744
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer’s disease

Pages 563-591 | Received 20 Mar 2021, Accepted 01 Sep 2021, Published online: 01 Oct 2021

References

  • Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans CA. 2002. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med. 33(12):1693–1702.
  • Actis-Goretta L, Dew TP, Leveques A, Pereira-Caro G, Rein M, Teml A, Schafer C, Hofmann U, Schwab M, Eichelbaum M, et al. 2015. Gastrointestinal absorption and metabolism of hesperetin-7-O-rutinoside and hesperetin-7-O-glucoside in healthy humans. Mol Nutr Food Res. 59(9):1651–1662.
  • Akao T, Sato K, He JX, Ma CM, Hattori M. 2013. Baicalein 6-O-β-D-glucopyranuronoside is a main metabolite in the plasma after oral administration of baicalin, a flavone glucuronide of scutellariae radix, to rats. Biol Pharm Bull. 36(5):748–753.
  • Al Rahim M, Nakajima A, Saigusa D, Tetsu N, Maruyama Y, Shibuya M, Yamakoshi H, Tomioka Y, Iwabuchi Y, Ohizumi Y, et al. 2009. 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade. Biochemistry. 48(32):7713–7721.
  • Androutsopoulos V, Wilsher N, Arroo RR, Potter GA. 2009. Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Lett. 274(1):54–60.
  • Appeldoorn MM, Vincken JP, Aura AM, Hollman PC, Gruppen H. 2009. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites. J Agric Food Chem. 57(3):1084–1092.
  • Appeldoorn MM, Vincken JP, Gruppen H, Hollman PC. 2009. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr. 139(8):1469–1473.
  • Arora A, Nair MG, Strasburg GM. 1998. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys. 356(2):133–141.
  • Atherton KM, Mutch E, Ford D. 2006. Metabolism of the soyabean isoflavone daidzein by CYP1A2 and the extra-hepatic CYPs 1A1 and 1B1 affects biological activity. Biochem Pharmacol. 72(5):624–631.
  • Aura AM, O'Leary KA, Williamson G, Ojala M, Bailey M, Puupponen-Pimia R, Nuutila AM, Oksman-Caldentey KM, Poutanen K. 2002. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem. 50(6):1725–1730.
  • Baba S, Furuta T, Horie M, Nakagawa H. 1981. Studies on drug metabolism by use of isotopes XXVI: Determination of urinary metabolites of rutin in humans. J Pharm Sci. 70(7):780–782.
  • Bai Y, Peng W, Yang C, Zou W, Liu M, Wu H, Fan L, Li P, Zeng X, Su W. 2020. Pharmacokinetics and metabolism of naringin and active metabolite naringenin in rats, dogs, humans, and the differences between species. Front Pharmacol. 11:364.
  • Baral S, Pariyar R, Kim J, Lee HS, Seo J. 2017. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol Aging. 52:39–52.
  • Behl C, Ziegler C. 2017. Beyond amyloid - widening the view on Alzheimer's disease. J Neurochem. 143(4):394–395.
  • Beking K, Vieira A. 2010. Flavonoid intake and disability-adjusted life years due to Alzheimer's and related dementias: a population-based study involving twenty-three developed countries. Public Health Nutr. 13(9):1403–1409.
  • Bittner K, Kemme T, Peters K, Kersten S, Danicke S, Humpf HU. 2014. Systemic absorption and metabolism of dietary procyanidin B4 in pigs. Mol Nutr Food Res. 58(12):2261–2273.
  • Blount JW, Ferruzzi M, Raftery D, Pasinetti GM, Dixon RA. 2012. Enzymatic synthesis of substituted epicatechins for bioactivity studies in neurological disorders. Biochem Biophys Res Commun. 417(1):457–461.
  • Blount JW, Redan BW, Ferruzzi MG, Reuhs BL, Cooper BR, Harwood JS, Shulaev V, Pasinetti G, Dixon RA. 2015. Synthesis and quantitative analysis of plasma-targeted metabolites of catechin and epicatechin. J Agric Food Chem. 63(8):2233–2240.
  • Brand W, Boersma MG, Bik H, Hoek-van den Hil EF, Vervoort J, Barron D, Meinl W, Glatt H, Williamson G, van Bladeren PJ, et al. 2010. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos. 38(4):617–625.
  • Brand W, van der Wel PA, Rein MJ, Barron D, Williamson G, van Bladeren PJ, Rietjens IM. 2008. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab Dispos. 36(9):1794–1802.
  • Breinholt VM, Offord EA, Brouwer C, Nielsen SE, Brosen K, Friedberg T. 2002. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food Chem Toxicol. 40(5):609–616.
  • Bursztyka J, Perdu E, Tulliez J, Debrauwer L, Delous G, Canlet C, De Sousa G, Rahmani R, Benfenati E, Cravedi JP. 2008. Comparison of genistein metabolism in rats and humans using liver microsomes and hepatocytes. Food Chem Toxicol. 46(3):939–948.
  • Chen F, Tan YF, Li HL, Qin ZM, Cai HD, Lai WY, Zhang XP, Li YH, Guan WW, Li YB, et al. 2015. Differential systemic exposure to galangin after oral and intravenous administration to rats. Chem Cent J. 9:14.
  • Chen J, Lin H, Hu M. 2003. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 304(3):1228–1235.
  • Chen L, Li Z, Tang Y, Cui X, Luo R, Guo S, Zheng Y, Huang C. 2011. Isolation, identification and antiviral activities of metabolites of calycosin-7-O-β-D-glucopyranoside. J Pharm Biomed Anal. 56(2):382–389.
  • Chen T, Su W, Yan Z, Wu H, Zeng X, Peng W, Gan L, Zhang Y, Yao H. 2018. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J Pharm Biomed Anal. 161:262–272.
  • Chen T, Wu H, He Y, Pan W, Yan Z, Liao Y, Peng W, Gan L, Zhang Y, Su W, et al. 2019. Simultaneously quantitative analysis of naringin and its major human gut microbial metabolites naringenin and 3-(4'-Hydroxyphenyl) propanoic acid via stable isotope deuterium-labeling coupled with RRLC-MS/MS method. Molecules. 24(23):4287.
  • Chen W, Zhu X, Lu Q, Zhang L, Wang X, Liu R. 2020. C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Res Int. 135:109271.
  • Chen X, Cui L, Duan X, Ma B, Zhong D. 2006. Pharmacokinetics and metabolism of the flavonoid scutellarin in humans after a single oral administration. Drug Metab Dispos. 34(8):1345–1352.
  • Chen X, Xu L, Guo S, Wang Z, Jiang L, Wang F, Zhang J, Liu B. 2019. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MSn). J Chromatogr B Analyt Technol Biomed Life Sci. 1124:58–71.
  • Chen Y, Chen H, Zhang W, Ding Y, Zhao T, Zhang M, Mao G, Feng W, Wu X, Yang L. 2019. Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats. Food Funct. 10(9):6052–6061.
  • Chen Y, Li Q, Zhao T, Zhang Z, Mao G, Feng W, Wu X, Yang L. 2017. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chem. 237:887–894.
  • Coldham NG, Darby C, Hows M, King LJ, Zhang AQ, Sauer MJ. 2002. Comparative metabolism of genistin by human and rat gut microflora: detection and identification of the end-products of metabolism. Xenobiotica. 32(1):45–62.
  • Dai P, Luo F, Wang Y, Jiang H, Wang L, Zhang G, Zhu L, Hu M, Wang X, Lu L, et al. 2015. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm Drug Dispos. 36(9):622–635.
  • Dal-Pan A, Dudonne S, Bourassa P, Bourdoulous M, Tremblay C, Desjardins Y, Calon F, Neurophenols c, Neurophenols Consortium. 2017. Cognitive-enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer's disease. J Alzheimers Dis. 55(1):115–135.
  • de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 171(13):3268–3282.
  • Di Pede G, Bresciani L, Calani L, Petrangolini G, Riva A, Allegrini P, Del Rio D, Mena P. 2020. The human microbial metabolism of quercetin in different formulations: an in vitro evaluation. Foods. 9(8):1121.
  • El Mohsen MA, Marks J, Kuhnle G, Moore K, Debnam E, Kaila Srai S, Rice-Evans C, Spencer JP. 2006. Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats. Br J Nutr. 95(1):51–58.
  • Engemann A, Hubner F, Rzeppa S, Humpf HU. 2012. Intestinal metabolism of two A-type procyanidins using the pig cecum model: detailed structure elucidation of unknown catabolites with Fourier transform mass spectrometry (FTMS). J Agric Food Chem. 60(3):749–757.
  • Fan L, Tong Q, Dong W, Yang G, Hou X, Xiong W, Shi C, Fang J, Wang W. 2017. Tissue distribution, excretion, and metabolic profile of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) after oral administration in rats. J Agric Food Chem. 65(23):4597–4604.
  • Fan L, Zhao X, Tong Q, Zhou X, Chen J, Xiong W, Fang J, Wang W, Shi C. 2018. Interactions of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) with Gut Microbiota. J Food Sci. 83(5):1444–1453.
  • Feng X, Chen Y, Li L, Zhang Y, Zhang L, Zhang Z. 2020. Preparation, evaluation and metabolites study in rats of novel amentoflavone-loaded TPGS/soluplus mixed nanomicelles. Drug Deliv. 27(1):137–150.
  • Feng X, Li Y, Guang C, Qiao M, Wang T, Chai L, Qiu F. 2018. Characterization of the in vivo and in vitro metabolites of linarin in rat biosamples and intestinal flora using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Molecules. 23(9):2140.
  • Fernandes I, de Freitas V, Reis C, Mateus N. 2012. A new approach on the gastric absorption of anthocyanins. Food Funct. 3(5):508–516.
  • Fernandes I, Marques F, de Freitas V, Mateus N. 2013. Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chem. 141(3):2923–2933.
  • Gan L, Ma J, You G, Mai J, Wang Z, Yang R, Xie C, Fei J, Tang L, Zhao J, et al. 2020. Glucuronidation and its effect on the bioactivity of amentoflavone, a biflavonoid from Ginkgo biloba leaves. J Pharm Pharmacol. 72(12):1840–1853.
  • Gao C, Chen X, Zhong D. 2011. Absorption and disposition of scutellarin in rats: a pharmacokinetic explanation for the high exposure of its isomeric metabolite. Drug Metab Dispos. 39(11):2034–2044.
  • Gao C, Zhang H, Guo Z, You T, Chen X, Zhong D. 2012. Mechanistic studies on the absorption and disposition of scutellarin in humans: selective OATP2B1-mediated hepatic uptake is a likely key determinant for its unique pharmacokinetic characteristics. Drug Metab Dispos. 40(10):2009–2020.
  • Gao D, Wang DD, Zhang Q, Yang FQ, Xia ZN, Zhang QH, Yuan CS. 2017. In vivo selective capture and rapid identification of luteolin and its metabolites in rat livers by molecularly imprinted solid-phase microextraction. J Agric Food Chem. 65(6):1158–1166.
  • Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, Canivenc-Lavier MC. 2005. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos. 33(1):49–54.
  • Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C. 2004. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos. 32(1):58–65.
  • Gufford BT, Graf TN, Paguigan ND, Oberlies NH, Paine MF. 2015. Chemoenzymatic synthesis, characterization, and scale-up of milk thistle flavonolignan glucuronides. Drug Metab Dispos. 43(11):1734–1743.
  • Gunaratna C, Zhang T. 2003. Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci. 794(2):303–310.
  • Guo J, Liu A, Cao H, Luo Y, Pezzuto JM, van Breemen RB. 2008. Biotransformation of the chemopreventive agent 2',4',4-trihydroxychalcone (isoliquiritigenin) by UDP-glucuronosyltransferases. Drug Metab Dispos. 36(10):2104–2112.
  • Guo J, Liu D, Nikolic D, Zhu D, Pezzuto JM, van Breemen RB. 2008. In vitro metabolism of isoliquiritigenin by human liver microsomes. Drug Metab Dispos. 36(2):461–468.
  • Guo J, Nikolic D, Chadwick LR, Pauli GF, van Breemen RB. 2006. Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus L.). Drug Metab Dispos. 34(7):1152–1159.
  • Guo J, Xue C, Shang EX, Duan JA, Tang Y, Qian D. 2011. Identification of hyperoside metabolites in rat using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 879(21):1987–1992.
  • Guo XY, Yang L, Chen Y, Wang QF, Sun QS, Che YX, Che QM. 2011. Identification of the metabolites of baicalein in human plasma. J Asian Nat Prod Res. 13(9):861–868.
  • Ha SK, Lee JA, Cho EJ, Choi I. 2017. Effects of catechol O-methyl transferase inhibition on anti-inflammatory activity of luteolin metabolites. J Food Sci. 82(2):545–552.
  • Han H, Liu C, Gao W, Li Z, Qin G, Qi S, Jiang H, Li X, Liu M, Yan F, et al. 2021. Anthocyanins are converted into anthocyanidins and phenolic acids and effectively absorbed in the jejunum and ileum. J Agric Food Chem. 69(3):992–1002.
  • Hanske L, Loh G, Sczesny S, Blaut M, Braune A. 2009. The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr. 139(6):1095–1102.
  • Hanske L, Loh G, Sczesny S, Blaut M, Braune A. 2010. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol Nutr Food Res. 54(10):1405–1413.
  • Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY, Lobo J, Cooper B, Wu QL, Talcott ST, et al. 2013. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease. Faseb J. 27(2):769–781.
  • Hornedo-Ortega R, Alvarez-Fernandez MA, Cerezo AB, Richard T, Troncoso AMA, Garcia-Parrilla MAC. 2016. Protocatechuic acid: inhibition of fibril formation, destabilization of preformed fibrils of amyloid-β and α-synuclein, and neuroprotection. J Agric Food Chem. 64(41):7722–7732.
  • Hu G, Siu SO, Li S, Chu IK, Kwan YW, Chan SW, Leung GP, Yan R, Lee SM. 2012. Metabolism of calycosin, an isoflavone from Astragali Radix, in zebrafish larvae. Xenobiotica. 42(3):294–303.
  • Hu M, Krausz K, Chen J, Ge X, Li J, Gelboin HL, Gonzalez FJ. 2003. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab Dispos. 31(7):924–931.
  • Huang MC, Hsueh TY, Cheng YY, Lin LC, Tsai TH. 2018. Pharmacokinetics and biliary excretion of fisetin in rats. J Agric Food Chem. 66(25):6300–6307.
  • Hur H, Rafii F. 2000. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett. 192(1):21–25.
  • Ibrahim AR, Galal AM, Ahmed MS, Mossa GS. 2003. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chem Pharm Bull. 51(2):203–206.
  • Ichiyanagi T, Kashiwada Y, Shida Y, Sekiya M, Hatano Y, Takaishi Y, Ikeshiro Y. 2013. Structural elucidation and biological fate of two glucuronyl metabolites of pelargonidin 3-O-β-D-glucopyranoside in rats. J Agric Food Chem. 61(3):569–578.
  • Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T. 2005. Extended glucuronidation is another major path of cyanidin 3-O-beta-D-glucopyranoside metabolism in rats. J Agric Food Chem. 53(18):7312–7319.
  • Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Matsumoto H, Hirayama M, Konishi T. 2005. Metabolic pathway of cyanidin 3-O-beta-D-glucopyranoside in rats. J Agric Food Chem. 53(1):145–150.
  • Ishola IO, Osele MO, Chijioke MC, Adeyemi OO. 2019. Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: role of antioxidant defense, cholinergic and BDNF signaling. Brain Res. 1712:188–196.
  • Isobe T, Ohkawara S, Ochi S, Tanaka-Kagawa T, Hanioka N. 2019. S-equol glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Food Chem Toxicol. 131:110542.
  • Jeong H, Lee J, Kim S, Yeo YY, So H, Wu H, Song YS, Jang CY, Kim HD, Kim MJ, et al. 2018. Hepatic metabolism of sakuranetin and its modulating effects on cytochrome P450s and UDP-glucuronosyltransferases. Molecules. 23(7):1542.
  • Jiang S, Wang S, Dong P, Shi L, Li Q, Wei X, Gao P, Zhang J. 2021. A comprehensive profiling and identification of liquiritin metabolites in rats using ultra-high-performance liquid chromatography coupled with linear ion trap-orbitrap mass spectrometer. Xenobiotica. 51(5):518–564.
  • Jiang S, Yang J, Qian D, Guo J, Shang EX, Duan JA, Xu J. 2014. Rapid screening and identification of metabolites of quercitrin produced by the human intestinal bacteria using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Arch Pharm Res. 37(2):204–213.
  • Jiao Q, Xu L, Jiang L, Jiang Y, Zhang J, Liu B. 2020. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MS n. Xenobiotica. 50(11):1311–1322.
  • Jo JH, Jo JJ, Lee JM, Lee S. 2016. Identification of absolute conversion to geraldol from fisetin and pharmacokinetics in mouse. J Chromatogr B Analyt Technol Biomed Life Sci. 1038:95–100.
  • Kida K, Suzuki M, Matsumoto N, Nanjo F, Hara Y. 2000. Identification of biliary metabolites of (−)-epigallocatechin gallate in rats. J Agric Food Chem. 48(9):4151–4155.
  • Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 21(1):17–23.
  • Kim HJ, Yim SH, Han F, Kang BY, Choi HJ, Jung DW, Williams DR, Gustafson KR, Kennelly EJ, Lee IS. 2019. Biotransformed metabolites of the hop prenylflavanone isoxanthohumol. Molecules. 24(3):394.
  • Kim M, Han J. 2014. Chiroptical study and absolute configuration of (−)-O-DMA produced from daidzein metabolism. Chirality. 26(9):434–437.
  • Kim SK, Ko YH, Lee SY, Jang CG. 2020. Memory-enhancing effects of 7,3',4'-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Food Chem Toxicol. 137:111160.
  • Kim SK, Ko YH, Lee Y, Lee SY, Jang CG. 2021. Antineuroinflammatory effects of 7,3',4'-trihydroxyisoflavone in lipopolysaccharide-stimulated BV2 microglial cells through MAPK and NF-kappaB signaling suppression. Biomol Ther. 29(2):127–134.
  • Kładna A, Berczyński P, Kruk I, Piechowska T, Aboul-Enein HY. 2016. Studies on the antioxidant properties of some phytoestrogens. Luminescence. 31(6):1201–1206.
  • Ko YH, Kim SY, Lee SY, Jang CG. 2018. 6,7,4'-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur J Pharmacol. 826:140–147.
  • Ko YH, Kwon SH, Ma SX, Seo JY, Lee BR, Kim K, Kim SY, Lee SY, Jang CG. 2018. The memory-enhancing effects of 7,8,4'-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull. 142:197–206.
  • Koga N, Matsuo M, Ohta C, Haraguchi K, Matsuoka M, Kato Y, Ishii T, Yano M, Ohta H. 2007. Comparative study on nobiletin metabolism with liver microsomes from rats, guinea pigs and hamsters and rat cytochrome p450. Biol Pharm Bull. 30(12):2317–2323.
  • Kohri T, Matsumoto N, Yamakawa M, Suzuki M, Nanjo F, Hara Y, Oku N. 2001. Metabolic fate of (−)-[4-(3)H]epigallocatechin gallate in rats after oral administration. J Agric Food Chem. 49(8):4102–4112.
  • Kohri T, Nanjo F, Suzuki M, Seto R, Matsumoto N, Yamakawa M, Hojo H, Hara Y, Desai D, Amin S, et al. 2001. Synthesis of (-)-[4-3H]epigallocatechin gallate and its metabolic fate in rats after intravenous administration. J Agric Food Chem. 49(2):1042–1048.
  • Kohri T, Suzuki M, Nanjo F. 2003. Identification of metabolites of (−)-epicatechin gallate and their metabolic fate in the rat. J Agric Food Chem. 51(18):5561–5566.
  • Kupfer R, Swanson L, Chow S, Staub RE, Zhang YL, Cohen I, Christians U. 2008. Oxidative in vitro metabolism of liquiritigenin, a bioactive compound isolated from the Chinese herbal selective estrogen beta-receptor agonist MF101. Drug Metab Dispos. 36(11):2261–2269.
  • Kure A, Nakagawa K, Kondo M, Kato S, Kimura F, Watanabe A, Shoji N, Hatanaka S, Tsushida T, Miyazawa T. 2016. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect. J Agric Food Chem. 64(21):4246–4254.
  • Labib S, Hummel S, Richling E, Humpf HU, Schreier P. 2006. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds. Mol Nutr Food Res. 50(1):78–86.
  • Lee YK, Chin YW, Bae JK, Seo JS, Choi YH. 2013. Pharmacokinetics of isoliquiritigenin and its metabolites in rats: low bioavailability is primarily due to the hepatic and intestinal metabolism. Planta Med. 79(17):1656–1665.
  • Li HF, Li T, Yang P, Wang Y, Tang XJ, Liu LJ, Xu F, Shang MY, Liu GX, Li YL, et al. 2020. Global profiling and structural characterization of metabolites of ononin using HPLC-ESI-IT-TOF-MS(n) after oral administration to rats. J Agric Food Chem. 68(51):15164–15175.
  • Li S, Wang Z, Sang S, Huang MT, Ho CT. 2006. Identification of nobiletin metabolites in mouse urine. Mol Nutr Food Res. 50(3):291–299.
  • Li YF, Ren Q, Jin Y, Wu CS, Wang CH, Jia ZX, Zhang JL. 2014. Metabolic studies of four soy isoflavones in rats by HPLC-HR-MS. J Asian Nat Prod Res. 16(5):497–510.
  • Liang J, Xu F, Zhang YZ, Zang XY, Wang D, Shang MY, Wang X, Chui DH, Cai SQ. 2014. The profiling and identification of the metabolites of (+)-catechin and study on their distribution in rats by HPLC-DAD-ESI-IT-TOF-MS(n) technique. Biomed Chromatogr. 28(3):401–411.
  • Liang Y, Zhao W, Wang C, Wang Z, Wang Z, Zhang J. 2018. A comprehensive screening and identification of genistin metabolites in rats based on multiple metabolite templates combined with UHPLC-HRMS analysis. Molecules. 23(8):1862.
  • Liao M, Cheng X, Diao X, Sun Y, Zhang L. 2017. Metabolites identificaion of two bioactive constituents in Trollius ledebourii in rats using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 1068-1069:297–312.
  • Liao S, Ren Q, Yang C, Zhang T, Li J, Wang X, Qu X, Zhang X, Zhou Z, Zhang Z, et al. 2015. Liquid chromatography-tandem mass spectrometry determination and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. J Agric Food Chem. 63(7):1957–1966.
  • Liu F, Pei S, Li W, Wang X, Liang C, Yang R, Zhang Z, Yao X, Fang D, Xie S, et al. 2020. Characterization of formononetin sulfonation in SULT1A3 overexpressing HKE293 cells: involvement of multidrug resistance-associated protein 4 in excretion of sulfate. Front Pharmacol. 11:614756.
  • Liu Q, Shi Y, Wang Y, Lu J, Cong W, Luo G, Wang Y. 2009. Metabolism profile of scutellarin in urine following oral administration to rats by ultra performance liquid chromatography coupled to time-of-flight mass spectrometry. Talanta. 80(1):84–91.
  • Liu T, Zhang X, Zhang Y, Hou J, Fang D, Sun H, Li Q, Xie S. 2018. Sulfation disposition of liquiritigenin in SULT1A3 overexpressing HEK293 cells: The role of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 4 (MRP4) in sulfate efflux of liquiritigenin. Eur J Pharm Sci. 124:228–239.
  • Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. 2020. Reciprocal Interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro. J Agric Food Chem. 68(36):9804–9815.
  • Lu L, Qian D, Yang J, Jiang S, Guo J, Shang EX, Duan JA. 2013. Identification of isoquercitrin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Biomed Chromatogr. 27(4):509–514.
  • Luo CF, Cai B, Hou N, Yuan M, Liu SM, Ji H, Xiong LG, Xiong W, Luo JD, Chen MS. 2012. UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for puerarin metabolism in human liver microsomes. Arch Toxicol. 86(11):1681–1690.
  • Luo CF, Yuan M, Chen MS, Liu SM, Ji H. 2010. Metabolites of puerarin identified by liquid chromatography tandem mass spectrometry: similar metabolic profiles in liver and intestine of rats. J Chromatogr B Analyt Technol Biomed Life Sci. 878(3–4):363–370.
  • Marhol P, Bednář P, Kolářová P, Večeřa R, Ulrichová J, Tesařová E, Vavříková E, Kuzma M, Křen V. 2015. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J Funct Foods. 14:570–580.
  • Martinez SE, Davies NM. 2015. Enantiospecific pharmacokinetics of isoxanthohumol and its metabolite 8-prenylnaringenin in the rat. Mol Nutr Food Res. 59(9):1674–1689.
  • Matsumoto H, Ikoma Y, Sugiura M, Yano M, Hasegawa Y. 2004. Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. J Agric Food Chem. 52(21):6653–6659.
  • Matthies A, Loh G, Blaut M, Braune A. 2012. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr. 142(1):40–46.
  • Meng C, Liu R, Wang W, Guo W, Ma H, Xie S, Liu Y, Wang C. 2020. Metabolic profiling comparison of isovitexin in normal and kidney stone model rats by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Sep Sci. 43(12):2363–2379.
  • Meselhy MR, Nakamura N, Hattori M. 1997. Biotransformation of (−)-epicatechin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull (Tokyo). 45(5):888–893.
  • Mosele JI, Martin-Pelaez S, Macia A, Farras M, Valls RM, Catalan U, Motilva MJ. 2014. Study of the catabolism of thyme phenols combining in vitro fermentation and human intervention. J Agric Food Chem. 62(45):10954–10961.
  • Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M. 2020. Deglycosylation of the isoflavone C-glucoside puerarin by a combination of two recombinant bacterial enzymes and 3-oxo-glucose. Appl Environ Microbiol. 86(14):e00607-00620.
  • Nakamura T, Kinjo C, Nakamura Y, Kato Y, Nishikawa M, Hamada M, Nakajima N, Ikushiro S, Murota K. 2018. Lymphatic metabolites of quercetin after intestinal administration of quercetin-3-glucoside and its aglycone in rats. Arch Biochem Biophys. 645:126–136.
  • Nakano H, Ogura K, Takahashi E, Harada T, Nishiyama T, Muro K, Hiratsuka A, Kadota S, Watabe T. 2004. Regioselective monosulfation and disulfation of the phytoestrogens daidzein and genistein by human liver sulfotransferases. Drug Metab Pharmacokinet. 19(3):216–226.
  • Namken S, Songvut P, Nuengchamnong N, Kemthong T, Khemawoot P, Malaivijitnond S. 2021. Comparative pharmacokinetics of Puerarin alone and in Pueraria mirifica extract in female cynomolgus monkeys. Planta Med. 87(5):395–403.
  • Nectoux AM, Abe C, Huang SW, Ohno N, Tabata J, Miyata Y, Tanaka K, Tanaka T, Yamamura H, Matsui T. 2019. Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague-Dawley rats. J Agric Food Chem. 67(35):9812–9819.
  • Nguyen NA, Cao NT, Nguyen THH, Le TK, Cha GS, Choi SK, Pan JG, Yeom SJ, Kang HS, Yun CH. 2020. Regioselective hydroxylation of phloretin, a bioactive compound from apples, by human cytochrome P450 enzymes. Pharmaceuticals. 13(11):330.
  • Nikolic D, Li Y, Chadwick LR, Grubjesic S, Schwab P, Metz P, van Breemen RB. 2004. Metabolism of 8-prenylnaringenin, a potent phytoestrogen from hops (Humulus lupulus), by human liver microsomes. Drug Metab Dispos. 32(2):272–279.
  • Nikolic D, Li Y, Chadwick LR, Pauli GF, van Breemen RB. 2005. Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus lupulus L.), by human liver microsomes. J Mass Spectrom. 40(3):289–299.
  • Nikolic D, van Breemen RB. 2004. New metabolic pathways for flavanones catalyzed by rat liver microsomes. Drug Metab Dispos. 32(4):387–397.
  • Nookandeh A, Frank N, Steiner F, Ellinger R, Schneider B, Gerhauser C, Becker H. 2004. Xanthohumol metabolites in faeces of rats. Phytochemistry. 65(5):561–570.
  • Okello EJ, Leylabi R, McDougall GJ. 2012. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 3(6):651–661.
  • Orrego-Lagaron N, Vallverdu-Queralt A, Martinez-Huelamo M, Lamuela-Raventos RM, Escribano-Ferrer E. 2016. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS. J Pharm Biomed Anal. 120:38–45.
  • Ou K, Sarnoski P, Schneider KR, Song K, Khoo C, Gu L. 2014. Microbial catabolism of procyanidins by human gut microbiota. Mol Nutr Food Res. 58(11):2196–2205.
  • Paraiso IL, Plagmann LS, Yang L, Zielke R, Gombart AF, Maier CS, Sikora AE, Blakemore PR, Stevens JF. 2019. Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium Eubacterium ramulus. Mol Nutr Food Res. 63(2):e1800923.
  • Peng WX, Wang LS, Li HD, El-Aty AM, Chen GL, Zhou HH. 2003. Evidence for the involvement of human liver microsomes CYP1A2 in the mono-hydroxylation of daidzein. Clin Chim Acta. 334(1–2):77–85.
  • Prasain JK, Jones K, Brissie N, Moore R, Wyss JM, Barnes S. 2004. Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 52(12):3708–3712.
  • Qian J, Xie F, Shi Y, Li J, Zhang L, Li Y, Guo F, Wang R. 2018. Pharmacokinetic and metabolism studies of bavachinin through ultra-high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 32(10):e4293.
  • Qian Y, Jiang S, Zhu Z, Wang Q, Su S, Tao J, Duan JA. 2017. Simultaneous quantification and semi-quantification of amentoflavone and its metabolites in human intestinal bacteria by liquid chromatography Orbitrap high-resolution mass spectrometry. Biomed Chromatogr. 31(11):e3990.
  • Radominska A, Little J, Pyrek JS, Drake RR, Igari Y, Fournel-Gigleux S, Magdalou J, Burchell B, Elbein AD, Siest G. 1993. A novel UDP-Glc-specific glucosyltransferase catalyzing the biosynthesis of 6-O-glucosides of bile acids in human liver microsomes. J Biol Chem. 268(20):15127–15135.
  • Rimbach G, Pascual-Teresa S, Ewins BA, Matsugo S, Uchida Y, Minihane AM, Turner R, VafeiAdou K, Weinberg PD. 2003. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica. 33(9):913–925.
  • Rodriguez-Mateos A, Toro-Funes N, Cifuentes-Gomez T, Cortese-Krott M, Heiss C, Spencer JP. 2014. Uptake and metabolism of (−)-epicatechin in endothelial cells. Arch Biochem Biophys. 559:17–23.
  • Roubalová L, Purchartová K, Papoušková B, Vacek J, Křen V, Ulrichová J, Vrba J. 2015. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg Med Chem. 23(17):5402–5409.
  • Ruan JQ, Li S, Li YP, Wu WJ, Lee SM, Yan R. 2015. The presystemic interplay between gut microbiota and orally administered calycosin-7-O-beta-D-glucoside. Drug Metab Dispos. 43(10):1601–1611.
  • Ruan JQ, Yan R. 2014. Regioselective glucuronidation of the isoflavone calycosin by human liver microsomes and recombinant human UDP-glucuronosyltransferases. Chem Biol Interact. 220:231–240.
  • Ruefer CE, Gerhauser C, Frank N, Becker H, Kulling SE. 2005. In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol Nutr Food Res. 49(9):851–856.
  • Rufer CE, Glatt H, Kulling SE. 2006. Structural elucidation of hydroxylated metabolites of the isoflavan equol by gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry. Drug Metab Dispos. 34(1):51–60.
  • Rufer CE, Kulling SE. 2006. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem. 54(8):2926–2931.
  • Rufer CE, Maul R, Donauer E, Fabian EJ, Kulling SE. 2007. In vitro and in vivo metabolism of the soy isoflavone glycitein. Mol Nutr Food Res. 51(7):813–823.
  • Sawmiller D, Habib A, Li S, Darlington D, Hou H, Tian J, Shytle RD, Smith A, Giunta B, Mori T, et al. 2016. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol. 299:98–106.
  • Schantz M, Erk T, Richling E. 2010. Metabolism of green tea catechins by the human small intestine. Biotechnol J. 5(10):1050–1059.
  • Schmitt S, Tratzka S, Schieber A, Passon M. 2019. Hemisynthesis of anthocyanin phase II metabolites by porcine liver enzymes. J Agric Food Chem. 67(22):6177–6189.
  • Schoefer L, Mohan R, Braune A, Birringer M, Blaut M. 2002. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol Lett. 208(2):197–202.
  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ. 2001. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J. 358(Pt 3):547–557.
  • Schwen RJ, Nguyen L, Jackson RL. 2012. Elucidation of the metabolic pathway of S-equol in rat, monkey and man. Food Chem Toxicol. 50(6):2074–2083.
  • Shi P, Lin X, Yao H. 2015. Metabolism and plasma pharmacokinetics of isoorientin, a natural active ingredient, in Sprague-Dawley male rats after oral and intravenous administration. Xenobiotica. 45(11):999–1008.
  • Shia CS, Tsai SY, Kuo SC, Hou YC, Chao PD. 2009. Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J Agric Food Chem. 57(1):83–89.
  • Shimohira T, Kurogi K, Hashiguchi T, Liu MC, Suiko M, Sakakibara Y. 2017. Regioselective production of sulfated polyphenols using human cytosolic sulfotransferase-expressing Escherichia coli cells. J Biosci Bioeng. 124(1):84–90.
  • Shishtar E, Rogers GT, Blumberg JB, Au R, Jacques PF. 2020. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham offspring cohort. Am J Clin Nutr. 112(2):343–353.
  • Silvestro L, Tarcomnicu I, Dulea C, Attili NR, Ciuca V, Peru D, Rizea Savu S. 2013. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry. Anal Bioanal Chem. 405(25):8295–8310.
  • Simons AL, Renouf M, Hendrich S, Murphy PA. 2005. Metabolism of glycitein (7,4'-dihydroxy-6-methoxy-isoflavone) by human gut microflora. J Agric Food Chem. 53(22):8519–8525.
  • Spencer JP, Schroeter H, Crossthwaithe AJ, Kuhnle G, Williams RJ, Rice-Evans C. 2001. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radic Biol Med. 31(9):1139–1146.
  • Stoupi S, Williamson G, Viton F, Barron D, King LJ, Brown JE, Clifford MN. 2010. In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. Drug Metab Dispos. 38(2):287–291.
  • Su S, Wang Y, Bai L, Xia B, Li X, Tang Y, Xu P, Xue M. 2015. Structural elucidation of in vivo metabolites of isobavachalcone in rat by LC-ESI-MS(n) and LC-NMR. J Pharm Biomed Anal. 104:38–46.
  • Sun E, Xu F, Qian Q, Cui L, Tan X, Jia X. 2014. Ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry analysis of icariside II metabolites in rats. Nat Prod Res. 28(19):1525–1529.
  • Sun H, Wang X, Zhou X, Lu D, Ma Z, Wu B. 2015. Multidrug resistance-associated protein 4 (MRP4/ABCC4) controls efflux transport of hesperetin sulfates in sulfotransferase 1A3-overexpressing human embryonic kidney 293 cells. Drug Metab Dispos. 43(10):1430–1440.
  • Takagaki A, Nanjo F. 2010. Metabolism of (−)-epigallocatechin gallate by rat intestinal flora. J Agric Food Chem. 58(2):1313–1321.
  • Takagaki A, Otani S, Nanjo F. 2011. Antioxidative activity of microbial metabolites of (-)-epigallocatechin gallate produced in rat intestines. Biosci Biotechnol Biochem. 75(3):582–585.
  • Tang J, Guo J, Fan J, Qian C, Tao F, Zhou X, Wu X, Sun Y, Li J, Shen Y, et al. 2013. Metabolite profiling of astilbin in rat sera using UPLC/MS(E) and impact of its metabolites on immunosuppressive activity. J Chromatogr B Analyt Technol Biomed Life Sci. 929:56–62.
  • Tao JH, Duan JA, Jiang S, Qian YY, Qian DW. 2016. Biotransformation and metabolic profile of buddleoside with human intestinal microflora by ultrahigh-performance liquid chromatography coupled to hybrid linear ion trap/orbitrap mass spectrometer. J Chromatogr B Analyt Technol Biomed Life Sci. 1025:7–15.
  • Tarozzi A, Morroni F, Hrelia S, Angeloni C, Marchesi A, Cantelli-Forti G, Hrelia P. 2007. Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett. 424(1):36–40.
  • Tolleson WH, Doerge DR, Churchwell MI, Marques MM, Roberts DW. 2002. Metabolism of biochanin A and formononetin by human liver microsomes in vitro. J Agric Food Chem. 50(17):4783–4790.
  • Touil YS, Auzeil N, Boulinguez F, Saighi H, Regazzetti A, Scherman D, Chabot GG. 2011. Fisetin disposition and metabolism in mice: identification of geraldol as an active metabolite. Biochem Pharmacol. 82(11):1731–1739.
  • Trinh HT, Joh EH, Kwak HY, Baek NI, Kim DH. 2010. Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice. Acta Pharmacol Sin. 31(6):718–724.
  • Turner R, Baron T, Wolffram S, Minihane AM, Cassidy A, Rimbach G, Weinberg PD. 2004. Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein. Free Radic Res. 38(2):209–216.
  • Unno K, Pervin M, Nakagawa A, Iguchi K, Hara A, Takagaki A, Nanjo F, Minami A, Nakamura Y. 2017. Blood-brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells. Mol Nutr Food Res. 61(12):10.
  • Unno T, Tamemoto K, Yayabe F, Kakuda T. 2003. Urinary excretion of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, a ring-fission metabolite of (−)-epicatechin, in rats and its in vitro antioxidant activity. J Agric Food Chem. 51(23):6893–6898.
  • Vacek J, Papoušková B, Kosina P, Vrba J, Křen V, Ulrichová J. 2012. Biotransformation of flavonols and taxifolin in hepatocyte in vitro systems as determined by liquid chromatography with various stationary phases and electrospray ionization-quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 899:109–115.
  • Valentova K, Havlik J, Kosina P, Papouskova B, Jaimes JD, Kanova K, Petraskova L, Ulrichova J, Kren V. 2020. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites. 10(1):29.
  • Valentova K, Purchartova K, Rydlova L, Roubalova L, Biedermann D, Petraskova L, Krenkova A, Pelantova H, Holeckova-Moravcova V, Tesarova E. 2018. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: preparation and properties. Int J Mol Sci. 19(8):2349.
  • Vollmer M, Esders S, Farquharson FM, Neugart S, Duncan SH, Schreiner M, Louis P, Maul R, Rohn S. 2018. Mutual interaction of phenolic compounds and microbiota: metabolism of complex phenolic apigenin-C- and kaempferol-O-derivatives by human fecal samples. J Agric Food Chem. 66(2):485–497.
  • Vrba J, Papouskova B, Kosina P, Lnenickova K, Valentova K, Ulrichova J. 2020. Identification of human sulfotransferases active towards silymarin flavonolignans and taxifolin. Metabolites. 10(8):329.
  • Vrba J, Papoušková B, Lněničková K, Kosina P, Křen V, Ulrichová J. 2020. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J Pharm Biomed Anal. 178:112972.
  • Vrba J, Papoušková B, Roubalová L, Zatloukalová M, Biedermann D, Křen V, Valentová K, Ulrichová J, Vacek J. 2018. Metabolism of flavonolignans in human hepatocytes. J Pharm Biomed Anal. 152:94–101.
  • Wang AX, Hu Y, Liu HX, Qi XY, Liu Y, Tu CX, Yang L. 2011. C5-hydroxylation of liquiritigenin is catalyzed selectively by CYP1A2. Xenobiotica. 41(5):349–357.
  • Wang B, Lu Y, Hu X, Feng J, Shen W, Wang R, Wang H. 2020. Systematic strategy for metabolites of amentoflavone in vivo and in vitro based on UHPLC-Q-TOF-MS/MS analysis. J Agric Food Chem. 68(50):14808–14823.
  • Wang B, Lu Y, Wang R, Liu S, Hu X, Wang H. 2020. Transport and metabolic profiling studies of amentoflavone in Caco-2 cells by UHPLC-ESI-MS/MS and UHPLC-ESI-Q-TOF-MS/MS. J Pharm Biomed Anal. 189:113441.
  • Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, Cooper BR, Jannasch AH, D'Arcy BR, Williams BA, et al. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization. Mol Nutr Food Res. 59(6):1025–1040.
  • Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GAN, Raftery D, Arrieta-Cruz I, et al. 2012. Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. J Neurosci. 32(15):5144–5150.
  • Wang L, Chen Q, Zhu L, Li Q, Zeng X, Lu L, Hu M, Wang X, Liu Z. 2017. Metabolic disposition of luteolin is mediated by the interplay of UDP-glucuronosyltransferases and catechol-O-methyltransferases in rats. Drug Metab Dispos. 45(3):306–315.
  • Wang L, Chen Q, Zhu L, Zeng X, Li Q, Hu M, Wang X, Liu Z. 2018. Simultaneous determination of tilianin and its metabolites in mice using ultra-high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Biomed Chromatogr. 32(4):e4139.
  • Wang Q, Qian Y, Wang Q, Yang YF, Ji S, Song W, Qiao X, Guo DA, Liang H, Ye M. 2015. Metabolites identification of bioactive licorice compounds in rats. J Pharm Biomed Anal. 115:515–522.
  • Wang T, Feng X, Ding L, Wang K, Qiao M, Chai L, Li Y, Qiu F. 2019. Metabolic profiling of icariin in rat feces, urine, bile and plasma after oral administration using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal. 168:155–162.
  • Wang X, Zhou H, Zeng S. 2012. Identification and assay of 3'-O-methyltaxifolin by UPLC-MS in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 911:34–42.
  • Wang Y, Wang Y, Li J, Hua L, Han B, Zhang Y, Yang X, Zeng Z, Bai H, Yin H, et al. 2016. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease. Int J Mol Med. 38(3):869–875.
  • Wang Z, Gao Z, Wang A, Jia L, Zhang X, Fang M, Yi K, Li Q, Hu H. 2019. Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase II metabolism. Food Funct. 10(3):1582–1594.
  • Weinert CH, Wiese S, Rawel HM, Esatbeyoglu T, Winterhalter P, Homann T, Kulling SE. 2012. Methylation of catechins and procyanidins by rat and human catechol-O-methyltransferase: metabolite profiling and molecular modeling studies. Drug Metab Dispos. 40(2):353–359.
  • Wen XD, Qi LW, Li B, Li P, Yi L, Wang YQ, Liu EH, Yang XL. 2009. Microsomal metabolism of calycosin, formononetin and drug-drug interactions by dynamic microdialysis sampling and HPLC-DAD-MS analysis. J Pharm Biomed Anal. 50(1):100–105.
  • Westerink WM, Schoonen WG. 2007. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol in Vitro. 21(8):1592–1602.
  • Wiese S, Esatbeyoglu T, Winterhalter P, Kruse HP, Winkler S, Bub A, Kulling SE. 2015. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans. Mol Nutr Food Res. 59(4):610–621.
  • Wilsher NE, Arroo RR, Matsoukas MT, Tsatsakis AM, Spandidos DA, Androutsopoulos VP. 2017. Cytochrome P450 CYP1 metabolism of hydroxylated flavones and flavonols: selective bioactivation of luteolin in breast cancer cells. Food Chem Toxicol. 110:383–394.
  • Woodward GM, Needs PW, Kay CD. 2011. Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation. Mol Nutr Food Res. 55(3):378–386.
  • Wu H, Kim M, Han J. 2016. Icariin metabolism by human intestinal microflora. Molecules. 21(9):1158.
  • Wu L, Liu J, Han W, Zhou X, Yu X, Wei Q, Liu S, Tang L. 2015. Time-dependent metabolism of luteolin by human UDP-glucuronosyltransferases and its intestinal first-pass glucuronidation in mice. J Agric Food Chem. 63(39):8722–8733.
  • Xia H, Qiu F, Zhu S, Zhang T, Qu G, Yao X. 2007. Isolation and identification of ten metabolites of breviscapine in rat urine. Biol Pharm Bull. 30(7):1308–1316.
  • Xiao Y, Hu Z, Yin Z, Zhou Y, Liu T, Zhou X, Chang D. 2017. Profiling and distribution of metabolites of procyanidin B2 in mice by UPLC-DAD-ESI-IT-TOF-MSn technique. Front Pharmacol. 8:231.
  • Xie F, Du G, Ma S, Li Y, Wang R, Guo F. 2016. Structural elucidation of in vitro metabolites of bavachinin in rat liver microsomes by LC-ESI-MSn and chemical synthesis. Xenobiotica. 46(4):296–306.
  • Xu H, Kulkarni KH, Singh R, Yang Z, Wang SW, Tam VH, Hu M. 2009. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharmaceutics. 6(6):1703–1715.
  • Xu S, Yu J, Zhan J, Yang L, Guo L, Xu Y. 2017. Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. Biomed Res Int. 2017:4684962.
  • Xu TT, Yang XW, Wang B, Xu W, Zhao YY, Zhang QY. 2009. Metabolism of hibifolin by human intestinal bacteria. Planta Med. 75(5):483–487.
  • Yang EJ, Kim M, Woo JE, Lee T, Jung JW, Song KS. 2016. The comparison of neuroprotective effects of isoliquiritigenin and its phase I metabolites against glutamate-induced HT22 cell death. Bioorg Med Chem Lett. 26(23):5639–5643.
  • Yang J, Qian D, Jiang S, Shang EX, Guo J, Duan JA. 2012. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 898:95–100.
  • Yang P, Xu F, Li HF, Wang Y, Li FC, Shang MY, Liu GX, Wang X, Cai SQ. 2016. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MS(n). Molecules. 21(9):1209.
  • Yasuda T, Kano Y, Saito K, Ohsawa K. 1995. Urinary and biliary metabolites of puerarin in rats. Biol Pharm Bull. 18(2):300–303.
  • Yasuda T, Ueda J, Ohsawa K. 2001. Urinary metabolites of genistein administered orally to rats. Chem Pharm Bull. 49(11):1495–1497.
  • Yasuda T, Yoshimura Y, Yabuki H, Nakazawa T, Ohsawa K, Mimaki Y, Sashida Y. 2003. Urinary metabolites of nobiletin orally administered to rats. Chem Pharm Bull. 51(12):1426–1428.
  • Yeh SL, Lin YC, Lin YL, Li CC, Chuang CH. 2016. Comparing the metabolism of quercetin in rats, mice and gerbils. Eur J Nutr. 55(1):413–422.
  • Yilmazer M, Stevens JF, Deinzer ML, Buhler DR. 2001. In vitro biotransformation of xanthohumol, a flavonoid from hops (Humulus lupulus), by rat liver microsomes. Drug Metab Dispos. 29(3):223–231.
  • Yin J, Ma Y, Liang C, Gao J, Wang H, Zhang L. 2019. A systematic study of the metabolites of dietary acacetin in vivo and in vitro based on UHPLC-Q-TOF-MS/MS analysis. J Agric Food Chem. 67(19):5530–5543.
  • Yin J, Zhang X, Zhang Y, Ma Y, Li L, Li D, Zhang L, Zhang Z. 2019. Comprehensive study of the in vivo and in vitro metabolism of dietary isoflavone biochanin a based on UHPLC-Q-TOF-MS/MS. J Agric Food Chem. 67(45):12481–12495.
  • Zeng X, Su W, Zheng Y, He Y, He Y, Rao H, Peng W, Yao H. 2019. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front Pharmacol. 10:34.
  • Zhang J, Cai W, Zhou Y, Liu Y, Wu X, Li Y, Lu J, Qiao Y. 2015. Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. J Chromatogr B Analyt Technol Biomed Life Sci. 985:91–102.
  • Zhang L, Lin G, Zuo Z. 2007. Involvement of UDP-glucuronosyltransferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein. Pharm Res. 24(1):81–89.
  • Zhang L, Wang C-x, Wu J, Wang T-Y, Zhong Q-Q, Du Y, Ji S, Wang L, Guo M-Z, Xu S-Q, et al. 2020. Metabolic profiling of mice plasma, bile, urine and feces after oral administration of two licorice flavonones. J Ethnopharmacol. 257:112892.
  • Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. 2017. Sulfonation disposition of acacetin: in vitro and in vivo. J Agric Food Chem. 65(24):4921–4931.
  • Zhang R, Cui Y, Wang Y, Tian X, Zheng L, Cong H, Wu B, Huo X, Wang C, Zhang B, et al. 2017. Catechol-O-methyltransferase and UDP-glucuronosyltransferases in the metabolism of baicalein in different species. Eur J Drug Metab Pharmacokinet. 42(6):981–992.
  • Zhang W, Jiang S, Qian D, Shang EX, Duan JA. 2014a. Analysis of interaction property of calycosin-7-O-β-D-glucoside with human gut microbiota. J Chromatogr B Analyt Technol Biomed Life Sci. 963:16–23.
  • Zhang W, Jiang S, Qian D, Shang EX, Duan JA. 2014b. Effect of liquiritin on human intestinal bacteria growth: metabolism and modulation. Biomed Chromatogr. 28(9):1271–1277.
  • Zhang W, Li NG, Tang YP, Dong ZX, Gu T, Wu WY, Zhang PX, Yu SP, Duan JA, Shi ZH. 2016. Investigation of 6-O-methyl-scutellarein metabolites in rats by ultra-flow liquid chromatography/quadrupole-time-of-flight mass spectrometry. Pharm Biol. 54(10):2158–2167.
  • Zhang X, Yin J, Liang C, Sun Y, Zhang L. 2017. UHPLC-Q-TOF-MS/MS method based on four-step strategy for metabolism study of fisetin in vitro and in vivo. J Agric Food Chem. 65(50):10959–10972.
  • Zhang Y, Que S, Yang X, Wang B, Qiao L, Zhao Y. 2007. Isolation and identification of metabolites from dihydromyricetin. Magn Reson Chem. 45(11):909–916.
  • Zhang YZ, Xu F, Dong J, Liang J, Hashi Y, Shang MY, Yang DH, Wang X, Cai SQ. 2012. Profiling and identification of the metabolites of calycosin in rat hepatic 9000 × g supernatant incubation system and the metabolites of calycosin-7-O-β-D-glucoside in rat urine by HPLC-DAD-ESI-IT-TOF-MS(n) technique. J Pharm Biomed Anal. 70:425–439.
  • Zhao M, Xu J, Qian D, Guo J, Jiang S, Shang EX, Duan JA. 2014. Identification of astilbin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Biomed Chromatogr. 28(7):1024–1029.
  • Zhao W, Shang Z, Li Q, Huang M, He W, Wang Z, Zhang J. 2018. Rapid screening and identification of daidzein metabolites in rats based on UHPLC-LTQ-Orbitrap mass spectrometry coupled with data-mining technologies. Molecules. 23(1):151.
  • Zheng D, Sun CC, Su H, Zhang QF. 2019. Metabolism, excretion, and tissue distribution of Astilbin-Zein nanoparticles in rats. J Agric Food Chem. 67(30):8332–8338.
  • Zheng L, Zhu L, Zhao M, Shi J, Li Y, Yu J, Jiang H, Wu J, Tong Y, Liu Y, et al. 2016. In Vivo Exposure of kaempferol is driven by phase II metabolic enzymes and efflux transporters. AAPS J. 18(5):1289–1299.
  • Zhi H, Yuan Y, Zhang C, Jiang Y, Zhang H, Wang C, Ruan J. 2020. Importance of OATP1B1 and 1B3 in the liver uptake of luteolin and its consequent glucuronidation metabolites. J Agric Food Chem. 68(7):2063–2070.
  • Zhou J, Chen Y, Wang Y, Gao X, Qu D, Liu C. 2013. A comparative study on the metabolism of Epimedium koreanum Nakai-prenylated flavonoids in rats by an intestinal enzyme (lactase phlorizin hydrolase) and intestinal flora. Molecules. 19(1):177–203.
  • Zhou XW, Zhang Z, Su CF, Lv RH, Zhou X, Cai L, Wang CY, Yan L, Zhang W, Luo HM. 2013. Methyl 3,4-dihydroxybenzoate protects primary cortical neurons against Aβ25-35-induced neurotoxicity through mitochondria pathway. J Neurosci Res. 91(9):1215–1225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.