 1996. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 385(1–2):63–66.
  • Halder SK, Fink M, Waterman MR, Rozman D. 2002. A cAMP-responsive element binding site is essential for sterol regulation of the human lanosterol 14alpha-demethylase gene (CYP51). Mol Endocrinol. 16(8):1853–1863.
  • Hara H, Adachi T. 2002. Contribution of hepatocyte nuclear factor-4 to down-regulation of CYP2D6 gene expression by nitric oxide. Mol Pharmacol. 61(1):194–200.
  • Hara H, Mitani N, Adachi T. 2000. Inhibitory effect of nitric oxide on the induction of cytochrome P450 3A4 mRNA by 1,25-dihydroxyvitamin D3 in Caco-2 cells. Free Radic Res. 33(3):279–285.
  • Hayden MS, Ghosh S. 2008. Shared principles in NF-kappaB signaling. Cell. 132(3):344–362.
  • Hodgson PD, Renton KW. 1994. Effect of nitro-L-arginine and nitric oxide generators on the down regulation of cytochrome P450. Can J Physiol Pharmacol. 72(suppl.1):P12.13.21.
  • Huan JY, Streicher JM, Bleyle LA, Koop DR. 2004. Proteasome-dependent degradation of cytochromes P450 2E1 and 2B1 expressed in tetracycline-regulated HeLa cells. Toxicol Appl Pharmacol. 199(3):332–343.
  • Ibáñez-Vea M, Huang H, Martínez de Morentin X, Pérez E, Gato M, Zuazo M, Arasanz H, Fernández-Irigoyen J, Santamaría E, Fernandez-Hinojal G, et al. 2018. Characterization of macrophage endogenous S-nitrosoproteome using a cysteine-specific phosphonate adaptable tag in combination with TiO2 chromatography. J Proteome Res. 17(3):1172–1182.
  • Ibeanu GC, Goldstein JA. 1995. Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry. 34(25):8028–8036.
  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. 2001. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 3(2):193–197.
  • Jones AE, Brown KC, Werner RE, Gotzkowsky K, Gaedigk A, Blake M, Hein DW, van der Horst C, Kashuba AD. 2010. Variability in drug metabolizing enzyme activity in HIV-infected patients. Eur J Clin Pharmacol. 66(5):475–485.
  • Jover R, Bort R, Gomez-Lechon MJ, Castell JV. 2001. Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: a study using adenovirus-mediated antisense targeting. Hepatology. 33(3):668–675.
  • Jung C, Bec N, Lange R. 2002. Substrates modulate the rate-determining step for CO binding in cytochrome P450cam (CYP101). A high-pressure stopped-flow study. Eur J Biochem. 269(12):2989–2996.
  • Karkhanis A, Hong Y, Chan ECY. 2017. Inhibition and inactivation of human CYP2J2: implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol. 135:12–21.
  • Keefer LK, Nims RW, Davies KM, Wink DA. 1996. “NONOates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms . Meth Enzymol. 268:281–293.
  • Khatsenko O, Kikkawa Y. 1997. Nitric oxide differentially affects constitutive cytochrome P450 isoforms in rat liver. J Pharmacol Exp Ther. 280(3):1463–1470.
  • Khatsenko OG, Gross SS, Rifkind AB, Vane JR. 1993. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA. 90(23):11147–11151.
  • Kim S, Wing SS, Ponka P. 2004. S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway. Mol Cell Biol. 24(1):330–337.
  • Kim SM, Acharya P, Engel JC, Correia MA. 2010. Liver cytochrome P450 3A ubiquitination in vivo by gp78/autocrine motility factor receptor and C terminus of Hsp70-interacting protein (CHIP) E3 ubiquitin ligases: physiological and pharmacological relevance. J Biol Chem. 285(46):35866–35877.
  • Kim YM, Bergonia HA, Muller C, Pitt BR, Watkins WD, Lancaster JR. Jr. 1995. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem. 270(11):5710–5713.
  • Kincaid MM, Cooper AA. 2007. ERADicate ER stress or die trying. Antioxid Redox Signal. 9(12):2373–2387.
  • Kitaichi K, Nakayama H, Ueyama J, Nadai M, Baba K, Takagi K, Takagi K, Ohta M, Hasegawa T. 2004. Down-regulation of cytochrome P450 proteins and its activities by Shiga-like toxin II from Escherichia coli O157:H7. Biochem Pharmacol. 67(8):1427–1435.
  • Kitaichi K, Wang L, Takagi K, Iwase M, Shibata E, Nadai M, Hasegawa T. 1999. Decreased antipyrine clearance following endotoxin administration: in vivo evidence of the role of nitric oxide. Antimicrob Agents Chemother. 43(11):2697–2701.
  • Kotamraju S, Matalon S, Matsunaga T, Shang T, Hickman-Davis JM, Kalyanaraman B. 2006. Upregulation of immunoproteasomes by nitric oxide: potential antioxidative mechanism in endothelial cells. Free Radic Biol Med. 40(6):1034–1044.
  • Kuhn DM, Aretha CW, Geddes TJ. 1999. Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci. 19(23):10289–10294.
  • Lancaster JR. Jr. 2006. Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol. 19(9):1160–1174.
  • Lee CM, Kim BY, Li L, Morgan ET. 2008. Nitric oxide-dependent proteasomal degradation of cytochrome P450 2B proteins. J Biol Chem. 283(2):889–898.
  • Lee CM, Kumar V, Riley RI, Morgan ET. 2010. Metabolism and action of proteasome inhibitors in primary human hepatocytes. Drug Metab Dispos. 38(12):2166–2172.
  • Lee CM, Lee BS, Arnold SL, Isoherranen N, Morgan ET. 2014. Nitric oxide and interleukin-1beta stimulate the proteasome-independent degradation of the retinoic acid hydroxylase CYP2C22 in primary rat hepatocytes. J Pharmacol Exp Ther. 348(1):141–152.
  • Lee CM, Pohl J, Morgan ET. 2009. Dual mechanisms of CYP3A protein regulation by proinflammatory cytokine stimulation in primary hepatocyte cultures. Drug Metab Dispos. 37(4):865–872.
  • Lee CM, Sun H, Morgan ET. 2011. Probing the mechanism of NO-dependent degradation of CYP2B1. Abstract presented at the international conference on cytochrome P450; Manchester UK.
  • Lee CM, Tripathi S, Morgan ET. 2017. Nitric oxide-regulated proteolysis of human CYP2B6 via the ubiquitin-proteasome system. Free Radic Biol Med. 108:478–486.
  • Lee CM, Wilderman PR, Park JW, Murphy TJ, Morgan ET. 2020. Tyrosine nitration contributes to nitric oxide-stimulated degradation of CYP2B6. Mol Pharmacol. 98(3):267–279.
  • Lee YI, Giovinazzo D, Kang HC, Lee Y, Jeong JS, Doulias PT, Xie Z, Hu J, Ghasemi M, Ischiropoulos H, et al. 2014. Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteomics. 13(1):63–72.
  • Liddle C, Mode A, Legraverend C, Gustafsson JA. 1992. Constitutive expression and hormonal regulation of male sexually differentiated cytochromes P450 in primary cultured rat hepatocytes. Arch Biochem Biophys. 298(1):159–166.
  • Li-Masters T, Morgan ET. 2002. Down-regulation of phenobarbital-induced cytochrome P4502B mRNAs and proteins by endotoxin in mice: independence from nitric oxide production by inducible nitric oxide synthase. Biochem Pharmacol. 64(12):1703–1711.
  • Lin HL, Kent UM, Zhang H, Waskell L, Hollenberg PF. 2003. Mutation of tyrosine 190 to alanine eliminates the inactivation of cytochrome P450 2B1 by peroxynitrite. Chem Res Toxicol. 16(2):129–136.
  • Lin HL, Myshkin E, Waskell L, Hollenberg PF. 2007. Peroxynitrite inactivation of human cytochrome P450s 2B6 and 2E1: heme modification and site-specific nitrotyrosine formation. Chem Res Toxicol. 20(11):1612–1622.
  • Lin HL, Zhang H, Waskell L, Hollenberg PF. 2005. The highly conserved Glu149 and Tyr190 residues contribute to peroxynitrite-mediated nitrotyrosine formation and the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol. 18(8):1203–1210.
  • Liu X, Van Vleet T, Schnellmann RG. 2004. The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol. 44:349–370.
  • Liu Z, Dai X, Zhu H, Zhang M, Zou MH. 2015. Lipopolysaccharides promote S-nitrosylation and proteasomal degradation of liver kinase B1 (LKB1) in macrophages in vivo. J Biol Chem. 290(31):19011–19017.
  • Marletta MA. 1993. Nitric oxide synthase structure and mechanism. J Biol Chem. 268(17):12231–12234.
  • Marshall HE, Merchant K, Stamler JS. 2000. Nitrosation and oxidation in the regulation of gene expression. Faseb J. 14(13):1889–1900.
  • Matthews JR, Botting CH, Panico M, Morris HR, Hay RT. 1996. Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. 24(12):2236–2242.
  • Miersch S, Mutus B. 2005. Protein S-nitrosation: biochemistry and characterization of protein thiol-NO interactions as cellular signals. Clin Biochem. 38(9):777–791.
  • Minamiyama Y, Imaoka S, Takemura S, Okada S, Inoue M, Funae Y. 2001. Escape from tolerance of organic nitrate by induction of cytochrome P450. Free Radic Biol Med. 31(11):1498–1508.
  • Minamiyama Y, Takemura S, Imaoka S, Funae Y, Tanimoto Y, Inoue M. 1997. Irreversible inhibition of cytochrome P450 by nitric oxide. J Pharmacol Exp Ther. 283(3):1479–1485.
  • Minamiyama Y, Takemura S, Yamasaki K, Hai S, Hirohashi K, Funae Y, Okada S. 2004. Continuous administration of organic nitrate decreases hepatic cytochrome P450. J Pharmacol Exp Ther. 308(2):729–735.
  • Mooradian DL, Hutsell TC, Keefer LK. 1995. Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol. 25(4):674–678.
  • Morel Y, Barouki R. 1999. Repression of gene expression by oxidative stress. Biochem J. 342(Pt 3):481–496.
  • Morgan ET. 2017. Chapter 2, Regulation of drug-metabolizing enzymes and drug metabolism by inflammatory responses. In Xie W, editor. Drug metabolism in diseases. Boston, MA: Academic Press; p. 21–58.
  • Morris SM, Jr., Billiar TR. 1994. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 266(6 Pt 1):E829–E839.
  • Muller CM, Scierka A, Stiller RL, Kim YM, Cook DR, Lancaster JR, Jr., Buffington CW, Watkins WD. 1996. Nitric oxide mediates hepatic cytochrome P450 dysfunction induced by endotoxin. Anesthesiology. 84(6):1435–1442.
  • Nakano R, Sato H, Watanabe A, Ito O, Shimizu T. 1996. Conserved Glu318 at the cytochrome P450 1A2 distal site is crucial in the nitric oxide complex stability. J Biol Chem. 271(15):8570–8574.
  • Nebert DW, Puga A, Vasiliou V. 1993. Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal transduction. Ann N Y Acad Sci. 685:624–640.
  • Nussler AK, Di Silvio M, Billiar TR, Hoffman RA, Geller DA, Selby R, Madariaga J, Simmons RL. 1992. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med. 176(1):261–264.
  • Ohsumi Y. 2014. Historical landmarks of autophagy research. Cell Res. 24(1):9–23.
  • Ono Y, Saido TC, Sorimachi H. 2016. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov. 15(12):854–876.
  • Ouellet H, Lang J, Couture M, Ortiz de Montellano PR. 2009. Reaction of Mycobacterium tuberculosis cytochrome P450 enzymes with nitric oxide. Biochemistry. 48(5):863–872.
  • Park JW, Byrd A, Lee CM, Morgan ET. 2017. Nitric oxide stimulates cellular degradation of human CYP51A1, the highly conserved lanosterol 14alpha-demethylase. Biochem J. 474(19):3241–3252.
  • Park JW, Lee CM, Cheng JS, Morgan ET. 2018. Posttranslational regulation of CYP2J2 by nitric oxide. Free Radic Biol Med. 121:149–156.
  • Pilz RB, Casteel DE. 2003. Regulation of gene expression by cyclic GMP. Circ Res. 93(11):1034–1046.
  • Quaroni LG, Seward HE, McLean KJ, Girvan HM, Ost TW, Noble MA, Kelly SM, Price NC, Cheesman MR, Smith WE, et al. 2004. Interaction of nitric oxide with cytochrome P450 BM3. Biochemistry. 43(51):16416–16431.
  • Radi R. 2004. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA. 101(12):4003–4008.
  • Rafikov R, Dimitropoulou C, Aggarwal S, Kangath A, Gross C, Pardo D, Sharma S, Jezierska-Drutel A, Patel V, Snead C, et al. 2014. Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA. J Biol Chem. 289(8):4710–4722.
  • Raynes R, Pomatto LC, Davies KJ. 2016. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med. 50:41–55.
  • Renton KW. 2001. Alteration of drug biotransformation and elimination during infection and inflammation. Pharmacol Ther. 92(2-3):147–163.
  • Roberts ES, Lin H, Crowley JR, Vuletich JL, Osawa Y, Hollenberg PF. 1998. Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol. 11(9):1067–1074.
  • Rozman D, Cotman M, Frangez R. 2002. Lanosterol 14alpha-demethylase and MAS sterols in mammalian gametogenesis. Mol Cell Endocrinol. 187(1–2):179–187.
  • Rozman D, Fink M, Fimia GM, Sassone-Corsi P, Waterman MR. 1999. Cyclic adenosine 3',5'-monophosphate(cAMP)/cAMP-responsive element modulator (CREM)-dependent regulation of cholesterogenic lanosterol 14alpha-demethylase (CYP51) in spermatids. Mol Endocrinol. 13(11):1951–1962.
  • Schmid D, Munz C. 2007. Innate and adaptive immunity through autophagy. Immunity. 27(1):11–21.
  • Scott EE, White MA, He YA, Johnson EF, Stout CD, Halpert JR. 2004. Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem. 279(26):27294–27301.
  • Secor McVoy JR, Oughli HA, Oh U. 2015. Liver X receptor-dependent inhibition of microglial nitric oxide synthase 2. J Neuroinflammation. 12:27.
  • Sewer MB, Barclay TB, Morgan ET. 1998. Down-regulation of cytochrome P450 mRNAs and proteins in mice lacking a functional NOS2 gene. Mol Pharmacol. 54(2):273–279.
  • Sewer MB, Morgan ET. 1997. Nitric oxide-independent suppression of P450 2C11 expression by interleukin-1beta and endotoxin in primary rat hepatocytes. Biochem Pharmacol. 54(6):729–737.
  • Sewer MB, Morgan ET. 1998. Down-regulation of the expression of three major rat liver cytochrome P450S by endotoxin in vivo occurs independently of nitric oxide production. J Pharmacol Exp Ther. 287(1):352–358.
  • Sha Y, Marshall HE. 2012. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta. 1820(6):701–711.
  • Sharma NK, Kumar A, Kumari A, Tokar EJ, Waalkes MP, Bortner CD, Williams J, Ehrenshaft M, Mason RP, Sinha BK. 2015. Nitric oxide down-regulates topoisomerase I and induces camptothecin resistance in human breast MCF-7 tumor cells. PLoS One. 10(11):e0141897.
  • Shedlofsky SI, Israel BC, McClain CJ, Hill DB, Blouin RA. 1994. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J Clin Invest. 94(6):2209–2214.
  • Siewert E, Bort R, Kluge R, Heinrich PC, Castell J, Jover R. 2000. Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology. 32(1):49–55.
  • Smith BC, Fernhoff NB, Marletta MA. 2012. Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation. Biochemistry. 51(5):1028–1040.
  • Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, Obin M, Ara J, Horwitz J, Ischiropoulos H. 2000. Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys. 380(2):360–366.
  • Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL. 1991. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol. 260(5 Pt 1):C910–C916.
  • Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert JR, Greim H, Doehmer J. 1994. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci Usa. 91(9):3559–3563.
  • Stamler JS, Lamas S, Fang FC. 2001. Nitrosylation. the prototypic redox-based signaling mechanism. Cell. 106(6):675–683.
  • Stromstedt M, Rozman D, Waterman MR. 1996. The ubiquitously expressed human CYP51 encodes lanosterol 14 alpha-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch Biochem Biophys. 329(1):73–81.
  • Sun H, Lee CM, Tripathi S, Kim KB, Morgan ET. 2012. Nitric oxide-dependent CYP2B degradation is potentiated by a cytokine-regulated pathway and utilizes the immunoproteasome subunit LMP2. Biochem J. 445(3):377–382.
  • Takayama F, Egashira T, Yamanaka Y. 1999. NO contribution to lipopolysaccharide-induced hepatic damage in galactosamine-sensitized mice. J Toxicol Sci. 24(1):69–75.
  • Takemura S, Minamiyama Y, Imaoka S, Funae Y, Hirohashi K, Inoue M, Kinoshita H. 1999. Hepatic cytochrome P450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J Hepatol. 30(6):1035–1044.
  • Tanino T, Komada A, Ueda K, Bando T, Nojiri Y, Ueda Y, Sakurai E. 2016. Pharmacokinetics and differential regulation of cytochrome P450 enzymes in type 1 allergic mice. Drug Metab Dispos. 44(12):1950–1957.
  • Vuppugalla R, Mehvar R. 2004a. Hepatic disposition and effects of nitric oxide donors: rapid and concentration-dependent reduction in the cytochrome P450-mediated drug metabolism in isolated perfused rat livers. J Pharmacol Exp Ther. 310(2):718–727.
  • Vuppugalla R, Mehvar R. 2004b. Short-term inhibitory effects of nitric oxide on cytochrome P450-mediated drug metabolism: time dependency and reversibility profiles in isolated perfused rat livers. Drug Metab Dispos. 32(12):1446–1454.
  • Vuppugalla R, Mehvar R. 2005. Enzyme-selective effects of nitric oxide on affinity and maximum velocity of various rat cytochromes P450. Drug Metab Dispos. 33(6):829–836.
  • Wang J, Maldonado MA. 2006. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 3(4):255–261.
  • Wang Y, Zhang P, Xu Z, Yue W, Zhuang Y, Chen Y, Lu Z. 2015. S-nitrosylation of PDE5 increases its ubiquitin-proteasomal degradation. Free Radic Biol Med. 86:343–351.
  • Watabe M, Isogai Y, Numazawa S, Yoshida T. 2003. Role of c-Myc in nitric oxide-mediated suppression of cytochrome P450 3A4. Life Sci. 74(1):99–108.
  • Wink DA, Osawa Y, Darbyshire JF, Jones CR, Eshenaur SC, Nims RW. 1993. Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys. 300(1):115–123.
  • Yamakura F, Kawasaki H. 2010. Post-translational modifications of superoxide dismutase. Biochim Biophys Acta. 1804(2):318–325.
  • Yin R, Fang L, Li Y, Xue P, Li Y, Guan Y, Chang Y, Chen C, Wang N. 2015. Pro-inflammatory macrophages suppress PPARγ activity in adipocytes via S-nitrosylation. Free Radic Biol Med. 89:895–905.
  • Zhan X, Wang X, Desiderio DM. 2015. Mass spectrometry analysis of nitrotyrosine-containing proteins. Mass Spectrom Rev. 34(4):423–448.
  • Zhang P, Fu WY, Fu AK, Ip NY. 2015. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun. 6:8665.
  • Zhao JF, Jim Leu SJ, Shyue SK, Su KH, Wei J, Lee TS. 2013. Novel effect of paeonol on the formation of foam cells: promotion of LXRα-ABCA1-dependent cholesterol efflux in macrophages. Am J Chin Med. 41(5):1079–1096.
  • Zou M, Martin C, Ullrich V. 1997. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem. 378(7):707–713.
  • Zou MH, Daiber A, Peterson JA, Shoun H, Ullrich V. 2000. Rapid reactions of peroxynitrite with heme-thiolate proteins as the basis for protection of prostacyclin synthase from inactivation by nitration. Arch Biochem Biophys. 376(1):149–155.
  • Zou MH, Klein T, Pasquet JP, Ullrich V. 1998. Interleukin 1beta decreases prostacyclin synthase activity in rat mesangial cells via endogenous peroxynitrite formation. Biochem J. 336(2):507–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.