794
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation

, , , &
Pages 161-193 | Received 15 Dec 2021, Accepted 26 Mar 2022, Published online: 22 Apr 2022

References

  • Abolhasani MH, Safavi M, Goodarzi MT, Kassaee SM, Azin M. 2018. Identification and anti-cancer activity in 2D and 3D cell culture evaluation of an Iranian isolated marine microalgae Picochlorum sp. RCC486. Daru. 26(2):105–116.
  • Adam J, Pichler WJ, Yerly D. 2011. Delayed drug hypersensitivity: models of T-cell stimulation. Br J Clin Pharmacol. 71(5):701–707.
  • Aisenbrey EA, Murphy WL. 2020. Synthetic alternatives to Matrigel. Nat Rev Mater. 5(7):539–551.
  • Albrecht W, Kappenberg F, Brecklinghaus T, Stoeber R, Marchan R, Zhang M, Ebbert K, Kirschner H, Grinberg M, Leist M, et al. 2019. Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol. 93(6):1609–1637.
  • Aleo MD, Shah F, Allen S, Barton HA, Costales C, Lazzaro S, Leung L, Nilson A, Obach RS, Rodrigues AD, et al. 2020. Moving beyond binary predictions of human drug-induced liver injury (DILI) toward contrasting relative risk potential. Chem Res Toxicol. 33(1):223–238.
  • Ali SE, Waddington JC, Park BK, Meng X. 2020. Definition of the chemical and immunological signals involved in drug-induced liver injury. Chem Res Toxicol. 33(1):61–76.
  • Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N, et al. 2019. Drug-induced liver injury. Nat Rev Dis Primers. 5(1):58.
  • Anthérieu S, Chesné C, Li R, Camus S, Lahoz A, Picazo L, Turpeinen M, Tolonen A, Uusitalo J, Guguen-Guillouzo C, et al. 2010. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos. 38(3):516–525.
  • Anthérieu S, Rogue A, Fromenty B, Guillouzo A, Robin MA. 2011. Induction of vesicular steatosis by amiodarone and tetracycline is associated with up-regulation of lipogenic genes in HepaRG cells. Hepatology. 53(6):1895–1905.
  • Atienzar FA, Blomme EA, Chen M, Hewitt P, Kenna JG, Labbe G, Moulin F, Pognan F, Roth AB, Suter-Dick L, et al. 2016. Key challenges and opportunities associated with the use of in vitro models to detect human DILI: integrated risk assessment and mitigation plans. Biomed Res Int. 2016:9737920.
  • Atienzar FA, Novik EI, Gerets HH, Parekh A, Delatour C, Cardenas A, MacDonald J, Yarmush ML, Dhalluin S. 2014. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol Appl Pharmacol. 275(1):44–61.
  • Au JS, Navarro VJ, Rossi S. 2011. Review article: drug-induced liver injury-its pathophysiology and evolving diagnostic tools. Aliment Pharmacol Ther. 34(1):11–20.
  • Bakherad Z, Safavi M, Fassihi A, Sadeghi-Aliabadi H, Bakherad M, Rastegar H, Saeedi M, Ghasemi JB, Saghaie L, Mahdavi M. 2019. Design and synthesis of novel cytotoxic indole-thiosemicarbazone derivatives: biological evaluation and docking study. Chem Biodivers. 16(4):e1800470.
  • Barquilha CN, Santos NJ, Monção CCD, Barbosa IC, Lima FO, Justulin LA, Pértega-Gomes N, Felisbino SL. 2020. Sulfiredoxin as a potential therapeutic target for advanced and metastatic prostate cancer. Oxid Med Cell Longev. 2020:2148562.
  • Basharat A, Rollison HE, Williams DP, Ivanov DP. 2020. HepG2 (C3A) spheroids show higher sensitivity compared to HepaRG spheroids for drug-induced liver injury (DILI). Toxicol Appl Pharmacol. 408:115279.
  • Beheshti F, Shabani AA, Akbari Eidgahi MR, Kookhaei P, Vazirian M, Safavi M. 2021. Anticancer activity of Ipomoea purpurea leaves extracts in monolayer and three-dimensional cell culture. Evid Based Complement Alternat Med. 2021:6666567.
  • Bell CC, Dankers ACA, Lauschke VM, Sison-Young R, Jenkins R, Rowe C, Goldring CE, Park K, Regan SL, Walker T, et al. 2018. Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci. 162(2):655–666.
  • Bell CC, Hendriks DFG, Moro SML, Ellis E, Walsh J, Renblom A, Fredriksson Puigvert L, Dankers ACA, Jacobs F, Snoeys J, et al. 2016. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 6:25187–25187.
  • Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A, Shun T, Vernetti LA, Gough A. 2021. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 450:152667.
  • Björnsson ES, Hoofnagle JH. 2016. Categorization of drugs implicated in causing liver injury: critical assessment based on published case reports. Hepatology. 63(2):590–603.
  • Burkard A, Dähn C, Heinz S, Zutavern A, Sonntag-Buck V, Maltman D, Przyborski S, Hewitt NJ, Braspenning J. 2012. Generation of proliferating human hepatocytes using Upcyte® technology: characterisation and applications in induction and cytotoxicity assays. Xenobiotica. 42(10):939–956.
  • Chao P, Maguire T, Novik E, Cheng KC, Yarmush ML. 2009. Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem Pharmacol. 78(6):625–632.
  • Chatterjee S, Richert L, Augustijns P, Annaert P. 2014. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis. Toxicol Appl Pharmacol. 274(1):124–136.
  • Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W. 2014. Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med. 8(2):201–213.
  • Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. 2015. Drug-induced liver injury: interactions between drug properties and host factors. J Hepatol. 63(2):503–514.
  • Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W. 2016. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today. 21(4):648–653.
  • Chen S, Xuan J, Couch L, Iyer A, Wu Y, Li QZ, Guo L. 2014. Sertraline induces endoplasmic reticulum stress in hepatic cells. Toxicology. 322:78–88.
  • Chen S, Zhang Z, Wu Y, Shi Q, Yan H, Mei N, Tolleson WH, Guo L. 2015. Endoplasmic reticulum stress and store-operated calcium entry contribute to usnic acid-induced toxicity in hepatic cells. Toxicol Sci. 146(1):116–126.
  • Chen X, Tharmanathan T, Mannargudi B, Gou H, Uetrecht JP. 2009. A study of the specificity of lymphocytes in nevirapine-induced skin rash. J Pharmacol Exp Ther. 331(3):836–841.
  • Cohen JI, Chen X, Nagy LE. 2011. Redox signaling and the innate immune system in alcoholic liver disease. Antioxid Redox Signal. 15(2):523–534.
  • Collins SJ, Gallo RC, Gallagher RE. 1977. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 270(5635):347–349.
  • Cox CR, Lynch S, Goldring C, Sharma P. 2020. Current perspective: 3D spheroid models utilizing human-based cells for investigating metabolism-dependent drug-induced liver injury. Front Med Technol. 2(14):611913.
  • Dash A, Simmers MB, Deering TG, Berry DJ, Feaver RE, Hastings NE, Pruett TL, LeCluyse EL, Blackman BR, Wamhoff BR. 2013. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro. Am J Physiol Cell Physiol. 304(11):C1053–C1063.
  • Davidson MD, Kukla DA, Khetani SR. 2017. Microengineered cultures containing human hepatic stellate cells and hepatocytes for drug development. Integr Biol (Camb). 9(8):662–677.
  • Davidson MD, Pickrell J, Khetani SR. 2021. Physiologically inspired culture medium prolongs the lifetime and insulin sensitivity of human hepatocytes in micropatterned co-cultures. Toxicology. 449:152662.
  • Dawson S, Stahl S, Paul N, Barber J, Kenna JG. 2012. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos. 40(1):130–138.
  • De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. 2013. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 9(5):589–616.
  • Donaldson PT, Daly AK, Henderson J, Graham J, Pirmohamed M, Bernal W, Day CP, Aithal GP. 2010. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol. 53(6):1049–1053.
  • Donato M, Tolosa L. 2021. High-content screening for the detection of drug-induced oxidative stress in liver cells. Antioxidants (Basel, Switzerland). 10(1):106.
  • Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. 2017. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 32(4):266–277.
  • Ebrahimkhani MR, Neiman JAS, Raredon MSB, Hughes DJ, Griffith LG. 2014. Bioreactor technologies to support liver function in vitro. Adv Drug Deliv Rev. 69-70:132–157.
  • Faulkner L, Martinsson K, Santoyo-Castelazo A, Cederbrant K, Schuppe-Koistinen I, Powell H, Tugwood J, Naisbitt DJ, Park BK. 2012. The development of in vitro culture methods to characterize primary T-cell responses to drugs. Toxicol Sci. 127(1):150–158.
  • FDA. 2020. P450 enzyme-and transporter-mediated drug interactions guidance for industry. [accessed 2021]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions.
  • Foster AJ, Chouhan B, Regan SL, Rollison H, Amberntsson S, Andersson LC, Srivastava A, Darnell M, Cairns J, Lazic SE, et al. 2019. Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch Toxicol. 93(4):1021–1037.
  • Fowler S, Zhang H. 2008. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug-drug interactions. Aaps J. 10(2):410–424.
  • Frazier JM. 1994. The role of mechanistic toxicology in test method validation. Toxicol In Vitro. 8(4):787–791.
  • Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A. 2014. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun. 5:4250.
  • Fu GB, Huang WJ, Zeng M, Zhou X, Wu HP, Liu CC, Wu H, Weng J, Zhang HD, Cai YC, et al. 2019. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res. 29(1):8–22.
  • Funk C, Roth A. 2017. Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol. 91(1):131–142.
  • Garside H, Marcoe KF, Chesnut-Speelman J, Foster AJ, Muthas D, Kenna JG, Warrior U, Bowes J, Baumgartner J. 2014. Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2 cells and cryopreserved primary human hepatocytes. Toxicol In Vitro. 28(2):171–181.
  • Gaskell H, Sharma P, Colley HE, Murdoch C, Williams DP, Webb SD. 2016. Characterization of a functional C3A liver spheroid model. Toxicol Res (Camb). 5(4):1053–1065.
  • George N, Chen M, Yuen N, Hunt CM, Suzuki A. 2018. Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury. Regul Toxicol Pharm. 94:101–107.
  • Gerets HHJ, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA. 2012. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 28(2):69–87.
  • Giraudi PJ, Becerra VJ, Marin V, Chavez-Tapia NC, Tiribelli C, Rosso N. 2015. The importance of the interaction between hepatocyte and hepatic stellate cells in fibrogenesis induced by fatty accumulation. Exp Mol Pathol. 98(1):85–92.
  • Glavinas H, Méhn D, Jani M, Oosterhuis B, Herédi-Szabó K, Krajcsi P. 2008. Utilization of membrane vesicle preparations to study drug-ABC transporter interactions. Expert Opin Drug Metab Toxicol. 4(6):721–732.
  • Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, et al. 2013. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 87(8):1315–1530.
  • Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. 2014. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol. 10(11):1553–1568.
  • Gómez-Lechón MJ, Tolosa L, Donato MT. 2016. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol. 36(6):752–768.
  • Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ. 2010. Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol. 23(7):1215–1222.
  • Griesinger C, Desprez B, Coecke S, Casey W, Zuang V. 2016. Validation of alternative in vitro methods to animal testing: concepts, challenges, processes and tools. Adv Exp Med Biol. 856:65–132.
  • Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F. 2013. 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci. 133(1):67–78.
  • Guo L, Dial S, Shi L, Branham W, Liu J, Fang JL, Green B, Deng H, Kaput J, Ning B. 2011. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos. 39(3):528–538.
  • Gupta R, Schrooders Y, Hauser D, van Herwijnen M, Albrecht W, Ter Braak B, Brecklinghaus T, Castell JV, Elenschneider L, Escher S, et al. 2021. Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Arch Toxicol. 95(2):573–589.
  • Gustafsson F, Foster AJ, Sarda S, Bridgland-Taylor MH, Kenna JG. 2014. A correlation between the in vitro drug toxicity of drugs to cell lines that express human P450s and their propensity to cause liver injury in humans. Toxicol Sci. 137(1):189–211.
  • Hafey MJ, Houle R, Tanis KQ, Knemeyer I, Shang J, Chen Q, Baudy A, Monroe J, Sistare FD, Evers R. 2020. A two-tiered in vitro approach to de-risk drug candidates for potential bile salt export pump inhibition liabilities in drug discovery. Drug Metab Dispos. 48(11):1147–1160.
  • Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ, Liu ZX, Kaplowitz N. 2013. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci. 34(4):243–253.
  • Harada K, Kohara H, Yukawa T, Matsumiya K, Shinozawa T. 2021. Cell-based high-throughput screening for the evaluation of reactive metabolite formation potential. Toxicol in Vitro. 74:105159.
  • Harris AJ, Dial SL, Casciano DA. 2004. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mutat Res. 549(1–2):79–99.
  • Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB. 2010. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos. 38(6):988–994.
  • Hartung T, Daston G. 2009. Are in vitro tests suitable for regulatory use? Toxicol Sci. 111(2):233–237.
  • Hewitt NJ, Hewitt P. 2004. Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica. 34(3):243–256.
  • Hiemstra S, Ramaiahgari SC, Wink S, Callegaro G, Coonen M, Meerman J, Jennen D, van den Nieuwendijk K, Dankers A, Snoeys J, et al. 2019. High-throughput confocal imaging of differentiated 3D liver-like spheroid cellular stress response reporters for identification of drug-induced liver injury liability. Arch Toxicol. 93(10):2895–2911.
  • Holt M, Ju C. 2010. Drug-induced liver injury. Part of the Handbook of Experimental Pharmacology book series; vol. 03–27.
  • Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP, Simeonov A. 2016. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun. 7:10425.
  • Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, Miles JJ, Kjer-Nielsen L, Gras S, Williamson NA, et al. 2012. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 486(7404):554–558.
  • Jaeschke H, McGill MR, Ramachandran A. 2012. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev. 44(1):88–106.
  • Jamali T, Kavoosi G, Safavi M, Ardestani SK. 2018. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci Rep. 8(1):15787.
  • Jiang J, Wolters JE, van Breda SG, Kleinjans JC, de Kok TM. 2015. Development of novel tools for the in vitro investigation of drug-induced liver injury. Expert Opin Drug Metab Toxicol. 11(10):1523–1537.
  • Jigorel E, Le Vee M, Boursier-Neyret C, Parmentier Y, Fardel O. 2006. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos. 34(10):1756–1763.
  • Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S. 2021. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther. 12(1):84–84.
  • Kang W, Podtelezhnikov AA, Tanis KQ, Pacchione S, Su M, Bleicher KB, Wang Z, Laws GM, Griffiths TG, Kuhls MC, et al. 2020. Development and application of a transcriptomic signature of bioactivation in an advanced in vitro liver model to reduce drug-induced liver injury risk early in the pharmaceutical pipeline. Toxicol Sci. 177(1):121–139.
  • Khetani SR, Bhatia SN. 2008. Microscale culture of human liver cells for drug development. Nat Biotechnol. 26(1):120–126.
  • Khetani SR, Kanchagar C, Ukairo O, Krzyzewski S, Moore A, Shi J, Aoyama S, Aleo M, Will Y. 2013. Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicol Sci. 132(1):107–117.
  • Kia R, Sison RL, Heslop J, Kitteringham NR, Hanley N, Mills JS, Park BK, Goldring CE. 2013. Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet? Br J Clin Pharmacol. 75(4):885–896.
  • Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, Carlsson S, Cederbrant KE, Gibson NJ, Armstrong M, et al. 2008. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 8(3):186–195.
  • Kučera O, Endlicher R, Rychtrmoc D, Lotková H, Sobotka O, Červinková Z. 2017. Acetaminophen toxicity in rat and mouse hepatocytes in vitro. Drug Chem Toxicol. 40(4):448–456.
  • Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, Aithal GP. 2017. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut. 66(6):1154–1164.
  • Laschke MW, Menger MD. 2017. Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. 35(2):133–144.
  • Leite SB, Teixeira AP, Miranda JP, Tostões RM, Clemente JJ, Sousa MF, Carrondo MJT, Alves PM. 2011. Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: improved in vitro models for toxicological applications. Toxicol In Vitro. 25(4):825–832.
  • Li F, Cao L, Parikh S, Zuo R. 2020. Three-dimensional spheroids with primary human liver cells and differential roles of kupffer cells in drug-induced liver injury. J Pharm Sci. 109(6):1912–1923.
  • Lin RZ, Chang HY. 2008. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 3(9–10):1172–1184.
  • Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. 2019. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 31(50):e1902042.
  • Liu X, Pan G. 2019. Drug transporters in drug disposition, effects and toxicity. Berlin, Germany: Springer.
  • Lucena MI, García-Martín E, Andrade RJ, Martínez C, Stephens C, Ruiz JD, Ulzurrun E, Fernandez MC, Romero-Gomez M, Castiella A, et al. 2010. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology. 52(1):303–312.
  • Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CS, Zanella F, et al. 2016. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA. 113(8):2206–2211.
  • Martignoni M, Groothuis GM, de Kanter R. 2006. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2(6):875–894.
  • Messner S, Agarkova I, Moritz W, Kelm JM. 2013. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol. 87(1):209–213.
  • Metushi IG, Sanders C, Lee WM, Uetrecht J. 2014. Detection of anti-isoniazid and anti-cytochrome P450 antibodies in patients with isoniazid-induced liver failure. Hepatology. 59(3):1084–1093.
  • Milner E, Ainsworth M, McDonough M, Stevens B, Buehrer J, Delzell R, Wilson C, Barnhill J. 2020. Emerging three-dimensional hepatic models in relation to traditional two-dimensional in vitro assays for evaluating drug metabolism and hepatoxicity. Med Drug Discov. 8:100060.
  • Mobarra N, Soleimani M, Ghayour-Mobarhan M, Safarpour S, Ferns GA, Pakzad R, Pasalar P. 2019. Hybrid poly-l-lactic acid/poly(ε-caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell-derived hepatocyte-like cells. J Cell Physiol. 234(7):11247–11255.
  • Monckton CP, Khetani SR. 2018. Engineered human liver cocultures for investigating drug-induced liver injury. Drug-induced liver toxicity. Berlin, Germany: Springer; p. 213–248.
  • Mun SJ, Ryu JS, Lee MO, Son YS, Oh SJ, Cho HS, Son MY, Kim DS, Kim SJ, Yoo HJ, et al. 2019. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 71(5):970–985.
  • Napolitano AP, Chai P, Dean DM, Morgan JR. 2007. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 13(8):2087–2094.
  • Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, et al. 2019. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol. 93(7):1789–1805.
  • Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB. 2016. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One. 11(7):e0158674.
  • Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, Seghezzi W, Ayanoglu G, Irrechukwu O, Evers R. 2015. Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos. 43(5):774–785.
  • Nicoletti P, Aithal GP, Bjornsson ES, Andrade RJ, Sawle A, Arrese M, Barnhart HX, Bondon-Guitton E, Hayashi PH, Bessone F, et al. 2017. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology. 152(5):1078–1089.
  • Norcross MA, Luo S, Lu L, Boyne MT, Gomarteli M, Rennels AD, Woodcock J, Margulies DH, McMurtrey C, Vernon S, et al. 2012. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 26(11):F21–F29.
  • Novik EI, Dwyer J, Morelli JK, Parekh A, Cho C, Pludwinski E, Shrirao A, Freedman RM, MacDonald JS, Jayyosi Z. 2017. Long-enduring primary hepatocyte-based co-cultures improve prediction of hepatotoxicity. Toxicol Appl Pharmacol. 336:20–30.
  • O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, et al. 2006. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 80(9):580–604.
  • Oda S, Matsuo K, Nakajima A, Yokoi T. 2016. A novel cell-based assay for the evaluation of immune- and inflammatory-related gene expression as biomarkers for the risk assessment of drug-induced liver injury. Toxicol Lett. 241:60–70.
  • Oda S, Uchida Y, Aleo MD, Koza-Taylor PH, Matsui Y, Hizue M, Marroquin LD, Whritenour J, Uchida E, Yokoi T. 2021. An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 95(1):149–168.
  • OECD. 2005. Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment. Paris, France: OECD Publishing.
  • Olinga P, Elferink MG, Draaisma AL, Merema MT, Castell JV, Pérez G, Groothuis GM. 2008. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur J Pharm Sci. 33(4–5):380–389.
  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, et al. 2000. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 32(1):56–67.
  • Onakpoya IJ, Heneghan CJ, Aronson JK. 2016. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 14(1):10–11.
  • Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, Richert L. 2016. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol In Vitro. 34:179–186.
  • Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M, Southwood S, Oseroff C, Lu S, Jakoncic J, de Oliveira CAF, et al. 2012. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci USA. 109(25):9959–9964.
  • Ott LM, Ramachandran K, Stehno-Bittel L. 2017. An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D. SLAS Discov. 22(5):614–625.
  • Paish HL, Reed LH, Brown H, Bryan MC, Govaere O, Leslie J, Barksby BS, Garcia Macia M, Watson A, Xu X, et al. 2019. A bioreactor technology for modeling fibrosis in human and rodent precision-cut liver slices. Hepatology. 70(4):1377–1391.
  • Pereira CV, Nadanaciva S, Oliveira PJ, Will Y. 2012. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol. 8(2):219–237.
  • Persson M, Løye AF, Mow T, Hornberg JJ. 2013. A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods. 68(3):302–313.
  • Pfeifer AM, Cole KE, Smoot DT, Weston A, Groopman JD, Shields PG, Vignaud JM, Juillerat M, Lipsky MM, Trump BF. 1993. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc Natl Acad Sci USA. 90(11):5123–5127.
  • Poloznikov A, Gazaryan I, Shkurnikov M, Nikulin S, Drapkina O, Baranova A, Tonevitsky A. 2018. In vitro and in silico liver models: current trends, challenges and opportunities. Altex. 35(3):397–412.
  • Porceddu M, Buron N, Roussel C, Labbe G, Fromenty B, Borgne-Sanchez A. 2012. Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicol Sci. 129(2):332–345.
  • Prill S, Bavli D, Levy G, Ezra E, Schmälzlin E, Jaeger MS, Schwarz M, Duschl C, Cohen M, Nahmias Y. 2016. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone. Arch Toxicol. 90(5):1181–1191.
  • Proctor WR, Foster AJ, Vogt J, Summers C, Middleton B, Pilling MA, Shienson D, Kijanska M, Ströbel S, Kelm JM, et al. 2017. Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol. 91(8):2849–2863.
  • Ramachandran A, Visschers RGJ, Duan L, Akakpo JY, Jaeschke H. 2018. Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res. 4(1):75–100.
  • Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, Price LS. 2014. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol. 88(5):1083–1095.
  • Raunio H, Pentikäinen O, Juvonen RO. 2020. Coumarin-based profluorescent and fluorescent substrates for determining xenobiotic-metabolizing enzyme activities in vitro. Int J Mol Sci. 21(13):4708.
  • Richert L, Baze A, Parmentier C, Gerets HHJ, Sison-Young R, Dorau M, Lovatt C, Czich A, Goldring C, Park BK, et al. 2016. Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats. Toxicol Lett. 258:207–215.
  • Roth AD, Lee MY. 2017. Idiosyncratic Drug-Induced Liver Injury (IDILI): potential mechanisms and predictive assays. Biomed Res Int. 2017:9176937.
  • Roth RA, Ganey PE. 2010. Intrinsic versus idiosyncratic drug-induced hepatotoxicity-two villains or one? J Pharmacol Exp Ther. 332(3):692–697.
  • Ruoß M, Vosough M, Königsrainer A, Nadalin S, Wagner S, Sajadian S, Huber D, Heydari Z, Ehnert S, Hengstler JG, et al. 2020. Towards improved hepatocyte cultures: progress and limitations. Food and chemical toxicology: an international journal published for the British Industrial. Food Chem Toxicol. 138:111188.
  • Saeedi M, Safavi M, Allahabadi E, Rastegari A, Hariri R, Jafari S, Bukhari SNA, Mirfazli SS, Firuzi O, Edraki N, et al. 2020. Thieno[2,3-b]pyridine amines: synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer’s disease. Arch Pharm. 353(10):2000101.
  • Safavi M, Esmati N, Ardestani SK, Emami S, Ajdari S, Davoodi J, Shafiee A, Foroumadi A. 2012. Halogenated flavanones as potential apoptosis-inducing agents: synthesis and biological activity evaluation. Eur J Med Chem. 58:573–580.
  • Saito J, Okamura A, Takeuchi K, Hanioka K, Okada A, Ohata T. 2016. High content analysis assay for prediction of human hepatotoxicity in HepaRG and HepG2 cells. Toxicol In Vitro. 33:63–70.
  • Sakatis MZ, Reese MJ, Harrell AW, Taylor MA, Baines IA, Chen L, Bloomer JC, Yang EY, Ellens HM, Ambroso JL, et al. 2012. Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds. Chem Res Toxicol. 25(10):2067–2082.
  • Schadt S, Simon S, Kustermann S, Boess F, McGinnis C, Brink A, Lieven R, Fowler S, Youdim K, Ullah M, et al. 2015. Minimizing DILI risk in drug discovery - A screening tool for drug candidates. Toxicol In Vitro. 30(1 Pt B):429–437.
  • Schultz L, Zurich M-G, Culot M, da Costa A, Landry C, Bellwon P, Kristl T, Hörmann K, Ruzek S, Aiche S, et al. 2015. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro. 30(1 Pt A):138–165.
  • Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. 2021. A critical perspective on 3D liver models for drug metabolism and toxicology studies. Front Cell Dev Biol. 9(203):626805.
  • Shah F, Leung L, Barton HA, Will Y, Rodrigues AD, Greene N, Aleo MD. 2015. Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicol Sci. 147(2):500–514.
  • Shimizu Y, Sasaki T, Yonekawa E, Yamazaki H, Ogura R, Watanabe M, Hosaka T, Shizu R, Takeshita JI, Yoshinari K. 2021. Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 46(4):167–176.
  • Shin HK, Kang M-G, Park D, Park T, Yoon S. 2020. Development of prediction models for drug-iInduced cholestasis, cirrhosis, hepatitis, and steatosis based on drug and drug metabolite structures. Front Pharmacol. 11:67.
  • Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, Koike H, Maezawa M, Zhang RR, Dunn A, et al. 2021. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology. 160(3):831–846.e810.
  • Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, Wright TM, Meyer J, Paulding CA. 2010. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet. 42(8):711–714.
  • Sirenko O, Hancock MK, Hesley J, Hong D, Cohen A, Gentry J, Carlson CB, Mann DA. 2016. Phenotypic characterization of toxic compound effects on liver spheroids derived from iPSC using confocal imaging and three-dimensional image analysis. Assay Drug Dev Technol. 14(7):381–394.
  • Sison-Young RL, Lauschke VM, Johann E, Alexandre E, Antherieu S, Aerts H, Gerets HHJ, Labbe G, Hoët D, Dorau M, et al. 2017. A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity. Arch Toxicol. 91(3):1385–1400.
  • Sison-Young RLC, Mitsa D, Jenkins RE, Mottram D, Alexandre E, Richert L, Aerts H, Weaver RJ, Jones RP, Johann E, et al. 2015. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol Sci. 147(2):412–424.
  • Slany A, Haudek VJ, Zwickl H, Gundacker NC, Grusch M, Weiss TS, Seir K, Rodgarkia-Dara C, Hellerbrand C, Gerner C. 2010. Cell characterization by proteome profiling applied to primary hepatocytes and hepatocyte cell lines Hep-G2 and Hep-3B. J Proteome Res. 9(1):6–21.
  • Soltanpour Y, Hilgendorf C, Ahlström MM, Foster AJ, Kenna JG, Petersen A, Ungell AL. 2012. Characterization of THLE-cytochrome P450 (P450) cell lines: gene expression background and relationship to P450-enzyme activity. Drug Metab Dispos. 40(11):2054–2058.
  • Suzuki A, Andrade RJ, Bjornsson E, Lucena MI, Lee WM, Yuen NA, Hunt CM, Freston JW. 2010. Drugs associated with hepatotoxicity and their reporting frequency of liver adverse events in VigiBase: unified list based on international collaborative work. Drug Saf. 33(6):503–522.
  • Szkolnicka D, Lucendo-Villarin B, Moore JK, Simpson KJ, Forbes SJ, Hay DC. 2016. Reducing hepatocyte injury and necrosis in response to paracetamol using noncoding RNAs. Stem Cells Trans Med. 5(6):764–772.
  • Tabernilla A, Dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, et al. 2021. In vitro liver toxicity testing of chemicals: a pragmatic approach. Int J Mol Sci. 22(9):5038.
  • Tasnim F, Huang X, Lee CZW, Ginhoux F, Yu H. 2021. Recent advances in models of immune-mediated drug-induced liver injury. Front Toxicol. 3(22):605392.
  • Tasnim F, Phan D, Toh YC, Yu H. 2015. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials. 70:115–125.
  • Thakkar S, Li T, Liu Z, Wu L, Roberts R, Tong W. 2020. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 25(1):201–208.
  • Thompson RA, Isin EM, Li Y, Weidolf L, Page K, Wilson I, Swallow S, Middleton B, Stahl S, Foster AJ, et al. 2012. In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol. 25(8):1616–1632.
  • Tolosa L, Jiménez N, Pelechá M, Castell JV, Gómez-Lechón MJ, Donato MT. 2019. Long-term and mechanistic evaluation of drug-induced liver injury in Upcyte human hepatocytes. Arch Toxicol. 93(2):519–532.
  • Tolosa L, Pinto S, Donato MT, Lahoz A, Castell JV, O’Connor JE, Gómez-Lechón MJ. 2012. Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci. 127(1):187–198.
  • Tomida T, Okamura H, Satsukawa M, Yokoi T, Konno Y. 2015. Multiparametric assay using HepaRG cells for predicting drug-induced liver injury. Toxicol Lett. 236(1):16–24.
  • Tostões RM, Leite SB, Serra M, Jensen J, Björquist P, Carrondo MJ, Brito C, Alves PM. 2012. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology. 55(4):1227–1236.
  • Treyer A, Müsch A. 2013. Hepatocyte polarity. Compr Physiol. 3(1):243–287.
  • Truisi GL, Consiglio ED, Parmentier C, Savary CC, Pomponio G, Bois F, Lauer B, Jossé R, Hewitt PG, Mueller SO, et al. 2015. Understanding the biokinetics of ibuprofen after single and repeated treatments in rat and human in vitro liver cell systems. Toxicol Lett. 233(2):172–186.
  • Uetrecht J. 2007. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol. 47:513–539.
  • Underhill GH, Khetani SR. 2018. Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol. 5(3):426–439. e421.
  • Uzi D, Barda L, Scaiewicz V, Mills M, Mueller T, Gonzalez-Rodriguez A, Valverde AM, Iwawaki T, Nahmias Y, Xavier R, et al. 2013. CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol. 59(3):495–503.
  • Van Brantegem P, Chatterjee S, De Bruyn T, Annaert P, Deferm N. 2020. Drug-induced cholestasis assay in primary hepatocytes. MethodsX. 7:101080.
  • van Staden CJ, Morgan RE, Ramachandran B, Chen Y, Lee PH, Hamadeh HK. 2012. Membrane vesicle ABC transporter assays for drug safety assessment. Currt Protocol Toxicol. Chapter 23:Unit 23.25.
  • Vatakuti S, Olinga P, Pennings JLA, Groothuis GMM. 2017. Validation of precision-cut liver slices to study drug-induced cholestasis: a transcriptomics approach. Arch Toxicol. 91(3):1401–1412.
  • Vernetti LA, Vogt A, Gough A, Taylor DL. 2017. Evolution of experimental models of the liver to predict human drug hepatotoxicity and efficacy. Clin Liver Dis. 21(1):197–214.
  • Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. 2021. Oxidative stress in drug-induced liver injury (DILI): from mechanisms to biomarkers for use in clinical practice. Antioxidants (Basel, Switzerland). 10(3):390.
  • Vinken M, Blaauboer BJ. 2017. In vitro testing of basal cytotoxicity: establishment of an adverse outcome pathway from chemical insult to cell death. Toxicol In Vitro. 39:104–110.
  • Volpe DA, Balimane PV. 2018. Application of in vitro CYP and transporter assays to predict clinical drug-drug interactions. Bioanalysis. 10(9):619–623.
  • Vorrink SU, Zhou Y, Ingelman-Sundberg M, Lauschke VM. 2018. Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions. Toxicol Sci. 163(2):655–665.
  • Walker PA, Ryder S, Lavado A, Dilworth C, Riley RJ. 2020. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch Toxicol. 94(8):2559–2585.
  • Walsky RL, Obach RS. 2004. Validated assays for human cytochrome P450 activities. Drug Metab Dispos. 32(6):647–660.
  • Wang K, Shindoh H, Inoue T, Horii I. 2002. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci. 27(3):229–237.
  • Ware BR, Berger DR, Khetani SR. 2015. Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci. 145(2):252–262.
  • Weaver RJ, Blomme EA, Chadwick AE, Copple IM, Gerets HHJ, Goldring CE, Guillouzo A, Hewitt PG, Ingelman-Sundberg M, Jensen KG, et al. 2020. Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov. 19(2):131–148.
  • Wink S, Hiemstra S, Herpers B, van de Water B. 2017. High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities. Arch Toxicol. 91(3):1367–1383.
  • Wink S, Hiemstra SW, Huppelschoten S, Klip JE, van de Water B. 2018. Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol. 92(5):1797–1814.
  • Wu Y, Geng XC, Wang JF, Miao YF, Lu YL, Li B. 2016. The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol. 32(1):37–59.
  • Wuillemin N, Terracciano L, Beltraminelli H, Schlapbach C, Fontana S, Krähenbühl S, Pichler WJ, Yerly D. 2014. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury. Am J Pathol. 184(6):1677–1682.
  • Xiang C, Du Y, Meng G, Soon Yi L, Sun S, Song N, Zhang X, Xiao Y, Wang J, Yi Z, et al. 2019. Long-term functional maintenance of primary human hepatocytes in vitro. Science (New York, NY). 364(6438):399–402.
  • Xu JJ, Diaz D, O’Brien PJ. 2004. Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact. 150(1):115–128.
  • Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D. 2008. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci. 105(1):97–105.
  • Ye H, Nelson LJ, Moral MG, Martínez-Naves E, Cubero FJ. 2018. Dissecting the molecular pathophysiology of drug-induced liver injury. World J Gastroenterol. 24(13):1373–1385.
  • Yokoi T, Oda S. 2021. Models of idiosyncratic drug-induced liver injury. Annu Rev Pharmacol Toxicol. 61:247–268.
  • Yokoyama Y, Sasaki Y, Terasaki N, Kawataki T, Takekawa K, Iwase Y, Shimizu T, Sanoh S, Ohta S. 2018. Comparison of drug metabolism and its related hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell cultures. Biol Pharm Bull. 41(5):722–732.
  • Yu KN, Nadanaciva S, Rana P, Lee DW, Ku B, Roth AD, Dordick JS, Will Y, Lee MY. 2018. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays. Arch Toxicol. 92(3):1295–1310.
  • Zeilinger K, Freyer N, Damm G, Seehofer D, Knöspel F. 2016. Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood). 241(15):1684–1698.
  • Zhang C, Zhang Q, Li J, Yu L, Li F, Li W, Li Y, Peng H, Zhao J, Carmichael PL, et al. 2020. Integration of in vitro data from three dimensionally cultured HepaRG cells and physiologically based pharmacokinetic modeling for assessment of acetaminophen hepatotoxicity. Regul Toxicol Pharmacol. 114:104661.
  • Zhang J, Doshi U, Suzuki A, Chang CW, Borlak J, Li AP, Tong W. 2016. Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem Biol Interact. 255:3–11.
  • Zhang X, Jiang T, Chen D, Wang Q, Zhang LW. 2020. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Crit Rev Toxicol. 50(4):279–309.
  • Zhou Y, Shen JX, Lauschke VM. 2019. Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury. Front Pharmacol. 10(1093):1093.
  • Zhu X, Kruhlak NL. 2014. Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data. Toxicology. 321:62–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.