263
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Deoxynivalenol and its modified forms: key enzymes, inter-individual and interspecies differences in metabolism

, , , , ORCID Icon, & ORCID Icon show all
Pages 331-342 | Received 13 Mar 2022, Accepted 01 Jun 2022, Published online: 21 Jun 2022

References

  • Ajandouz el H, Berdah S, Moutardier V, Bege T, Birnbaum DJ, Perrier J, Di Pasquale E, Maresca M. 2016. Hydrolytic fate of 3/15-acetyldeoxynivalenol in humans: specific deacetylation by the small intestine and liver revealed using in vitro and ex vivo approaches. Toxins (Basel). 8(8):232.
  • Berthiller F, Krska R, Domig KJ, Kneifel W, Juge N, Schuhmacher R, Adam G. 2011. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol Lett. 206(3):264–267.
  • Birr T, Jensen T, Preußke N, Sönnichsen FD, De Boevre M, De Saeger S, Hasler M, Verreet JA, Klink H. 2021. Occurrence of fusarium mycotoxins and their modified forms in forage maize cultivars. Toxins (Basel). 13(2):110.
  • Bracarense APFL, Pierron A, Pinton P, Gerez JR, Schatzmayr G, Moll WD, Zhou T, Oswald IP. 2020. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food Chem Toxicol. 140:111241.
  • Brera C, de Santis B, Debegnach F, Miano B, Moretti G, Lanzone A, Del Sordo G, Buonsenso D, Chiaretti A, Hardie L, et al. 2015. Experimental study of deoxynivalenol biomarkers in urine. EFS3. 12(6):818E.
  • Broekaert N, Devreese M, De Mil T, Fraeyman S, Antonissen G, De Baere S, De Backer P, Vermeulen A, Croubels S. 2015. Oral bioavailability, hydrolysis, and comparative toxicokinetics of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol in broiler chickens and pigs. J Agric Food Chem. 63(39):8734–8742.
  • Broekaert N, Devreese M, van Bergen T, Schauvliege S, De Boevre M, De Saeger S, Vanhaecke L, Berthiller F, Michlmayr H, Malachova A, et al. 2017. In vivo contribution of deoxynivalenol-3-beta-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Arch Toxicol. 91(2):699–712.
  • Bryla M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. 2018. Modified Fusarium mycotoxins in cereals and their products-metabolism, occurrence, and toxicity: an updated review. Molecules. 23(4):963.
  • Carere J, Hassan YI, Lepp D, Zhou T. 2018a. The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microb Biotechnol. 11(6):1106–1111.
  • Carere J, Hassan YI, Lepp D, Zhou T. 2018b. The identification of DepB: an enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8. Front Microbiol. 9:1573.
  • Catteuw A, Devreese M, De Baere S, Antonissen G, Ivanova L, Uhlig S, Martens A, De Saeger S, De Boevre M, Croubels S. 2020. Investigation of age-related differences in toxicokinetic processes of deoxynivalenol and deoxynivalenol-3-glucoside in weaned piglets. Arch Toxicol. 94(2):417–425.
  • Chen L, Yu M, Wu Q, Peng Z, Wang D, Kuca K, Yao P, Yan H, Nussler AK, Liu L, et al. 2017. Gender and geographical variability in the exposure pattern and metabolism of deoxynivalenol in humans: a review. J Appl Toxicol. 37(1):60–70.
  • Clark ES, Flannery BM, Pestka JJ. 2015. Murine anorectic response to deoxynivalenol (vomitoxin) is sex-dependent. Toxins (Basel). 7(8):2845–2859.
  • de Loubresse NG, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M. 2014. Structural basis for the inhibition of the eukaryotic ribosome. Nature. 513(7519):517–522.
  • De Nijs M, Van den Top HJ, Portier L, Oegema G, Kramer E, Van Egmond HP, Hoogenboom LAP. 2012. Digestibility and absorption of deoxynivalenol-3-beta-glucoside in in vitro models. World Mycotoxin J. 5(3):319–324.
  • Deng CL, Li CL, Zhou S, Wang XD, Xu HB, Wang D, Gong YY, Routledge MN, Zhao YF, Wu YN. 2018. Risk assessment of deoxynivalenol in high-risk area of China by human biomonitoring using an improved high throughput UPLC-MS/MS method. Sci Rep. 8(1):3901.
  • Deng Y, You L, Nepovimova E, Wang X, Musilek K, Wu QH, Wu WD, Kuca K. 2021. Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans. Trends Food Sci Technol. 110:551–558.
  • Devreese M, Antonissen G, Broekaert N, De Mil T, De Baere S, Vanhaecke L, De Backer P, Croubels S. 2015. Toxicokinetic study and oral bioavailability of deoxynivalenol in turkey poults, and comparative biotransformation between broilers and turkeys. World Mycotoxin J. 8(4):533–539.
  • Ediage EN, Di Mavungu JD, Song SQ, Sioen I, De Saeger S. 2013. Multimycotoxin analysis in urines to assess infant exposure: a case study in Cameroon. Environ Int. 57-58:50–59.
  • Eriksen GS, Knutsen HK, Sandvik M, Brantsæter AL. 2021. Urinary deoxynivalenol as a biomarker of exposure in different age, life stage and dietary practice population groups. Environ Int. 157:106804.
  • Gardiner SA, Boddu J, Berthiller F, Hametner C, Stupar RM, Adam G, Muehlbauer GJ. 2010. Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. Mol Plant Microbe Interact. 23(7):962–976.
  • Gonçalves RA, Navarro-Guillén C, Gilannejad N, Dias J, Schatzmayr D, Bichl G, Czabany T, Moyano FJ, Rema P, Yúfera M, et al. 2018. Impact of deoxynivalenol on rainbow trout: growth performance, digestibility, key gene expression regulation and metabolism. Aquaculture. 490:362–372.
  • Goncalves RA, Schatzmayr D, Albalat A, Mackenzie S. 2020. Mycotoxins in aquaculture: feed and food. Rev Aquacult. 12(1):145–175.
  • Gratz SW, Currie V, Richardson AJ, Duncan G, Holtrop G, Farquharson F, Louis P, Pinton P, Oswald IP. 2018. Porcine small and large intestinal microbiota rapidly hydrolyze the masked mycotoxin deoxynivalenol-3-glucoside and release deoxynivalenol in spiked batch cultures in vitro. Appl Environ Microbiol. 84(2):e02106–02117.
  • Gratz SW, Dinesh R, Yoshinari T, Holtrop G, Richardson AJ, Duncan G, MacDonald S, Lloyd A, Tarbin J. 2017. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol Nutr Food Res. 61(4):1600680.
  • Gratz SW, Duncan G, Richardson AJ. 2013. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl Environ Microbiol. 79(6):1821–1825.
  • Guo H, Ji J, Wang JS, Sun X. 2020. Deoxynivalenol: masked forms, fate during food processing, and potential biological remedies. Compr Rev Food Sci Food Saf. 19(2):895–926.
  • He JW, Bondy GS, Zhou T, Caldwell D, Boland GJ, Scott PM. 2015. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food Chem Toxicol. 84:250–259.
  • He JW, Hassan YI, Perilla N, Li XZ, Boland GJ, Zhou T. 2016. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions. Front Microbiol. 7:572.
  • He WJ, Shi MM, Yang P, Huang T, Zhao Y, Wu AB, Dong WB, Li HP, Zhang JB, Liao YC. 2020. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain. Food Chem. 321:126703.
  • He WJ, Zhang LM, Yi SY, Tang XL, Yuan QS, Guo MW, Wu AB, Qu B, Li HP, Liao YC. 2017. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Sci Rep. 7(1):9549.
  • Ito M, Sato I, Ishizaka M, Yoshida S, Koitabashi M, Yoshida S, Tsushima S. 2013. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol. Appl Environ Microbiol. 79(5):1619–1628.
  • Jin J, Spenkelink A, Beekmann K, Baccaro M, Xing F, Rietjens IMCM. 2021. Species differences in in vitro and estimated in vivo kinetics for intestinal microbiota mediated metabolism of acetyl-deoxynivalenols. Mol Nutr Food Res. 65(9):e2001085.
  • Khan MK, Pandey A, Athar T, Choudhary S, Deval R, Gezgin S, Hamurcu M, Topal A, Atmaca E, Santos PA, et al. 2020. Fusarium head blight in wheat: contemporary status and molecular approaches. 3 Biotech. 10(4):172.
  • Khatibi PA, Newmister SA, Rayment I, McCormick SP, Alexander NJ, Schmale DG. 2011. Bioprospecting for trichothecene 3-O-acetyltransferases in the fungal genus Fusarium yields functional enzymes with different abilities to modify the mycotoxin deoxynivalenol. Appl Environ Microbiol. 77(4):1162–1170.
  • Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, Maloku I, Berthiller F, Adam G, Krska R, et al. 2015. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS One. 10(3):e0119656.
  • Kouadio JH, Lattanzio VM, Ouattara D, Kouakou B, Visconti A. 2014. Assessment of mycotoxin exposure in Côte d'ivoire (Ivory Coast) through multi-biomarker analysis and possible correlation with food consumption patterns. Toxicol Int. 21(3):248–257.
  • Lemmens M, Scholz U, Berthiller F, Dall'Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, et al. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. MPMI. 18(12):1318–1324.
  • Li X, Shin S, Heinen S, Dill-Macky R, Berthiller F, Nersesian N, Clemente T, McCormick S, Muehlbauer GJ. 2015. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol Plant Microbe Interact. 28(11):1237–1246.
  • Malachova A, Stockova L, Wakker A, Varga E, Krska R, Michlmayr H, Adam G, Berthiller F. 2015. Critical evaluation of indirect methods for the determination of deoxynivalenol and its conjugated forms in cereals. Anal Bioanal Chem. 407(20):6009–6020.
  • Mandala G, Tundo S, Francesconi S, Gevi F, Zolla L, Ceoloni C, D'Ovidio R. 2019. Deoxynivalenol detoxification in transgenic wheat confers resistance to Fusarium head blight and crown rot diseases. Mol Plant Microbe Interact. 32(5):583–592.
  • Maresca M. 2013. From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins (Basel). 5(4):784–820.
  • Maul R, Warth B, Schebb NH, Krska R, Koch M, Sulyok M. 2015. In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Arch Toxicol. 89(6):949–960.
  • Mengelers M, Zeilmaker M, Vidal A, De Boevre M, De Saeger S, Hoogenveen R. 2019. Biomonitoring of deoxynivalenol and deoxynivalenol-3-glucoside in human volunteers: renal excretion profiles. Toxins (Basel). 11(8):466.
  • Miro-Abella E, Torrell H, Herrero P, Canela N, Arola L, Borrull F, Ras R, Fontanals N. 2018. Monitoring and evaluation of the interaction between deoxynivalenol and gut microbiota in Wistar rats by mass spectrometry-based metabolomics and next-generation sequencing. Food Chem Toxicol. 121:124–130.
  • Nagl V, Woechtl B, Schwartz-Zimmermann HE, Hennig-Pauka I, Moll WD, Adam G, Berthiller F. 2014. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol Lett. 229(1):190–197.
  • Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP. 2016. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol. 90(12):2931–2957.
  • Pestka JJ, Clark ES, Schwartz-Zimmermann HE, Berthiller F. 2017. Sex is a determinant for deoxynivalenol metabolism and elimination in the mouse. Toxins. 9(8):240.
  • Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense AP, Schatzmayr G, He JW, Zhou T, Moll WD, et al. 2016. Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep. 6:29105.
  • Riahi I, Perez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. 2021. Biomarkers of deoxynivalenol toxicity in chickens with special emphasis on metabolic and welfare parameters. Toxins. 13(3):217.
  • Schwartz-Zimmermann HE, Fruhmann P, Danicke S, Wiesenberger G, Caha S, Weber J, Berthiller F. 2015. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins (Basel). 7(11):4706–4729.
  • Schwartz-Zimmermann HE, Hametner C, Nagl V, Fiby I, Macheiner L, Winkler J, Danicke S, Clark E, Pestka JJ, Berthiller F. 2017. Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Arch Toxicol. 91(12):3857–3872.
  • Schwartz-Zimmermann HE, Hametner C, Nagl V, Slavik V, Moll W-D, Berthiller F. 2014. Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: from identification to biomarker method development, validation and application. Anal Bioanal Chem. 406(30):7911–7924.
  • Slobodchikova I, Sivakumar R, Rahman MS, Vuckovic D. 2019. Characterization of Phase I and Glucuronide Phase II Metabolites of 17 Mycotoxins Using Liquid Chromatography-High-Resolution Mass Spectrometry. Toxins (Basel). 11(8):433.
  • Solfrizzo M, Gambacorta L, Visconti A. 2014. Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. Toxins (Basel). 6(2):523–538.
  • Stanic A, Uhlig S, Solhaug A, Rise F, Wilkins AL, Miles CO. 2015. Nucleophilic Addition of Thiols to Deoxynivalenol. J Agric Food Chem. 63(34):7556–7566.
  • Tag AG, Garifullina GF, Peplow AW, Ake C, Phillips TD, Hohn TM, Beremand MN. 2001. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol. 67(11):5294–5302.
  • Turner P C, Hopton RP, Lecluse Y, White KL, Fisher J, Lebailly P. 2010. Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from Normandy, France. J Agric Food Chem. 58(8):5206–5212.
  • Turner P C, Hopton RP, White KL, Fisher J, Cade JE, Wild CP. 2011. Assessment of deoxynivalenol metabolite profiles in UK adults. Food Chem Toxicol. 49(1):132–135.
  • Uhlig S, Ivanova L, Fæste CK. 2013. Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. J Agric Food Chem. 61(8):2006–2012.
  • Uhlig S, Stanic A, Hofgaard IS, Kluger B, Schuhmacher R, Miles CO. 2016. Glutathione-conjugates of deoxynivalenol in naturally contaminated grain are primarily linked via the epoxide group. Toxins. 8(11):329.
  • Valgaeren B, Theron L, Croubels S, Devreese M, De Baere S, Van Pamel E, Daeseleire E, De Boevre M, De Saeger S, Vidal A, et al. 2019. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Arch Toxicol. 93(2):293–310.
  • Veršilovskis A, Geys J, Huybrechts B, Goossens E, Saeger SD, Callebaut A. 2012. Simultaneous determination of masked forms of deoxynivalenol and zearalenone after oral dosing in rats by LC-MS/MS. World Mycotoxin J. 5(3):303–318.
  • Vidal A, Claeys L, Mengelers M, Vanhoorne V, Vervaet C, Huybrechts B, De Saeger S, De Boevre M. 2018. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 8(1):5225.
  • Wan D, Huang L, Pan Y, Wu Q, Chen D, Tao Y, Wang X, Liu Z, Li J, Wang L, et al. 2014. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J Agric Food Chem. 62(1):288–296.
  • Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS, Guo J, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science. 368(6493):eaba5435.
  • Wang J, Jin Y, Wu S, Yu H, Zhao Y, Fang H, Shen J, Zhou C, Fu Y, Li R, et al. 2019. Deoxynivalenol induces oxidative stress, inflammatory response and apoptosis in bovine mammary epithelial cells. J Anim Physiol Anim Nutr. 103(6):1663–1674.
  • Warth B, Del Favero G, Wiesenberger G, Puntscher H, Woelflingseder L, Fruhmann P, Sarkanj B, Krska R, Schuhmacher R, Adam G, et al. 2016. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Sci Rep. 6:33854.
  • Warth B, Sulyok M, Fruhmann P, Berthiller F, Schuhmacher R, Hametner C, Adam G, Frohlich J, Krska R. 2012. Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method. Toxicol Lett. 211(1):85–90.
  • Woelflingseder L, Warth B, Vierheilig I, Schwartz-Zimmermann H, Hametner C, Nagl V, Novak B, Sarkanj B, Berthiller F, Adam G, et al. 2019. The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol. Arch Toxicol. 93(6):1729–1743.
  • Wu QH, Qin ZH, Kuca K, You L, Zhao YY, Liu AM, Musilek K, Chrienova Z, Nepovimova E, Oleksak P, et al. 2020. An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol. 94(11):3645–3669.
  • Wu QH, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. 2017. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol. 91(12):3737–3785.
  • Wu QH, Wang X, Yang W, Nussler AK, Xiong LY, Kuca K, Dohnal V, Zhang XJ, Yuan ZH. 2014. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol. 88(7):1309–1326.
  • You L, Zhao Y, Kuca K, Wang X, Oleksak P, Chrienova Z, Nepovimova E, Jacevic V, Wu Q, Wu W. 2021. Hypoxia, oxidative stress, and immune evasion: a trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON). Arch Toxicol. 95(6):1899–1915.
  • Young JC, Zhou T, Yu H, Zhu H, Gong J. 2007. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem Toxicol. 45(1):136–143.
  • Zhang J, Qin X, Guo Y, Zhang Q, Ma Q, Ji C, Zhao L. 2020a. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101. Food Chem Toxicol. 140:111276.
  • Zhang J, You L, Wu W, Wang X, Chrienova Z, Nepovimova E, Wu Q, Kuca K. 2020b. The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): current status and future perspectives. Food Chem Toxicol. 145:111676.
  • Zhang Z, Nie D, Fan K, Yang J, Guo W, Meng J, Zhao Z, Han Z. 2020c. A systematic review of plant-conjugated masked mycotoxins: occurrence, toxicology, and metabolism. Crit Rev Food Sci Nutr. 60(9):1523–1537.
  • Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. 2021. Occurrence of Aflatoxin B(1), deoxynivalenol and zearalenone in feeds in China during 2018-2020. J Anim Sci Biotechnol. 12(1):74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.