2,115
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Bioactivation and reactivity research advances – 2021 year in review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 246-281 | Received 06 May 2022, Accepted 29 Jun 2022, Published online: 05 Aug 2022

References

  • Khojasteh SC, Argikar UA, Driscoll JP, Heck CJS, King L, Jackson KD, Jian W, Kalgutkar AS, Miller GP, Kramlinger V, et al. 2021. Novel advances in biotransformation and bioactivation research – 2020 year in review. Drug Metab Rev. 53(3):384–433.
  • Khojasteh SC, Driscoll JP, Jackson KD, Miller GP, Mitra K, Rietjens IMCM, Zhang D. 2020. Novel advances in biotransformation and bioactivation research-2019 year in review. Drug Metab Rev. 52(3):333–365.
  • Khojasteh SC, Bumpus NN, Driscoll JP, Miller GP, Mitra K, Rietjens IMCM, Zhang D. 2019. Biotransformation and bioactivation reactions – 2018 literature highlights. Drug Metab Rev. 51(2):121–161.
  • Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. 2018. Biotransformation and bioactivation reactions – 2017 literature highlights. Drug Metab Rev. 50(3):221–255.
  • Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. 2017. Biotransformation and bioactivation reactions – 2016 literature highlights. Drug Metab Rev. 49(3):285–317.
  • Baillie TA, Dalvie D, Rietjens IMCM, Khojasteh SC. 2016. Biotransformation and bioactivation reactions – 2015 literature highlights. Drug Metab Rev. 48(2):113–138.

References

  • Abbasi A, Paragas EM, Joswig-Jones CA, Rodgers JT, Jones JP. 2019. Time course of aldehyde oxidase and why it is nonlinear. Drug Metab Dispos. 47(5):473–483.
  • Dalvie D, Xiang C, Kang P, Zhou S. 2013. Interspecies variation in the metabolism of zoniporide by aldehyde oxidase. Xenobiotica. 43(5):399–408.
  • Dick RA. 2018. Refinement of in vitro methods for identification of aldehyde oxidase substrates reveals metabolites of kinase inhibitors. Drug Metab Dispos. 46(6):846–859.
  • Garrido C, Leimkühler S. 2021. The inactivation of human aldehyde oxidase 1 by hydrogen peroxide and superoxide. Drug Metab Dispos. 49(9):729–735.
  • Hutzler JM, Obach RS, Dalvie D, Zientek MA. 2013. Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol. 9(2):153–168.
  • Kozminski KD, Selimkhanov J, Heyward S, Zientek MA. 2021. Contribution of extrahepatic aldehyde oxidase activity to human clearance. Drug Metab Dispos. 49(9):743–749.
  • Lynch RE, Fridovich I. 1979. Autoinactivation of xanthine oxidase: the role of superoxide radical and hydrogen peroxide. Biochim Biophys Acta. 571(2):195–200.

References

  • Ortiz de Montellano PR. 2019. Acetylenes: cytochrome P450 oxidation and mechanism-based enzyme inactivation. Drug Metab Rev. 51(2):162–177.
  • Sun C, Zhao H, Li W, Jia Y, Yang Y, Peng Y, Zheng J. 2021. Icotinib induces mechanism-based inactivation of recombinant human CYP3A4/5 possibly via heme destruction by ketene intermediate. Drug Metab Dispos. 49(10):892–901.
  • Wang W, Song Z, Zhang Y. 2017. Zoledronic acid as potential efficacy application combined with icotinib for non-small cell lung cancer with bone metastases. Transl Cancer Res. 6(1):129–135.
  • Xu Z, Li J. 2019. Comparative review of drug-drug interactions with epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Onco Targets Ther. 12:5467–5484.
  • Zhao Q, Wang Y, Tang Y, Peng L. 2014. Icotinib combined with rapamycin in a renal transplant recipient with epidermal growth factor receptor-mutated non-small cell lung cancer: a case report. Oncol Lett. 7(1):171–176.

References

  • Caldwell RD, Qiu H, Askew BC, Bender AT, Brugger N, Camps M, Dhanabal M, Dutt V, Eichhorn T, Gardberg AS, et al. 2019. Discovery of evobrutinib: an oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J Med Chem. 62(17):7643–7655.
  • Li Z, Zhang L, Yuan Y, Yang Z. 2019. Identification of metabolites of evobrutinib in rat and human hepatocytes by using ultra‐high performance liquid chromatography coupled with diode array detector and Q Exactive Orbitrap tandem mass spectrometry. Drug Test Anal. 11(1):129–139.
  • Scheers E, Leclercq L, de Jong J, Bode N, Bockx M, Laenen A, Cuyckens F, Skee D, Murphy J, Sukbuntherng J, et al. 2015. Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 43(2):289–297.
  • Scheible H, Dyroff M, Seithel-Keuth A, Harrison-Moench E, Mammasse N, Port A, Bachmann A, Dong J, van Lier JJ, Tracewell W, et al. 2021. Evobrutinib, a covalent Bruton’s tyrosine kinase inhibitor: mass balance, elimination route, and metabolism in healthy participants. Clin Transl Sci. 14(6):2420–2430.
  • Singh SP, Dammeijer F, Hendriks RW. 2018. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 17(1):57.
  • Wilson ID, Nicholson JK. 2017. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 179:204–222.

References

  • Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF, Nelson SD. 1998. Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol. 11(4):295–301.
  • Erdogan A, Ozcay F, Piskin E, Karaman MG, Bilezikci B, Calik M, Tekin I, Haberal M. 2011. Idiosyncratic liver failure probably associated with atomoxetine: a case report. J Child Adolesc Psychopharmacol. 21(3):295–297.
  • Glatt H. 2000. Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact. 129(1–2):141–170.
  • Lim JR, Faught PR, Chalasani NP, Molleston JP. 2006. Severe liver injury after initiating therapy with atomoxetine in two children. J Pediatr. 148(6):831–834.
  • Miller JA. 1994. Sulfonation in chemical carcinogenesis–history and present status. Chem Biol Interact. 92(1–3):329–341.
  • Sharma AM, Li Y, Novalen M, Hayes MA, Uetrecht J. 2012. Bioactivation of nevirapine to a reactive quinone methide: implications for liver injury. Chem Res Toxicol. 25(8):1708–1719.
  • Takimoto T, Kijima T, Otani Y, Nonen S, Namba Y, Mori M, Yokota S, Minami S, Komuta K, Uchida J, et al. 2013. Polymorphisms of CYP2D6 gene and gefitinib-induced hepatotoxicity. Clin Lung Cancer. 14(5):502–507.
  • Watabe T, Ogura K, Satsukawa M, Okuda H, Hiratsuka A. 1994. Molecular cloning and functions of rat liver hydroxysteroid sulfotransferases catalysing covalent binding of carcinogenic polycyclic arylmethanols to DNA. Chem Biol Interact. 92(1–3):87–105.
  • You Y, Wang X, Ma K, Li J, Peng Y, Zheng J. 2021. Metabolic activation of atomoxetine mediated by cytochrome P450 2D6. Chem Res Toxicol. 34(9):2135–2144.
  • Zhou SF. 2009. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 48(11):689–723.

References

  • Inami K, Okazawa M, Mochizuki M. 2009. Mutagenicity of aromatic amines and amides with chemical models for cytochrome P450 in Ames assay. Toxicol in Vitro. 23(6):986–991.
  • Ripa L, Mee C, Sjö P, Shamovsky I. 2014. Theoretical studies of the mechanism of N-hydroxylation of primary aromatic amines by cytochrome P450 1A2: radicaloid or anionic? Chem Res Toxicol. 27(2):265–278.
  • Shamovsky I, Ripa L, Narjes F, Bonn B, Schiesser S, Terstiege I, Tyrchan C. 2021. Mechanism-based insights into removing the mutagenicity of aromatic amines by small structural alterations. J Med Chem. 64(12):8545–8563.
  • Turesky RJ. 2010. Aromatic amines and heterocyclic aromatic amines: from tobacco smoke to food mutagens. In: Geacintov NE and Broyde S, editors. The chemical biology of DNA damage. Weinheim, Germany: Wiley-VCH; p. 157–183.

References

  • Bolton JL, Turnipseed SB, Thompson JA. 1997. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models. Chem Biol Interact. 107(3):185–200.
  • Buhl AE, Waldon DJ, Baker CA, Johnson GA. 1990. Minoxidil sulfate is the active metabolite that stimulates hair follicles. J Invest Dermatol. 95(5):553–557.
  • Cao Y, Bairam A, Jee A, Liu M, Uetrecht J. 2021. Investigating the mechanism of trimethoprim-induced skin rash and liver injury. Toxicol Sci. 180(1):17–25.
  • Chen J, Mannargudi BM, Ling Xu L, Uetrecht J. 2008. Demonstration of the metabolic pathway responsible for nevirapine-induced skin rash. Chem Res Toxicol. 21(9):1862–1870.
  • Géniès C, Jamin EL, Debrauwer L, Zalko D, Person EN, Eilstein J, Grégoire S, Schepky A, Lange D, Ellison C, et al. 2019. Comparison of the metabolism of 10 chemicals in human and pig skin explants. J Appl Toxicol. 39(2):385–397.
  • Goldman JL, Koen YM, Rogers SA, Li K, Leeder JS, Hanzlik RP. 2016. Bioactivation of trimethoprim to protein-reactive metabolites in human liver microsomes. Drug Metab Dispos. 44(10):1603–1607.
  • Kazem S, Linssen EC, Gibbs S. 2019. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today. 24(9):1899–1910.
  • Lai WG, Zahid N, Uetrecht JP. 1999. Metabolism of trimethoprim to a reactive iminoquinone methide by activated human neutrophils and hepatic microsomes. J Pharmacol Exp Ther. 291(1):292–299.
  • Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BA. 2005. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol. 39(10):3421–3429.
  • Nolte WM, Tessman RT, Goldman JL. 2020. Screening trimethoprim primary metabolites for covalent binding to albumin. Med Chem Res. 29(7):1238–1246.
  • Oesch F, Fabian E, Landsiedel R. 2018. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol. 92(8):2411–2456.
  • Sharma AM, Novalen M, Tanino T, Uetrecht JP. 2013. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash. Chem Res Toxicol. 26(5):817–827.
  • Uetrecht J. 2008. Idiosyncratic drug reactions: past, present, and future. Chem Res Toxicol. 21(1):84–92.
  • World Health Organization. 2019. World Health Organization model list of essential medicines: 21st list 2019. World Health Organization. https://apps.who.int/iris/handle/10665/325771.

References

  • Arzuk E, Karakuş F, Orhan H. 2021. Bioactivation of clozapine by mitochondria of the murine heart: possible cause of cardiotoxicity. Toxicology. 447:152628.
  • Atkin K, Kendall F, Gould D, Freeman H, Liberman J, O’Sullivan D. 1996. Neutropenia and agranulocytosis in patients receiving clozapine in the UK and Ireland. Br J Psychiatry. 169(4):483–488.
  • Dragovic S, Gunness P, Ingelman-Sundberg M, Vermeulen NPE, Commandeur JNM. 2013. Characterization of human cytochrome P450s involved in the bioactivation of clozapine. Drug Metab Dispos. 41(3):651–658.
  • Fujino C, Sanoh S, Katsura T. 2021. Variation in expression of cytochrome P450 3A isoforms and toxicological effects: endo- and exogenous substances as regulatory factors and substrates. Biol Pharm Bull. 44(11):1617–1634.
  • Gardner I, Popović M, Zahid N, Uetrecht JP. 2005. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo. Chem Res Toxicol. 18(9):1384–1394.
  • Hafez AA, Jamali Z, Khezri S, Salimi A. 2021. Thymoquinone reduces mitochondrial damage and death of cardiomyocytes induced by clozapine. Naunyn Schmiedebergs Arch Pharmacol. 394(8):1675–1684.
  • Hrycay EG, Bandiera SM. 2009. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes. Curr Drug Metab. 10(10):1151–1183.
  • Kanniah G, Kumar S. 2020. Clozapine associated cardiotoxicity: Issues, challenges and way forward. Asian J Psychiatr. 50(101950):101950.
  • Pirmohamed M, Williams D, Madden S, Templeton E, Park B. 1995. Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmacol Exp Ther. 272(3):984–990.
  • Remington G, Lee J, Agid O, Takeuchi H, Foussias G, Hahn M, Fervaha G, Burton L, Powell V. 2016. Clozapine’s critical role in treatment resistant schizophrenia: ensuring both safety and use. Expert Opin Drug Saf. 15(9):1193–1203.
  • Wiciński M, Węclewicz MM. 2018. Clozapine-induced agranulocytosis/granulocytopenia: mechanisms and monitoring. Curr Opin Hematol. 25(1):22–28.

References

  • Bindu S, Mazumder S, Bandyopadhyay U. 2020. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 180:114147.
  • Davis A, Robson J. 2016. The dangers of NSAIDs: look both ways. Br J Gen Pract. 66(645):172–173.
  • Masubuchi Y, Yamada S, Horie T. 1999. Diphenylamine as an important structure of nonsteroidal anti-inflammatory drugs to uncouple mitochondrial oxidative phosphorylation. Biochem Pharmacol. 58(5):861–865.
  • Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK. 2010. Acyl glucuronides: the good, the bad and the ugly. Biopharm Drug Dispos. 31(7):367–395.
  • Schleiff MA, Crosby S, Blue M, Schleiff BM, Boysen G, Miller GP. 2021. CYP2C9 and 3A4 play opposing roles in bioactivation and detoxification of diphenylamine NSAIDs. Biochem Pharmacol. 194:114824.

References

  • Gan J, Ma S, Zhang D. 2016. Non-cytochrome P450-mediated bioactivation and its toxicological relevance. Drug Metab Rev. 48(4):473–501.
  • Glatt H. 2000. Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact. 129(1–2):141–170.
  • Ma Y, Fu Y, Khojasteh SC, Dalvie D, Zhang D. 2017. Glucuronides as potential anionic substrates of human cytochrome P450 2C8 (CYP2C8). J Med Chem. 60(21):8691–8705.
  • Mulder T, Bobba S, Johnson K, Grandner JM, Wang W, Zhang C, Cai J, Choo EF, Khojasteh SC, Zhang D. 2020. Bioactivation of α,β-unsaturated carboxylic acids through acyl glucuronidation. Drug Metab Dispos. 48(9):819–829.
  • Popovic M, Shenton JM, Chen J, Baban A, Tharmanathan T, Mannargudi B, Abdulla D, Uetrecht JP. 2010. Nevirapine hypersensitivity. Handb Exp Pharmacol. (196):437–451.
  • Yang L, Xin L, Shi J, Li W, Tian M, Hu Z, Peng Y, Zheng J. 2021. Metabolic activation and cytotoxicity of labetalol hydrochloride mediated by sulfotransferases. Chem Res Toxicol. 34(6):1612–1618.

References

  • Bart AG, Morais G, Vangala VR, Loadman PM, Pors K, Scott EE. 2022. Cytochrome P450 binding and bioactivation of tumor-targeted duocarmycin agents. Drug Metab Dispos. 50(1):49–57.
  • Lang D, Radtke M, Bairlein M. 2019. Highly variable expression of CYP1A1 in human liver and impact on pharmacokinetics of Riociguat and Granisetron in humans. Chem Res Toxicol. 32(6):1115–1122.
  • Sheldrake HM, Travica S, Johansson I, Loadman PM, Sutherland M, Elsalem L, Illingworth N, Cresswell AJ, Reuillon T, Shnyder SD, et al. 2013. Re-engineering of the duocarmycin structural architecture enables bioprecursor development targeting CYP1A1 and CYP2W1 for biological activity. J Med Chem. 56(15):6273–6277.
  • Stenstedt K, Hallstrom M, Lédel F, Ragnhammar P, Ingelman-Sundberg M, Johansson I, Edler D. 2014. The expression of CYP2W1 in colorectal primary tumors, corresponding lymph node metastases and liver metastases. Acta Oncol. 53(7):885–891.
  • Sutherland M, Gill JH, Loadman PM, Laye JP, Sheldrake HM, Illingworth NA, Alandas MN, Cooper PA, Searcey M, Pors K, et al. 2013. Antitumor activity of a duocarmycin analogue rationalized to be metabolically activated by cytochrome P450 1A1 in human transitional cell carcinoma of the bladder. Mol Cancer Ther. 12(1):27–37.
  • Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, Sheldrake HM, Mkrtchian S, Patterson LH, Ingelman-Sundberg M. 2013. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin Cancer Res. 19(11):2952–2961.
  • Wang S, Chen B, Dragovich P, Pillow T, Staben L, Guo J, Su D, Zhang C, Bobba S, Ma Y, et al. 2019. A novel depurination methodology to assess DNA alkylation of chloro-bis-seco-cyclopropylbenzoindoles allowed for comparison of minor-groove reactivity. Drug Metab Dispos. 47(5):547–555.

References

  • Chacko SA, Yang W, Wang Y, Tian Y, Hong Y, Wallace M, Wang B, Ewing WR, Luettgen JM, Shu Y-Z, et al. 2021. Preclinical metabolism and disposition of an orally bioavailable macrocyclic FXIa inhibitor. Xenobiotica. 51(8):933–948.
  • Gunduz M, Argikar UA, Baeschlin D, Ferreira S, Hosagrahara V, Harriman S. 2010. Identification of a novel N-carbamoyl glucuronide: in vitro, in vivo, and mechanistic studies. Drug Metab Dispos. 38(3):361–367.
  • Gunduz M, Argikar UA, Kamel A, Colizza K, Bushee JL, Cirello A, Lombardo F, Harriman S. 2012. Oxidative ipso substitution of 2,4-difluoro-benzylphthalazines: identification of a rare stable quinone methide and subsequent GSH conjugate. Drug Metab Dispos. 40(11):2074–2080.
  • Hayakawa H, Fukushima Y, Kato H, Fukumoto H, Kadota T, Yamamoto H, Kuroiwa H, Nishigaki J, Tsuji A. 2003. Metabolism and disposition of novel des-fluoro quinolone garenoxacin in experimental animals and an interspecies scaling of pharmacokinetic parameters. Drug Metab Dispos. 31(11):1409–1418.
  • Mandal M, Mitra K, Grotz D, Lin X, Palamanda J, Kumari P, Buevich A, Caldwell JP, Chen X, Cox K, et al. 2018. Overcoming time-dependent inhibition (TDI) of cytochrome P450 3A4 (CYP3A4) resulting from bioactivation of a fluoropyrimidine moiety. J Med Chem. 61(23):10700–10708.
  • Shaffer CL, Gunduz M, O’Connell TN, Obach RS, Yee S. 2005. Biotransformation of a GABAA receptor partial agonist in Sprague-Dawley rats and cynomolgus monkeys: identification of two unique N-carbamoyl metabolites. Drug Metab Dispos. 33(11):1688–1699.
  • Tremaine LM, Stroh JG, Ronfeld RA. 1989. Characterization of a carbamic acid ester glucuronide of the secondary amine sertraline. Drug Metab Dispos. 17(1):58–63.
  • Zhang D, Krishna R, Wang L, Zeng J, Mitroka J, Dai R, Narasimhan N, Reeves RA, Srinivas NR, Klunk LJ. 2005. Metabolism, pharmacokinetics, and protein covalent binding of radiolabeled MaxiPost (BMS-204352) in humans. Drug Metab Dispos. 33(1):83–93.

References

  • Bailey MJ, Dickinson RG. 2003. Acyl glucuronide reactivity in perspective: biological consequences. Chem Biol Interact. 145(2):117–137.
  • Darnell M, Weidolf L. 2013. Metabolism of xenobiotic carboxylic acids: focus on coenzyme A conjugation, reactivity, and interference with lipid metabolism. Chem Res Toxicol. 26(8):1139–1155.
  • Grillo MP, Tadano Lohr M, Wait JC. 2012. Metabolic activation of mefenamic acid leading to mefenamyl-S-acyl-glutathione adduct formation in vitro and in vivo in rat. Drug Metab Dispos. 40(8):1515–1526.
  • Hashizume H, Fukami T, Mishima K, Arakawa H, Mishiro K, Zhang Y, Nakano M, Nakajima M. 2021. Identification of an isoform catalyzing the CoA conjugation of nonsteroidal anti-inflammatory drugs and the evaluation of the expression levels of acyl-CoA synthetases in the human liver. Biochem Pharmacol. 183:114303.
  • Manichaikul A, Wang XQ, Zhao W, Wojczynski MK, Siebenthall K, Stamatoyannopoulos JA, Saleheen D, Borecki IB, Reilly MP, Rich SS, et al. 2016. Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis. J Lipid Res. 57(3):433–442.
  • Singh AB, Kan CF, Dong B, Liu J. 2016. SREBP2 activation induces hepatic long-chain acyl-CoA synthetase 1 (ACSL1) expression in vivo and in vitro through a sterol regulatory element (SRE) Motif of the ACSL1 C-promoter. J Biol Chem. 291(10):5373–5384.
  • Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami JA. 2018. Comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 9(1):143–150.

References

  • Al-Shakliah NS, Attwa MW, AlRabiah H, Kadi AA. 2021. Identification and characterization of in vitro, in vivo, and reactive metabolites for tandutinib using liquid chromatography ion trap mass spectrometry. Anal Methods. 13(3):399–410.
  • Argoti D, Liang L, Conteh A, Chen L, Bershas D, Yu CP, Vouros P, Yang E. 2005. Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem Res Toxicol. 18(10):1537–1544.
  • Bolleddula J, DeMent K, Driscoll JP, Worboys P, Brassil PJ, Bourdet DL. 2014. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab Rev. 46(3):379–419.
  • DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB, Caligiuri MA, Cooper MR, Lecerf J, Karol MD, et al. 2006. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmaokinetics, and pharmacodynamics. Blood. 108(12):3674–3681.
  • Filppula AM, Laitila J, Neuvonen PJ, Backman JT. 2012. Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 165(8):2787–2798.
  • Kalgutkar AS, Driscoll JP. 2020. Is there enough evidence to classify cycloalkyl amine substituents as structural alerts? Biochem Pharmacol. 174:113796.
  • Kenny JR, Mukadam S, Zhang C, Tay S, Collins C, Galetin A, Khojasteh SC. 2012. Drug-drug interaction potential of marketed oncology drugs: in vitro assessment of time-dependent cytochrome P450 inhibition, reactive metabolite formation and drug-drug interaction prediction. Pharm Res. 29(7):1960–1976.
  • Li AC, Yu E, Ring SC, Chovan JP. 2014. Structural identification of imatinib cyanide adducts by mass spectrometry and elucidation of bioactivation pathway. Rapid Commun Mass Spectrom. 28(1):123–134.
  • Pandey A, Volkots DL, Seroogy JM, Rose JW, Yu JC, Lambing JL, Hutchaleelaha A, Hollenbach SJ, Abe K, Giese NA, et al. 2002. Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family. J Med Chem. 45(17):3772–3793.
  • Tang LWT, Wei W, Verma RK, Koh SK, Zhou L, Fan H, Chan ECY. 2022. Direct and sequential bioactivation of pemigatinib to reactive iminium ion intermediates culminate in mechanism-based inactivation of cytochrome P450 3A. Drug Metab Dispos. 50(5):529–540.

References

  • Hammond S, Thomson P, Meng X, Naisbitt D. 2021. In-vitro approaches to predict and study T-cell mediated hypersensitivity to drugs front. Front Immunol. 12:630530.
  • Naisbitt D, Olsson-Brown A, Gibson A, Meng X, Ogese M, Tailor A, Thomson P. 2020. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy. 75(4):781–797.
  • Segovia-Zafra A, Zeo-Sánchez D, Lopez-Gomez C, Perez-Valdes Z, Garcıa-Fuentes E, Andrade R, Lucena M, Villanueva-Paz M. 2021. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 11(12):3685–3726.
  • Sernoskie S, Jee A, Uetrecht J. 2021. The emerging role of the innate immune response in idiosyncratic drug reactions. Pharmacol Rev. 73(3):861–896.