951
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Bioanalytical strategies in drug discovery and development

, , , , , , & show all
Pages 434-458 | Received 19 Jul 2021, Accepted 20 Jul 2021, Published online: 23 Aug 2021

References

  • Adler M, Langer M, Witthohn K, Eck J, Blohm D, Niemeyer CM. 2003. Detection of rViscumin in plasma samples by immuno-PCR. Biochem Biophys Res Commun. 300(3):757–763.
  • Adler M, Langer M, Witthohn K, Wilhelm-Ogunbiyi K, Schöffski P, Fumoleau P, Niemeyer CM. 2005. Adaptation and performance of an immuno-PCR assay for the quantification of Aviscumine in patient plasma samples. J Pharm Biomed Anal. 39(5):972–982.
  • Adusumalli S, Jamwal R, Leggio L, Akhlaghi F. 2019. Development and validation of an assay for a novel ghrelin receptor inverse agonist PF-5190457 and its major hydroxy metabolite (PF-6870961) by LC-MS/MS in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 1130–1131:121820.
  • Altun Z, Abdel-Rehim M, Blomberg LG. 2004. New trends in sample preparation: on-line microextraction in packed syringe (MEPS) for LC and GC applications Part III: determination and validation of local anaesthetics in human plasma samples using a cation-exchange sorbent, and MEPS-LC-MS-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 813(1–2):129–135.
  • Alzweiri M, Watson DG, Robertson C, Sills GJ, Parkinson JA. 2008. Comparison of different water-miscible solvents for the preparation of plasma and urine samples in metabolic profiling studies. Talanta. 74(4):1060–1065.
  • An B, Zhang M, Pu J, Qu Y, Shen S, Zhou S, Ferrari L, Vazvaei F, Qu J. 2020. Toward accurate and robust liquid chromatography-mass spectrometry-based quantification of antibody biotherapeutics in tissues. Anal Chem. 92(22):15152–15161.
  • Bansal S, DeStefano A. 2007. Key elements of bioanalytical method validation for small molecules. AAPS J. 9(1):E109–E114.
  • Barroso M, Gallardo E, Queiroz JA. 2015. The role of liquid-phase microextraction techniques in bioanalysis. Bioanalysis. 7(17):2195–2201.
  • Baumann A. 2006. Early development of therapeutic biologics-pharmacokinetics. Curr Drug Metab. 7(1):15–21.
  • Beccaria M, Cabooter D. 2020. Current developments in LC-MS for pharmaceutical analysis. Analyst. 145:1129–1157.
  • Becker B, Cooper MA. 2013. Aminoglycoside antibiotics in the 21st century. ACS Chem Biol. 8(1):105–115.
  • Bourgogne E, Wagner M. 2015. Sample preparation and bioanalysis in mass spectrometry. Ann Biol Clin. 73(1):11–23.
  • Bratinčević MV, Visković T, Sutlović D. 2017. Comparison of the solid phase and liquid-liquid extraction methods for methadone determination in human serum and whole blood samples using gas chromatography/mass spectrometry. Arh Hig Rada Toksikol. 68(4):308–314.
  • Budhraja RH, Shah MA, Suthar M, Yadav A, Shah SP, Kale P, Asvadi P, Arasu MV, Al-Dhabi NA, Park CG, et al. 2016. LC-MS/MS validation analysis of trastuzumab using dSIL approach for evaluating pharmacokinetics. Molecules. 21(11):1410–1464.
  • Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. 2019. Intact protein bioanalysis by liquid chromatography – high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 1110–1111:155–167.
  • Bylda C, Thiele R, Kobold U, Volmer DA. 2014. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst. 139(10):2265–2276.
  • Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR. 2007. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J Chromatogr B Analyt Technol Biomed Life Sci. 852(1–2):22–34.
  • Chen J, Wang H, Hao Z, Bennett P, Kilby G. 2013. Bioanalytical quantitation of biotherapeutics using intact protein vs. proteolytic peptides by LC-HR/AM on a Q-Exactive MS. 61st ASMS Conference on Mass Spectrometry and Allied Topics. Minneapolis, MN, USA. p. 9–13.
  • Cheng J, Moore S, Gomez-Galeno J, Lee D-H, Okolotowicz KJ, Cashman JR. 2019. A novel small molecule inhibits tumor growth and synergizes effects of enzalutamide on prostate cancer. J Pharmacol Exp Ther. 371(3):703–712.
  • Christianson CC, Johnson CJ, Needham SR. 2013. The advantages of microflow LC-MS/MS compared with conventional HPLC-MS/MS for the analysis of methotrexate from human plasma. Bioanalysis. 5(11):1387–1396.
  • Nwabufo CK, Aigbogun OP, Allen KJH, Owens MN, Lee JS, Phenix CP, Krol ES, CPP & ESK. 2021. Employing in vitro metabolism to guide design of F-labelled PET probes of novel α-synuclein binding bifunctional compounds. Xenobiotica. 51(8):817–885.
  • Couchman L. 2012. Turbulent flow chromatography in bioanalysis: a review. Biomed Chromatogr. 26(8):892–905.
  • Couchman L, Fisher DS, Subramaniam K, Handley SA, Boughtflower RJ, Benton CM, Flanagan RJ. 2018. Ultra-fast LC-MS/MS in therapeutic drug monitoring: quantification of clozapine and norclozapine in human plasma. Drug Test Anal. 10(2):323–329.
  • Cuyckens F. 2019. Mass spectrometry in drug metabolism and pharmacokinetics: current trends and future perspectives. Rapid Commun Mass Spectrom. 33(S3):90–95.
  • Cuyckens F, Dillen L, Cools W, Bockx M, Vereyken L, de Vries R, Mortishire-Smith RJ. 2012. Identifying metabolite ions of peptide drugs in the presence of an in vivo matrix background. Bioanalysis. 4(5):595–604.
  • Cuyckens F, Wassvik C, Mortishire-Smith RJ, Tresadern G, Campuzano I, Claereboudt J. 2011. Product ion mobility as a promising tool for assignment of positional isomers of drug metabolites. Rapid Commun Mass Spectrom. 25(23):3497–3503.
  • Dasgupta A. 2012. Impact of interferences including metabolite crossreactivity on therapeutic drug monitoring results. Ther Drug Monit. 34(5):496–506.
  • DelGuidice CE, Ismaiel OA, Mylott WR Jr., Halquist MS. 2020. Quantitative bioanalysis of intact large molecules using mass spectrometry. J Appl Bioanal. 6(1):52–64.
  • Desai R, Roadcap B, Goykhman D, Woolf E. 2019. Determination of doravirine in human plasma using liquid-liquid extraction and HPLC-MS/MS. Bioanalysis. 11(16):1495–1508.
  • Domenech-Coca C, Mariné-Casadó R, Caimari A, Arola L, del Bas JM, Bladé C, Rodriguez-Naranjo MI. 2019. Dual liquid-liquid extraction followed by LC-MS/MS method for the simultaneous quantification of melatonin, cortisol, triiodothyronine, thyroxine and testosterone levels in serum: applications to a photoperiod study in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 1108:11–16.
  • Drouin N, Rudaz S, Schappler J. 2017. Sample preparation for polar metabolites in bioanalysis. Analyst. 143(1):16–20.
  • Duan X, Abuqayyas L, Dai L, Balthasar JP, Qu J. 2012. High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry. Anal Chem. 84(10):4373–4382.
  • Duan X, Dai L, Chen SC, Balthasar JP, Qu J. 2012. Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. J Chromatogr A. 1251:63–73.
  • Dunand M, Donzelli M, Rickli A, Hysek CM, Liechti ME, Grouzmann E. 2014. Analytical interference of 4-hydroxy-3-methoxymethamphetamine with the measurement of plasma free normetanephrine by ultra-high pressure liquid chromatography-tandem mass spectrometry. Clin Biochem . 47(12):1121–1123.
  • Enders JR, McIntire GL. 2015. A dilute-and-shoot LC-MS method for quantitating opioids in oral fluid. J Anal Toxicol. 39(8):662–667.
  • Eval. Pharma. 2017. Evaluate pharma, world preview 2017, outlook to 2022; [accessed 2021 Jan 10]. http://info.evaluategroup.com/rs/607-YGS-364/images/wp16.pdf.
  • Ewles M, Goodwin L. 2011. Bioanalytical approaches to analyzing peptides and proteins by LC-MS/MS. Bioanalysis. 3(12):1379–1397.
  • Fandozzi C, Evans C, Wilson A, Su D, Anderson M, Clausen V, Dillen L, Garofolo F, Holliman C, Nickbarg E, et al. 2019. 2019 white paper on recent issues in bioanalysis: chromatographic assays (part 1 – innovation in small molecules and oligonucleotides & mass spectrometric method development strategies for large molecule bioanalysis). Bioanalysis. 11(22):2029–2048.
  • Fang K, Licea-Perez H. 2020. Strategies for effective development of ultra-sensitive LC-MS/MS assays: application to a novel STING agonist. Bioanalysis. 12(7):467–484.
  • Faria M, Peay M, Lam B, Ma E, Yuan M, Waldron M, Mylott W, Liang M, Rosenbaum A. 2019. Multiplex LC-MS/MS Assays for clinical bioanalysis of MEDI4276, an antibody-drug conjugate of tubulysin analogue attached via cleavable linker to a biparatopic humanized antibody against HER-2. Antibodies. 8(1):11.
  • Feng S, Enders JR, Cummings OT, Strickland EC, McIntire T, McIntire G. 2020. A dilute and shoot LC-MS/MS method for antipsychotics in urine. J Anal Toxicol. 44(4):331–338.
  • Fischer SK, Joyce A, Spengler M, Yang TY, Zhuang Y, Fjording MS, Mikulskis A. 2015. Emerging technologies to increase ligand binding assay sensitivity. AAPS J. 17(1):93–101.
  • Fraser S, Shih JY, Ware M, O'Connor E, Cameron MJ, Schwickart M, Zhao X, Regnstrom K. 2017. Current trends in ligand binding real-time measurement technologies. AAPS J. 19(3):682–691.
  • Fu X, Liao Y, Liu H. 2005. Sample preparation for pharmaceutical analysis. Anal Bioanal Chem. 381(1):75–77.
  • Fu Y, Xia YQ, Flarakos J, Tse FLS, Miller JD, Jones EB, Li W. 2016. Differential mobility spectrometry coupled with multiple ion monitoring in regulated LC-MS/MS bioanalysis of a therapeutic cyclic peptide in human plasma. Anal Chem. 88(7):3655–3661.
  • Furlong MT, Ouyang Z, Wu S, Tamura J, Olah T, Tymiak A, Jemal M. 2012. A universal surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies. Biomed Chromatogr. 26(8):1024–1032.
  • Galaon T, David V. 2012. The influence of mobile phase pH on the retention and selectivity of related basic compounds in reversed-phase liquid chromatography. Rev Roum Chim. 57:131–140.
  • Grebe SK, Singh RJ. 2011. LC-MS/MS in the clinical laboratory – where to from here? Clin Biochem Rev. 32(1):5–31.
  • Greer B, Chevallier O, Quinn B, Botana LM, Elliott CT. 2021. Redefining dilute and shoot: the evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. Trends Analyt Chem. 141:116284.
  • Greguš M, Kostas JC, Ray S, Abbatiello SE, Ivanov AR. 2020. Improved sensitivity of ultralow flow LC-MS-based proteomic profiling of limited samples using monolithic capillary columns and FAIMS technology. Anal Chem. 92(21):14702–14712.
  • Grund B, Marvin L, Rochat B. 2016. Quantitative performance of a quadrupole-orbitrap-MS in targeted LC-MS determinations of small molecules. J Pharm Biomed Anal. 124:48–56.
  • Gui Y, Lu Y, Li S, Zhang M, Duan X, Liu CC, Jia J, Liu G. 2020. Direct analysis in real time-mass spectrometry for rapid quantification of five anti-arrhythmic drugs in human serum: application to therapeutic drug monitoring. Sci Rep. 10(1):15550.
  • Hashii N, Tousaka Y, Arai K, Goda R, Inoue N, Murata K, Okuzono T, Sasahara S, Shigeyama T, Tachiki H, et al. 2020. Generic MS-based method for the bioanalysis of therapeutic monoclonal antibodies in nonclinical studies. Bioanalysis. 12(4):231–243.
  • He J, Meng L, Ruppel J, Yang J, Kaur S, Xu K. 2020. Automated, generic reagent and ultratargeted 2D-LC-MS/MS enabling quantification of biotherapeutics and soluble targets down to pg/mL range in serum. Anal Chem. 92(13):9412–9420.
  • Hendriks G, Uges DRA, Franke JP. 2007. Reconsideration of sample pH adjustment in bioanalytical liquid-liquid extraction of ionisable compounds. J Chromatogr B Analyt Technol Biomed Life Sci. 853(1–2):234–241.
  • Henry H, Sobhi HR, Scheibner O, Bromirski M, Nimkar SB, Rochat B. 2012. Comparison between a high-resolution single-stage Orbitrap and a triple quadrupole mass spectrometer for quantitative analyses of drugs. Rapid Commun Mass Spectrom. 26(5):499–509.
  • Hernández-Mesa M, Le Bizec B, Monteau F, García-Campaña AM, Dervilly-Pinel G. 2018. Collision cross section (CCS) database: an additional measure to characterize steroids. Anal Chem. 90(7):4616–4625.
  • Hernández-Mesa M, Monteau F, Le Bizec B, Dervilly-Pinel G. 2019. Potential of ion mobility-mass spectrometry for both targeted and non-targeted analysis of phase II steroid metabolites in urine. Anal Chim Acta X. 1:100006.
  • Hettiarachchi K, Hayes M, Desai AJ, Wang J, Ren Z, Greshock TJ. 2019. Subminute micro-isolation of pharmaceuticals with ultra-high pressure liquid chromatography. J Pharm Biomed Anal. 176:112794.
  • Honda N, Lindberg U, Andersson P, Hoffmann S, Takei H. 2005. Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force. Clin Chem. 51(10):1955–1961.
  • Huang Y-C, Deyanova EG, Passmore D, Rangan V, Deshpande S, Tymiak AA, Chen G. 2015. Utility of ion mobility mass spectrometry for drug-to-antibody ratio measurements in antibody-drug conjugates. J Am Soc Mass Spectrom. 26(10):1791–1794. doi:https://doi.org/10.1007/s13361-015-1203-1.
  • Huck CW, Guggenbichler W, Bonn GK. 2005. Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Anal Chim Acta. 538(1–2):195–203.
  • Iwamoto N, Shimada T. 2018. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther. 185:147–154.
  • Iwamoto N, Shimada T. 2019. Regulated LC-MS/MS bioanalysis technology for therapeutic antibodies and Fc-fusion proteins using structure-indicated approach. Drug Metab Pharmacokinet. 34(1):19–24.
  • Iwamoto N, Shimada T, Terakado H, Hamada A. 2016. Validated LC-MS/MS analysis of immune checkpoint inhibitor Nivolumab in human plasma using a Fab peptide-selective quantitation method: nano-surface and molecular-orientation limited (nSMOL) proteolysis. J Chromatogr B. 1023–1024:9–16.
  • Iwamoto N, Shimomura A, Tamura K, Hamada A, Shimada T. 2017. LC-MS bioanalysis of Trastuzumab and released emtansine using nano-surface and molecular-orientation limited (nSMOL) proteolysis and liquid-liquid partition in plasma of Trastuzumab emtansine-treated breast cancer patients. J Pharm Biomed Anal. 145:33–39.
  • Iwamoto N, Takanashi M, Hamada A, Shimada T. 2016a. Multiplex LCMS bioanalysis of brentuximab vedotin, rituximab and cetuximab towards therapeutic drug monitoring application by combined calibration curve using Fab-selective limited proteolysis nSMOL. Clin Pharmacol Biopharm. 5(4):1–9.
  • Iwamoto N, Takanashi M, Hamada A, Shimada T. 2016b. Validated LC/MS bioanalysis of Rituximab CDR peptides using nano-surface and molecular-orientation limited (nSMOL) proteolysis. Biol Pharm Bull. 39(7):1187–1194.
  • Iwamoto N, Takanashi M, Shimada T, Sasaki J, Hamada A. 2019. Comparison of bevacizumab quantification results in plasma of non-small cell lung cancer patients using bioanalytical techniques between LC-MS/MS, ELISA, and microfluidic-based immunoassay. AAPS J. 21(6):1–8.
  • Iwamoto N, Takanashi M, Umino Y, Aoki C, Hamada A, Shimada T. 2016. Application of nano-surface and molecular-orientation limited proteolysis to LC-MS bioanalysis of cetuximab. Bioanalysis. 8(10):1009–1020.
  • Iwamoto N, Umino Y, Aoki C, Yamane N, Hamada A, Shimada T. 2016. Fully validated LCMS bioanalysis of Bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis. Drug Metab Pharmacokinet. 31(1):46–50.
  • Iwamoto N, Yamane N, Umino Y, Hamada A, Shimada T. 2015. The development of the validated LCMS bioanalysis of trastuzumab in human plasma using a selective detection method for complementarity-determining regions of monoclonal antibodies: nano-surface and molecular-orientation limited (nSMOL) proteolysis. Anal Methods. 7(21):9177–9183.
  • Iwamoto N, Yokoyama K, Takanashi M, Yonezawa A, Matsubara K, Shimada T. 2018. Application of nSMOL coupled with LC-MS bioanalysis for monitoring the Fc-fusion biopharmaceuticals Etanercept and Abatacept in human serum. Pharmacol Res Perspect. 6(4):e00422.
  • Jamwal R, Topletz AR, Ramratnam B, Akhlaghi F. 2017. Ultra-high performance liquid chromatography tandem mass-spectrometry for simple and simultaneous quantification of cannabinoids. J Chromatogr B Analyt Technol Biomed Life Sci. 1048:10–18.
  • Jenkins RG. 2016. Accuracy: a potential quandary in regulated bioanalysis of ‘endogenous’ analytes. Bioanalysis. 8(23):2393–2397.
  • Jiang H, Sidhu R, Fujiwara H, De Meulder M, de Vries R, Gong Y, Kao M, Porter FD, Yanjanin NM, Carillo-Carasco N, et al. 2014. Development and validation of sensitive LC-MS/MS assays for quantification of HP-β-CD in human plasma and CSF. J Lipid Res. 55(7):1537–1548.
  • Jones DR, Wu Z, Chauhan D, Anderson KC, Peng J. 2014. A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma. Anal Chem. 86(7):3667–3675.
  • Juhascik MP, Jenkins AJ. 2009. Comparison of liquid/liquid and solid-phase extraction for alkaline drugs. J Chromatogr Sci. 47(7):553–557.
  • Kellie JF, Tran JC, Lee JE, Ahlf DR, Thomas HM, Ntai I, Catherman AD, Durbin KR, Zamdborg L, Vellaichamy A, et al. 2010. The emerging process of top down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol Biosyst. 6(9):1532–1539.
  • Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA. 2009. Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteom. 8(10):2339–2349.
  • Khoury S, El Banna N, Tfaili S, Chaminade P. 2016. A study of inter-species ion suppression in electrospray ionization-mass spectrometry of some phospholipid classes. Anal Bioanal Chem. 408(5):1453–1465.
  • King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T. 2000. Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom. 11(11):942–950.
  • Kole PL, Venkatesh G, Kotecha J, Sheshala R. 2011. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr. 25(1–2):199–217.
  • Le Guellec C, Gaudet M-L, Lamanetre S, Breteau M. 1997. Stability of Rifampin in plasma: consequences for therapeutic monitoring and pharmacokinetic studies. Ther Drug Monit. 19(6):669–674.
  • Leader B, Baca QJ, Golan DE. 2008. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 7(1):21–39.
  • Lemire SW, Ash DH, Johnson RC, Barr JR. 2007. Mass spectral behavior of the hydrolysis products of sesqui- and oxy-mustard type chemical warfare agents in atmospheric pressure chemical ionization. J Am Soc Mass Spectrom. 18(8):1364–1374.
  • Levernaes MCS, Farhat B, Oulie I, Abdullah SS, Paus E, Reubsaet L, Halvorsen TG. 2019. Immunocapture sample clean-up in determination of low abundant protein biomarkers – a feasibility study of peptide capture by anti-protein antibodies. RSC Adv. 9(60):34902–34911.
  • Liang HR, Foltz RL, Meng M, Bennett P. 2003. Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 17(24):2815–2821.
  • Liigand J, Laaniste A, Kruve A. 2017. pH effects on electrospray ionization efficiency. J Am Soc Mass Spectrom. 28(3):461–469.
  • Liu A, Kozhich A, Passmore D, Gu H, Wong R, Zambito F, Rangan VS, Myler H, Aubry A-F, Arnold ME, et al. 2015. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: assay development, validation, and a case study. J Chromatogr B Analyt Technol Biomed Life Sci. 1002:54–62.
  • Loos G, Van Schepdael A, Cabooter D. 2016. Quantitative mass spectrometry methods for pharmaceutical analysis. Phil Trans R Soc A. 374(2079):20150366.
  • MacNeill R. 2019. Instrumental and technical evolution over the past decade in bioanalysis. Bioanalysis. 11(7):601–606.
  • Makurvet FD. 2021. Biologics vs. small molecules: drug costs and patient access. Med Drug Discov. 9:100075.
  • Malaca S, Busardò FP, Gottardi M, Pichini S, Marchei E. 2019. Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis of psychoactive drugs in oral fluid. J Pharm Biomed Anal. 170:63–67.
  • Mansour FR, Khairy MA. 2017. Pharmaceutical and biomedical applications of dispersive liquid-liquid microextraction. J Chromatogr B Analyt Technol Biomed Life Sci. 1061–1062:382–391.
  • Martens J, Koppen V, Berden G, Cuyckens F, Oomens J. 2017. Combined liquid chromatography-infrared ion spectroscopy for identification of regioisomeric drug metabolites. Anal Chem. 89(8):4359–4362.
  • Mayer AP, Hottenstein CS. 2016. Ligand-binding assay development: what do you want to measure versus what you are measuring? AAPS J. 18(2):287–289.
  • Michopoulos F, Edge A, Hui Y-T, Liddicoat T, Theodoridis G, Wilson I. 2011. Extraction methods for the removal of phospholipids and other endogenous material from a biological fluid. Bioanalysis. 3(24):2747–2755.
  • Mou S, Huang Y, Rosenbaum A. 2018. ADME considerations and bioanalytical strategies for pharmacokinetic assessments of antibody-drug conjugates. Antibodies. 7(4):41.
  • Myzithras M, Bigwarfe T, Waltz E, Li H, Ahlberg J, Rybina I, Low S, Kenny CH, Miglietta J, Kroe-Barrett R. 2018. Optimizing NBE PK/PD assays using the Gyrolab affinity software; conveniently within the bioanalyst’s existing workflow. Bioanalysis. 10(6):397–406.
  • Neubert H, Muirhead D, Kabir M, Grace C, Cleton A, Arends R. 2013. Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human β-nerve growth factor. Anal Chem. 85(3):1719–1726.
  • Neužil P, Giselbrecht S, Länge K, Huang TJ, Manz A. 2012. Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov. 11(8):620–632. doi:https://doi.org/10.1038/nrd3799.
  • Niu Z, Zhang W, Yu C, Zhang J, Wen Y. 2018. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Analyt Chem. 102:123–146.
  • Nwabufo C, Krol E. 2019. Unraveling the metabolic fate of potential therapeutic dimer compounds for Parkinson’s disease. Drug Metab Pharmacokinet . 34(1):S59–S60.
  • Nwabufo CK. 2021. Introduction to the mini special issue on next generation drug discovery and development: rethinking translational pharmacology for accelerated drug development. Drug Metab Rev. 53(2):171–172.
  • Nwabufo CK, El-Aneed A, Krol ES. 2019. Tandem mass spectrometric analysis of novel caffeine scaffold-based bifunctional compounds for Parkinson's disease. Rapid Commun Mass Spectrom. 33(23):1792–1803.
  • Ouyang Z, Furlong MT, Wu S, Sleczka B, Tamura J, Wang H, Suchard S, Suri A, Olah T, Tymiak A, et al. 2012. Pellet digestion: a simple and efficient sample preparation technique for LC-MS/MS quantification of large therapeutic proteins in plasma. Bioanalysis. 4(1):17–28.
  • Palandra J, Finelli A, Zhu M, Masferrer J, Neubert H. 2013. Highly specific and sensitive measurements of human and monkey interleukin 21 using sequential protein and tryptic peptide immunoaffinity LC-MS/MS. Anal Chem. 85(11):5522–5529.
  • Petteys BJ, Graham KS, Parnás ML, Holt C, Frank EL. 2012. Performance characteristics of an LC-MS/MS method for the determination of plasma metanephrines. Clin Chim Acta. 413(19–20):1459–1465.
  • Pitt JJ. 2009. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 30:19–34.
  • Plachká K, Pezzatti J, Musenga A, Nicoli R, Kuuranne T, Rudaz S, Nováková L, Guillarme D. 2021. Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports. Anal Chim Acta. 1152:338257.
  • Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. 2003. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 785(2):263–275.
  • Priston MJ, Sewell GJ. 1994. Improved LC assay for the determination of mitozantrone in plasma: analytical considerations. J Pharm Biomed Anal. 12(9):1153–1162.
  • Purves RW, Prasad S, Belford M, Vandenberg A, Dunyach JJ. 2017. Optimization of a new aerodynamic cylindrical FAIMS device for small molecule analysis. J Am Soc Mass Spectrom. 28(3):525–538.
  • Pusch W, Flocco MT, Leung S-M, Thiele H, Kostrzewa M. 2003. Mass spectrometry-based clinical proteomics. Pharmacogenomics. 4(4):463–476.
  • Ramin M, Khadem M, Omidi F, Pourhosein M, Golbabaei F, Shahtaheri SJ. 2019. Development of dispersive liquid-liquid microextraction procedure for trace determination of malathion pesticide in urine samples. Iran J Public Health. 48(10):1893–1902.
  • Regl C, Wohlschlager T, Esser-Skala W, Wagner I, Samonig M, Holzmann J, Huber CG. 2019. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth: a method capability study. mAbs. 11(3):569–582.
  • Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S. 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 1116(1–2):1–9.
  • Roman GT, Murphy JP. 2017. Improving sensitivity and linear dynamic range of intact protein analysis using a robust and easy to use microfluidic device. Analyst. 142(7):1073–1083.
  • Rudzki PJ, Gniazdowska E, Buś-Kwaśnik K. 2018. Quantitative evaluation of the matrix effect in bioanalytical methods based on LC-MS: a comparison of two approaches. J Pharm Biomed Anal. 155:314–319.
  • Russell LE, Schleiff MA, Gonzalez E, Bart AG, Broccatelli F, Hartman JH, Humphreys WG, Lauschke VM, Martin I, Nwabufo C, Prasad B, et al. 2020. Advances in the study of drug metabolism – symposium report of the 12th Meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metab Rev. 52(3):395–407.
  • Russell LE, Zhou Y, Almousa AA, Sodhi JK, Nwabufo CK, Lauschke VM. 2021. Pharmacogenomics in the era of next generation sequencing–from byte to bedside. Drug Metab Rev. 53(2):253–278.
  • Lakka NS, Kuppan C. 2020. Principles of chromatography method development. In: Biochemical analysis tools – methods for bio-molecules studies. London (UK): IntechOpen.
  • Shen B-Q, Bumbaca D, Saad O, Yue Q, Pastuskovas, CV, Cyrus Khojasteh, S, Tibbitts, J, Kaur, S, Wang, B, Chu Y-W, et al. 2012. Catabolic fate and pharmacokinetic characterization of trastuzumab emtansine (T-DM1): an emphasis on preclinical and clinical catabolism. Curr Drug Metab. 13(7):901–910.
  • Shi S. 2014. Biologics: an update and challenge of their pharmacokinetics. Curr Drug Metab. 15(3):271–290.
  • Shi T, Fillmore TL, Sun X, Zhao R, Schepmoes AA, Hossain M, Xie F, Wu S, Kim JS, Jones N, et al. 2012. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci USA. 109(38):15395–15400.
  • Soltani S, Jouyban A. 2014. Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis. 6(12):1691–1710.
  • Spengler M, Adler M, Jonas A, Niemeyer CM. 2009. Immuno-PCR assays for immunogenicity testing. Biochem Biophys Res Commun. 387(2):278–282.
  • Stepanić V, Žiher D, Gabelica-Marković V, Jelić D, Nunhuck S, Valko K, Koštrun S. 2012. Physicochemical profile of macrolides and their comparison with small molecules. Eur J Med Chem. 47(1):462–472.
  • Sun L, Li H, Willson K, Breidinger S, Rizk ML, Wenning L, Woolf EJ. 2012. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial. Anal Chem. 84(20):8614–8621.
  • Tang YQ, Weng N. 2013. Salting-out assisted liquid-liquid extraction for bioanalysis. Bioanalysis. 5(12):1583–1598.
  • Thermo Scientific. 2016. How next generation large molecule bioanalysis technology works. AAPS J. 16(6):1175–1184.
  • U.S. FDA. 2018. What are “biologics” questions and answers; [accessed 2021 Feb 28]. https://www.fda.gov/about-fda/center-biologics-evaluation-and-research-cber/what-are-biologics-questions-and-answers.
  • US Food and Drug Administration. 2018. Bioanalytical method validation guidance for industry. Food and Drug Administration.
  • Vaiano F, Mari F, Busardò FP, Bertol E. 2014. Enhancing the sensitivity of the LC-MS/MS detection of propofol in urine and blood by azo-coupling derivatization. Anal Bioanal Chem. 406(15):3579–3587.
  • van de Merbel NC. 2019. Protein quantification by LC-MS: a decade of progress through the pages of bioanalysis. Bioanalysis. 11(7):629–644.
  • van den Broek I, Niessen WMA, van Dongen WD. 2013. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci. 929:161–179.
  • van den Broek I, van Dongen WD. 2015. LC-MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications. Bioanalysis. 7(15):1943–1958.
  • Vas G, Nagy K, Vékey K. 2008. Biomedical sampling. In: Vékey K, Telekes A, Vertes A, editors. Medical applications of mass spectrometry. Elsevier; p. 37-59.
  • Vehus T, Roberg-Larsen H, Waaler J, Aslaksen S, Krauss S, Wilson SR, Lundanes E. 2016. Versatile, sensitive liquid chromatography mass spectrometry–implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Sci Rep. 6:37507.
  • Vogeser M, Seger C. 2010. Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clin Chem. 56(8):1234–1244.
  • Vyviurska O, Špánik I. 2014. Sample preparation procedures for analysis of organochlorinated pollutants and PAHs in surface water samples. Acta Chim Slov. 7(2):77–86.
  • Wang R, Zhang L, Zhang Z, Tian Y. 2016. Comparison of ESI- and APCI-LC-MS/MS methods: a case study of levonorgestrel in human plasma. J Pharm Anal. 6(6):356–362.
  • Wang S, Cyronak M, Yang E. 2007. Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J Pharm Biomed Anal. 43(2):701–707.
  • Wei C, Grace JE, Zvyaga TA, Drexler DM. 2012. Utility of high-resolution accurate MS to eliminate interferences in the bioanalysis of ribavirin and its phosphate metabolites. Bioanalysis. 4(15):1895–1905.
  • Welch CJ, Gong X, Schafer W, Pratt EC, Brkovic T, Pirzada Z, Cuff JF, Kosjek B. 2010. MISER chromatography (multiple injections in a single experimental run): the chromatogram is the graph. Tetrahedron. 21(13–14):1674–1681.
  • Welink J, Yang E, Hughes N, Rago B, Woolf E, Sydor J, Coppola L, Ackermann B, Li W, Alley SC, et al. 2017. 2017 White Paper on recent issues in bioanalysis: aren't BMV guidance/guidelines ‘Scientific’? (Part 1 – LCMS: small molecules, peptides and small molecule biomarkers). Bioanalysis. 9(22):1807–1825.
  • Willeman T, Jourdil JF, Gautier-Veyret E, Bonaz B, Stanke-Labesque F. 2019. A multiplex liquid chromatography tandem mass spectrometry method for the quantification of seven therapeutic monoclonal antibodies: application for adalimumab therapeutic drug monitoring in patients with Crohn’s disease. Anal Chim Acta. 1067:63–70.
  • Williams JP, Bugarcic T, Habtemariam A, Giles K, Campuzano I, Rodger PM, Sadler PJ. 2009. Isomer separation and gas-phase configurations of organoruthenium anticancer complexes: ion mobility mass spectrometry and modeling. J Am Soc Mass Spectrom. 20(6):1119–1122.
  • Wiśniewski JR. 2019. Filter aided sample preparation – a tutorial. Anal Chim Acta. 1090:23–30.
  • Wleklinski M, Loren BP, Ferreira CR, Jaman Z, Avramova L, Sobreira TJP, Thompson DH, Cooks RG. 2018. High throughput reaction screening using desorption electrospray ionization mass spectrometry. Chem Sci. 9(6):1647–1653.
  • Wong A, Xiang X, Ong P, Mitchell E, Syn N, Wee I, Kumar A, Yong W, Sethi G, Goh B, et al. 2018. A review on liquid chromatography-tandem mass spectrometry methods for rapid quantification of oncology drugs. Pharmaceutics. 10(4):221.
  • Wright K, Dufield D. 2014. Minimalistic sample preparation strategies for LC-MS quantification of large molecule biopharmaceuticals: a case study highlighting alpha-1 antitrypsin protein. Bioanalysis. 6(13):1813–1825.
  • Wright MJ, Thomas RL, Stanford PE, Horvath AR. 2015. Multiple reaction monitoring with multistage fragmentation (MRM3) detection enhances selectivity for LC-MS/MS analysis of plasma free metanephrines. Clin Chem. 61(3):505–513.
  • Xia YQ, Ciccimaro E, Zheng N, Zhu M. 2017. Differential mobility spectrometry combined with multiple ion monitoring for bioanalysis of disulfide-bonded peptides with inefficient collision-induced dissociation fragmentation. Bioanalysis. 9(2):183–192.
  • Xu RN, Fan L, Rieser MJ, El-Shourbagy TA. 2007. Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. J Pharm Biomed Anal. 28(4):342–355.
  • Yabu JM, Vincenti F. 2007. Novel immunosuppression: small molecules and biologics. Semin Nephrol. 27(4):479–486.
  • Yang Y, Zhang YF, Li XT, Wang FL, He HY, Huang J. 2019. Application of dispersive liquid-liquid microextraction in forensic toxicological analysis. Fa Yi Xue Za Zhi. 35(3):344–348.
  • Zawatzky K, Barhate CL, Regalado EL, Mann BF, Marshall N, Moore JC, Welch CJ. 2017. Overcoming “speed limits” in high throughput chromatographic analysis. J Chromatogr A. 1499:211–216.
  • Zhang M, An B, Qu Y, Shen S, Fu W, Chen YJ, Wang X, Young R, Canty JM, Balthasar JP, et al. 2018. Sensitive, high-throughput, and robust trapping-micro-LC-MS strategy for the quantification of biomarkers and antibody biotherapeutics. Anal Chem. 90(3):1870–1880.
  • Zhang W, Han F, Zhao H, Lin ZJ, Huang QM, Weng N. 2012. Determination of metformin in rat plasma by HILIC-MS/MS combined with Tecan automation and direct injection. Biomed Chromatogr. 26(10):1163–1169.
  • Zheng N. 2020. Automated and high-throughput extraction approaches. In: Poole CF, editor. Solid-phase extraction. Elsevier; p. 573–588.
  • Zheng N, Jiang H, Zeng J. 2014. Current advances and strategies towards fully automated sample preparation for regulated LC-MS/MS bioanalysis. Bioanalysis. 6(18):2441–2459.
  • Zuloaga O, Olivares M, Navarro P, Vallejo A, Prieto A. 2015. Dispersive liquid-liquid microextraction: trends in the analysis of biological samples. Bioanalysis. 7(17):2211–2225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.