189
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Cutting-edge strategies and critical advancements in characterization and quantification of metabolites concerning translational metabolomics

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 401-426 | Received 02 May 2022, Accepted 06 Sep 2022, Published online: 09 Nov 2022

References

  • Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, et al. 2020. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. Plant J. 103(5):1937–1958.
  • Ala-Korpela MJCC. 2018. Objective metabolomics research. Clin Chem. 64(1):30–33.
  • Alexovič M, Dotsikas Y, Bober P, Sabo J. 2018. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J Chromatogr B Anal Technol Biomed Life Sci. 1092:402–421.
  • Ali MRK, Wu Y, Han T, Zang X, Xiao H, Tang Y, Wu R, Fernández FM, El-Sayed MA. 2016. Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy. J Am Chem Soc. 138(47):15434–15442.
  • Alonso A, Marsal S, Julià A. 2015. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 3(23):23.
  • Arakaki AK, Skolnick J, McDonald JF. 2008. Marker metabolites can be therapeutic targets as well. Nature. 456(7221):443–443.
  • Ashrafian H, Sounderajah V, Glen R, Ebbels T, Blaise BJ, Kalra D, Kultima K, Spjuth O, Tenori L, Salek R, et al. 2021. Metabolomics: the stethoscope for the twenty-first century. Med Princ Pract. 30(4):301–310.
  • Aszyk J, Byliński H, Namieśnik J, Kot-Wasik A. 2018. Main strategies, analytical trends and challenges in LC-MS and ambient mass spectrometry–based metabolomics. TrAC Trends Anal Chem. 108:278–295.
  • Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ. 1984. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 30(3):426–432.
  • Barberini L, Restivo A, Noto A, Deidda S, Fattuoni C, Fanos V, Saba L, Zorcolo L, Mussap M. 2019. A gas chromatography-mass spectrometry (GC-MS) metabolomic approach in human colorectal cancer (CRC): the emerging role of monosaccharides and amino acids. Ann Transl Med. 7(23):727.
  • Barrilero R, Gil M, Amigó N, Dias CB, Wood LG, Garg ML, Ribalta J, Heras M, Vinaixa M, Correig X. 2018. LipSpin: a new bioinformatics tool for quantitative 1H NMR lipid profiling. Anal Chem. 90(3):2031–2040.
  • Beale DJ, Jones OA, Karpe AV, Dayalan S, Oh DY, Kouremenos KA, Ahmed W, Palombo EA. 2016. A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int J Mol Sci. 18(1):24.
  • Bearden DW, Beger RD, Broadhurst D, Dunn W, Edison A, Guillou C, Trengove R, Viant M, Wilson I. 2014. The new data quality task group (DQTG): ensuring high quality data today and in the future. Metabolomics. 10(4):539–540.
  • Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. 2012. LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B Analyt Technol Biomed Life Sci. 883–884:68–75.
  • Beger RD. 2018. Interest is high in improving quality control for clinical metabolomics: setting the path forward for community harmonization of quality control standards. Metabolomics. 15(1):1.
  • Beger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, Dasari S, Derr L, Evans A, Fischer S, et al. 2019. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics. 15(1):4.
  • Bell JD, Brown JCC, Kubal G, Sadler PJ. 1988. NMR-invisible lactate in blood plasma. FEBS Lett. 235(1–2):81–86.
  • Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, Rinehart D, Valentine E, Gowda H, Ubhi BK, et al. 2015. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 87(2):884–891.
  • Berisha A, Dold S, Guenther S, Desbenoit N, Takats Z, Spengler B, Römpp A. 2014. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods. Rapid Commun Mass Spectrom. 28(16):1779–1791.
  • Biacchi M, Said N, Beck A, Leize-Wagner E, François YN. 2017. Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis - mass spectrometry coupling: application to monoclonal antibody F(c/2) charge variants. J Chromatogr A. 1498:120–127.
  • Bingol K, Li DW, Zhang B, Brüschweiler R. 2016. Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem. 88(24):12411–12418.
  • Bingol K. 2018. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. High-throughput. 7(2):9.
  • Biswas NM, Shard A, Patel S, Sengupta P. 2018. Drug development and bioanalytical method validation for a novel anticancer molecule, 4-(dimethylamino)-2-(p-tolylamino) thiazole-5-carbonitrile. Drug Dev Res. 79(8):391–399.
  • Blum BC, Mousavi F, Emili A. 2018. Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol Omics. 14(5):307–319. 10.1039/C8MO00136G
  • Bonner R, Hopfgartner G. 2019. SWATH data independent acquisition mass spectrometry for metabolomics. TrAC Trends Anal Chem. 120:115278–115278.
  • Bonvin G, Veuthey JL, Rudaz S, Schappler J. 2012. Evaluation of a sheathless nanospray interface based on a porous tip sprayer for CE-ESI-MS coupling. Electrophoresis. 33(4):552–562.
  • Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. 2018. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 14(6):72.
  • Byrnes RW, Cotter D, Maer A, Li J, Nadeau D, Subramaniam S. 2009. An editor for pathway drawing and data visualization in the Biopathways Workbench. BMC Syst Biol. 3:99.
  • Cambiaghi A, Ferrario M, Masseroli M. 2017. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief Bioinform. 18(3):498–510.
  • Campillo N, Gavazov K, Viñas P, Hagarova I, Andruch V. 2020. Liquid-phase microextraction: update May 2016 to December 2018. Appl Spectrosc Rev. 55(4):307–326.
  • Cañueto D, Gómez J, Salek RM, Correig X, Cañellas N. 2018. rDolphin: a GUI R package for proficient automatic profiling of 1D 1 H-NMR spectra of study datasets. Metabolomics. 14(3):24.
  • Carr HY, Purcell EM. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 94(3):630–638.
  • Caspar AT, Meyer MR, Westphal F, Weber AA, Maurer HH. 2018. Nano liquid chromatography-high-resolution mass spectrometry for the identification of metabolites of the two new psychoactive substances N-(ortho-methoxybenzyl)-3,4-dimethoxyamphetamine and N-(ortho-methoxybenzyl)-4-methylmethamphetamine. Talanta. 188:111–123.
  • Castro-Perez J, Prakash C. 2020. Recent advances in mass spectrometric and other analytical techniques for the identification of drug metabolites. Identification and quantification of drugs, metabolites, drug metabolizing enzymes, and transporters. Amsterdam: Elsevier Science; p. 39–71.
  • Chaleckis R, Meister I, Zhang P, Wheelock CE. 2019. Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr Opin Biotechnol. 55:44–50.
  • Chang C, Xu G, Bai Y, Zhang C, Li X, Li M, Liu Y, Liu H. 2013. Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry. Anal Chem. 85(1):170–176.
  • Charris-Molina A, Riquelme G, Burdisso P, Hoijemberg PA. 2020. Consecutive queries to assess biological correlation in NMR metabolomics: performance of comprehensive search of multiplets over typical 1D (1)H NMR database search. J Proteome Res. 19(8):2977–2988.
  • Cheeseman J, Badia C, Thomson RI, Kuhnle G, Gardner RA, Spencer DIR, Osborn HMI. 2022. Quantitative standards of 4-O-acetyl- and 9-O-acetyl-N-acetylneuraminic acid for the analysis of plasma and serum. Chembiochem. 23(5):e202100662.
  • Chen H, Talaty NN, Takáts Z, Cooks RG. 2005. Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Anal Chem. 77(21):6915–6927.
  • Cho Y, Park Y, Sim B, Kim J, Lee H, Cho SN, Kang YA, Lee SG. 2020. Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach. Sci Rep. 10(1):3825.
  • Chylla RA, Hu K, Ellinger JJ, Markley JL. 2011. Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics. Anal Chem. 83(12):4871–4880.
  • Clendinen CS, Monge ME, Fernández FM. 2017. Ambient mass spectrometry in metabolomics. Analyst. 142(17):3101–3117.
  • Crook AA, Powers R. 2020. Quantitative NMR-based biomedical metabolomics: current status and applications. Molecules (Basel, Switzerland). 25(21):5128.
  • Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL. 2008. Metabolite identification via the Madison metabolomics consortium database. Nat Biotechnol. 26(2):162–164.
  • David A, Abdul-Sada A, Lange A, Tyler CR, Hill EM. 2014. A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. J Chromatogr A. 1365:72–85.
  • Defossez E, Bourquin J, Reuss S, Rasmann S, Glauser G. 2021. Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics. Mass Spectrom Rev. 2022:1–13.
  • Djukovic D, Nagana Gowda GA, Raftery D. 2013. Mass spectrometry and NMR spectroscopy–based quantitative metabolomics. Proteomic and metabolomic approaches to biomarker discovery. Cambridge (MA): Academic Press; p. 279–297.
  • Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Ramirez N, Ramon-Krauel M, Lerin C, Díaz M, Ibáñez L, Correig X, et al. 2016. eRah: a computational tool integrating spectral deconvolution and alignment with quantification and identification of metabolites in GC/MS-based metabolomics. Anal Chem. 88(19):9821–9829.
  • Domingo-Almenara X, Montenegro-Burke JR, Ivanisevic J, Thomas A, Sidibé J, Teav T, Guijas C, Aisporna AE, Rinehart D, Hoang L, et al. 2018. XCMS-MRM and METLIN-MRM: a cloud library and public resource for targeted analysis of small molecules. Nat Methods. 15(9):681–684.
  • Duvivier WF, van Beek TA, Nielen MW. 2016. Critical comparison of mass analyzers for forensic hair analysis by ambient ionization mass spectrometry. Rapid Commun Mass Spectrom. 30(21):2331–2340.
  • El Demeiry M, Ali A, Abouleila Y, Zarad W, El-Gendy H, Salam RA, Hadad G, Shimizu Y, Masujima T, Emara S. 2021. Direct infusion nano-electrospray ionization mass spectrometry for therapeutic drug monitoring of ciprofloxacin and its metabolites in human saliva. J Pharm Biomed Anal. 195:113866.
  • Emwas AH. 2015. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol. 1277:161–193.
  • Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, et al. 2019. NMR spectroscopy for metabolomics research. Metabolites. 9(7):123.
  • Emwas AH, Saccenti E, Gao X, McKay RT, Dos Santos V, Roy R, Wishart DS. 2018. Recommended strategies for spectral processing and post-processing of 1D (1)H-NMR data of biofluids with a particular focus on urine. Metabolomics. 14(3):31.
  • Fenaille F, Barbier Saint-Hilaire P, Rousseau K, Junot C. 2017. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: where do we stand? J Chromatogr A. 1526:1–12.
  • Fiehn O. 2002. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 48(1–2):155–171.
  • Foti RS, Dalvie DK. 2016. Cytochrome P450 and non-cytochrome P450 oxidative metabolism: contributions to the pharmacokinetics, safety, and efficacy of xenobiotics. Drug Metab Dispos. 44(8):1229–1245.
  • Franke AA, Biggs L, Yew JY, Lai JF. 2019. Areca alkaloids measured from buccal cells using DART-MS serve as accurate biomarkers for areca nut chewing. Drug Test Anal. 11(6):906–911.
  • Fratila RM, Gomez M, Sýkora S, Velders A. 2014. Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat Commun. 5(1):1–8.
  • Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, et al. 2017. The ChEMBL database in 2017. Nucleic Acids Res. 45(D1):D945–d954.
  • Gilmore IS, Heiles S, Pieterse C. 2019. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu Rev Anal Chem (Palo Alto, CA). 12(1):201–224.
  • Goodwin RJ, Bunch J, McGinnity DF. 2017. Mass spectrometry imaging in oncology drug discovery. Adv Cancer Res. 134:133–171.
  • González-Domínguez R, Sayago A, Fernández-Recamales Á. 2017. Metabolomics in Alzheimer’s disease: The need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. J Chromatogr B Anal Technol Biomed Life Sci. 1071:75–92.
  • Griffiths J. 2008. A brief history of mass spectrometry. Anal Chem. 80(15):5678–5683.
  • Guo J, Huan T. 2020. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem. 92(12):8072–8080.
  • Guo Z, Huang S, Wang J, Feng YL. 2020. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta. 219:121339.
  • Häckl M, Tauber P, Schweda F, Zacharias HU, Altenbuchinger M, Oefner PJ, Gronwald W. 2021. An R-package for the deconvolution and integration of 1D NMR data: metaboDecon1D. Metabolites. 11(7):452.
  • Hamidi S, Alipour-Ghorbani N. 2017. Liquid-phase microextraction of biomarkers: a review on current methods. J Liquid Chromatogr Relat Technol. 40(16):853–861.
  • Jain S, Jariyal H, Srivastava A, Sengupta P. 2020. Target specific intracellular quantification of etoposide by quadrupole-time of flight based mass spectrometric method. J Chromatogr B Analyt Technol Biomed Life Sci. 1152:122233.
  • Jézéquel T, Deborde CC, Maucourt MM, Zhendre V, Moing A, Giraudeau P. 2015. Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics 11(5):1131–1142.
  • Joo M, Park JM, Duong VA, Kwon D, Jeon J, Han M, Cho BK, Choi HK, Lee CG, Kang HG, et al. 2019. An automated high-throughput sample preparation method using double-filtration for serum metabolite LC-MS analysis. Anal Methods. 11(31):4060–4065.
  • Jones CM, Monge ME, Fernández FM. 2014. Metabolite profiling by direct analysis in real-time mass spectrometry. Methods Mol Biol. 1198:275–289.
  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1):D353–d361.
  • Kauppila J. 2020. Desorption Atmospheric Pressure Photoionization Coupled with Ion Mobility-Mass Spectrometry. Methods Mol Biol. 2084:223–233.
  • Kim HK, Choi YH, Verpoorte R. 2011. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol. 29(6):267–275.
  • Klont F, Jahn S, Grivet C, König S, Bonner R, Hopfgartner G. 2020. SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing. Talanta. 211:120747.
  • Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. 2011. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 7(3):307–328.
  • Kuhn S, Schlörer NE. 2015. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2–a free in-house NMR database with integrated LIMS for academic service laboratories. Magn Reson Chem. 53(8):582–589.
  • Lefort G, Liaubet L, Canlet C, Tardivel P, Père M-C, Quesnel H, Paris A, Iannuccelli N, Vialaneix N, Servien R. 2019. ASICS: an R package for a whole analysis workflow of 1D 1H NMR spectra. Bioinformatics. 35(21):4356–4363.
  • Li L, Chen TC, Ren Y, Hendricks PI, Cooks RG, Ouyang Z. 2014. Mini 12, miniature mass spectrometer for clinical and other applications–introduction and characterization. Anal Chem. 86(6):2909–2916.
  • Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. 2017. Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem. 86:277–304.
  • Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. 2018. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 14(8):e8126.
  • Ma P, Zhang Z, Zhou X, Luo J, Lu H, Wang Y. 2019. Characterizing semen abnormality male infertility using non-targeted blood plasma metabolomics. PLOS One. 14(7):e0219179.
  • Maciejewski MW, Schuyler AD, Gryk MR, Moraru II, Romero PR, Ulrich EL, Eghbalnia HR, Livny M, Delaglio F, Hoch J. 2017. NMRbox: a resource for biomolecular NMR computation. Biophys J. 112(8):1529–1534.
  • Maciel EVS, de Toffoli AL, Sobieski E, Nazário CED, Lancas F. 2020. Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: a review. Anal Chim Acta. 1103:11–31.
  • Mahmud I, Pinto FG, Rubio VY, Lee B, Pavlovich CP, Perera RJ, Garrett TJ. 2021. Rapid diagnosis of prostate cancer disease progression using paper spray ionization mass spectrometry. Anal Chem. 93(22):7774–7780.
  • Martínez-Periñán E, Revenga-Parra M, Zamora F, Pariente F, Lorenzo E. 2016. Nanostructured electrochemical detector for the quantification of amino acids related to metabolic diseases. Sens Actuators B Chem. 236(29):773–780.
  • mBuko A, Cheng L, Gustev A, Feldman A. 2020. The metabolomic profile of urine from prostate cancer patients using capillary electrophoresis mass spectrometry (CEMS). Philadelphia (PA): AACR.
  • Mediani A, Khatib A, Ismail A, Hamid M, Laji NH, Shaari K, Abas F. 2017. Application of BATMAN and BAYESIL for quantitative 1H-NMR based metabolomics of urine: discriminant analysis of lean, obese, and obese-diabetic rats. Metabolomics. 13(11):131.
  • Meiboom S, Gill D, Meiboom S, Gill D. 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrument. 29(8):688–691.
  • Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, et al. 2019. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47(D1):D930–d940.
  • Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. 2017. PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45(D1):D183–d189.
  • Mielczarek P, Silberring J, Smoluch M. 2020. Miniaturization in mass spectrometry. Mass Spectrom Rev. 39(5–6):453–470.
  • Miggiels P, Wouters B, van Westen GJ, Dubbelman A-C, Hankemeier T. 2019. Novel technologies for metabolomics: more for less. TrAC, Trends Anal Chem. 120:115323.
  • Misra BB. 2021. New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics. 17(5):49.
  • Mo H, Raftery D. 2008. Improved residual water suppression: WET180. J Biomol NMR. 41(2):105–111.
  • Nagana Gowda GA, Raftery D. 2015. Can NMR solve some significant challenges in metabolomics? J Magn Resonance. 260:144–160.
  • Nagana Gowda GA, Raftery D. 2017. Whole blood metabolomics by 1 H NMR spectroscopy provides a new opportunity to evaluate coenzymes and antioxidants. Anal Chem. 89(8):4620–4627.
  • Nassar AF, Wu T, Nassar SF, Wisnewski A. 2017. UPLC–MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today. 22(2):463–470.
  • Nemani KS, Shard A, Sengupta P. 2018. Establishment of a quantitative bioanalytical method for an acetylcholinesterase inhibitor Ethyl 3-(2-(4-fluorophenyl) amino)-4-phenylthiazol-5-yl)-3-oxopropanoate including its physicochemical characterization and in vitro metabolite profiling using Liquid Chromatography-Mass Spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 1096:214–222.
  • Nguyen BD, Meng X, Donovan KJ, Shaka AJ. 2007. SOGGY: solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. Jf Magn Resonance. 184(2):263–274.
  • Nguyen S, Fenn J. 2007. Gas-phase ions of solute species from charged droplets of solutions. Proc Natl Acad Sci USA. 104(4):1111–1117.
  • Nicholson JK, Gartland KPR. 1989. 1H NMR studies on protein binding of histidine, tyrosine and phenylalanine in blood plasma. NMR Biomed. 2(2):77–82.
  • Oberacher H, Sasse M, Antignac J-P, Guitton Y, Debrauwer L, Jamin EL, Schulze T, Krauss M, Covaci A, Caballero-Casero N, et al. 2020. A European proposal for quality control and quality assurance of tandem mass spectral libraries. Environ Sci Eur. 32(1):43.
  • O'Hagan S, Dunn WB, Brown M, Knowles JD, Kell DB. 2005. Extraction and GC/MS Analysis of the Human Blood Plasma Metabolome. Anal Chem. 77(1):290–303.
  • Ozcelikay G, Kaya SI, Ozkan E, Cetinkaya A, Nemutlu E, Kır S, Ozkan SA. 2022. Sensor-based MIP technologies for targeted metabolomic analysis. TrAC Trends Anal Chem. 146:116487.
  • Panday NK, Thakkar D, Patel S, Shard A, Sengupta PJBC. 2021. Metabolite profiling of IMID‐2, a novel anticancer molecule of piperazine derivative: In silico prediction, in vitro and in vivo metabolite characterization using UPLC–QTOF–MS/MS. Biomed Chromatogr. 35(6):e5082.
  • Park JM, Kim TY, Lee SY. 2010. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. Proc Natl Acad Sci USA. 107(33):14931–14936.
  • Parrot D, Papazian S, Foil D, Tasdemir D. 2018. Imaging the unimaginable: desorption electrospray ionization-imaging mass spectrometry (DESI-IMS) in natural product research. Planta Med. 84(9–10):584–593.
  • Pavlovich MJ, Musselman B, Hall AB. 2018. Direct analysis in real time-Mass spectrometry (DART-MS) in forensic and security applications. Mass Spectrom Rev. 37(2):171–187.
  • Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart DJM. 2019. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 9(4):76.
  • Pinu FR, Goldansaz SA, Jaine JJM. 2019. Translational metabolomics: current challenges and future opportunities. Metabolites. 9(6):108.
  • Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A. 2004. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 18(19):2331–2337.
  • Pruski P, MacIntyre DA, Lewis HV, Inglese P, Correia GD, Hansel TT, Bennett PR, Holmes E, Takats Z. 2017. Medical swab analysis using desorption electrospray ionization mass spectrometry: a noninvasive approach for mucosal diagnostics. Anal Chem. 89(3):1540–1550.
  • Puchades-Carrasco L, Pineda-Lucena A. 2017. Metabolomics applications in precision medicine: an oncological perspective. Curr Top Med Chem. 17(24):2740–2751.
  • Ramaswamy V, Hooker JW, Withers RS, Nast RE, Brey WW, Edison A. 2013. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe. J Magn Reson. 235:58–65.
  • Ramautar R, Somsen GW, de Jong GJ. 2019. CE-MS for metabolomics: developments and applications in the period 2016–2018. Electrophoresis. 40(1):165–179.
  • Ravanbakhsh S, Liu P, Bjordahl TC, Mandal R, Grant JR, Wilson M, Eisner R, Sinelnikov I, Hu X, Luchinat C, et al. 2015. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 10(5):e0124219–e0124219.
  • Ren J, Zhang D, Liu Y, Zhang R, Fang H, Guo S, Zhou D, Zhang M, Xu Y, Qiu L. 2016. Simultaneous quantification of serum nonesterified and esterified fatty acids as potential biomarkers to differentiate benign lung diseases from lung cancer. Sci Rep. 6(1):1–11.
  • Roberts LD, Souza AL, Gerszten RE, Clish C. 2012. Targeted metabolomics. Curr Protoc Mol Biol. 98(1):30.32. 31–30.32. 24.
  • Röhnisch HE, Eriksson J, Müllner E, Agback P, Sandström C, Moazzami AA. 2018. AQuA: an automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal Chem. 90(3):2095–2102.
  • Rojo D, Barbas C, Ruperez FJ. 2012. LC-MS metabolomics of polar compounds. Bioanalysis. 4(10):1235–1243.
  • Rosenberger L, Von Essen C, Khutia A, Kühn C, Urbahns K, Georgi K, Hartmann RW, Badolo LJDM. 2020. Crystalline Sponges as a sensitive and fast method for metabolite identification: application to gemfibrozil and its phase I and II metabolites. Drug Metab Dispos. 48(7):587–593.
  • Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT, Wolski W, Collins BC, Malmström J, Malmström L, et al. 2014. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 32(3):219–223.
  • Sahu AK, Sengupta P. 2020. Time of flight mass spectrometry based in vitro and in vivo metabolite profiling of ribociclib and their toxicity prediction. J Chromatogr B Analyt Technol Biomed Life Sci. 1147:122142.
  • Santbergen MJC, van der Zande M, Gerssen A, Bouwmeester H, Nielen MWF. 2020. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal Bioanal Chem. 412(5):1111–1122.
  • Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. 2016. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 27(12):1897–1905.
  • Segers K, Declerck S, Mangelings D, Heyden YV, Eeckhaut AVJB. 2019. Analytical techniques for metabolomic studies: a review. Bioanalysis. 11(24):2297–2318.
  • Semreen MH, Alniss H, Cacciatore S, El-Awady R, Mousa M, Almehdi AM, El-Huneidi W, Zerbini L, Soares NC. 2020. GC-MS based comparative metabolomic analysis of MCF-7 and MDA-MB-231 cancer cells treated with Tamoxifen and/or Paclitaxel. J Proteomics. 225:103875.
  • Senan O, Aguilar-Mogas A, Navarro M, Capellades J, Noon L, Burks D, Yanes O, Guimerà R, Sales-Pardo M. 2019. CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics. 35(20):4089–4097.
  • Sengupta P, Chatterjee B, Mandal UK, Gorain B, Pal T. 2017. Development and validation of a high throughput LC–MS/MS method for simultaneous quantitation of pioglitazone and telmisartan in rat plasma and its application to a pharmacokinetic study. J Pharm Anal. 7(6):381–387.
  • Sengupta P, Sarkar AK, Bhaumik U, Chatterjee B, Roy B, Chakraborty US, Pal TK. 2010. Development and validation of an LC-ESI-MS/MS method for simultaneous quantitation of olmesartan and pioglitazone in rat plasma and its pharmacokinetic application. Biomed Chromatogr. 24(12):1342–1349.
  • Shah SH, Newgard CB. 2015. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ Cardiovasc Genet. 8(2):410–419.
  • Sharma MK, Rathod R, Sengupta P. 2020. Mass spectrometry-based rapid quantitative bioanalysis of flibanserin: pharmacokinetic and brain tissue distribution study in female rats. J Anal Toxicol. 44(6):559–569.
  • Shin YS, Drolet B, Mayer R, Dolence K, Basile F. 2007. Desorption electrospray ionization-mass spectrometry of proteins. Anal Chem. 79(9):3514–3518.
  • Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. 2012. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta. 750:82–97.
  • Soekojo CY, De Mel S, Ooi M, Yan B, Chng WJ. 2018. Potential clinical application of genomics in multiple myeloma. Int J Mol Sci. 19(6):1721.
  • Sonawane D, Reddy A, Jadav T, Sahu AK, Tekade RK, Sengupta PJB. 2021. Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis. 13(11):913–930.
  • Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, Higashi R, Nair KS, et al. 2016. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44(D1):D463–70.
  • Suhre K, Gieger C. 2012. Genetic variation in metabolic phenotypes: study designs and applications. Nat Rev Genet. 13(11):759–769.
  • Suzuki M, Nishiumi S, Kobayashi T, Sakai A, Iwata Y, Uchikata T, Izumi Y, Azuma T, Bamba T, Yoshida M. 2017. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 31(10):886–894.
  • Takeo E, Sasano R, Shimma S, Bamba T, Fukusaki E. 2017. Solid-phase analytical derivatization for gas-chromatography–mass-spectrometry-based metabolomics. J Biosci Bioeng. 124(6):700–706.
  • Tang Y, Zhu Y, Sang S. 2020. A novel LC-MS based targeted metabolomic approach to study the biomarkers of food intake. Mol Nutr Food Res. 64(22):e2000615.
  • Tardivel PJC, Canlet C, Lefort G, Tremblay-Franco M, Debrauwer L, Concordet D, Servien R. 2017. ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics. 13(10):109.
  • Theodoridis GA, Gika HG, Want EJ, Wilson ID. 2012. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 711:7–16.
  • Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, et al. 2008. BioMagResBank. Nucleic Acids Res. 36:D402–408.
  • van der Laan T, Boom I, Maliepaard J, Dubbelman AC, Harms AC, Hankemeier T. 2020. Data-independent acquisition for the quantification and identification of metabolites in plasma. Metabolites. 10(12):514–514.
  • Vaqas B, Cameron SJ, Alexander JL, O'Neill KS, Kinross JM, Takats Z. 2019. The iKnife: development and clinical applications of rapid evaporative ionization mass spectrometry. In: The handbook of metabolic phenotyping. Elsevier; p. 219–236.
  • Vargas Medina DA, Maciel EVS, Lanças FM. 2020. Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices. TrAC Trends Anal Chem. 131:116003.
  • Wang J, Yan D, Zhao A, Hou X, Zheng X, Chen P, Bao Y, Jia W, Hu C, Zhang ZL, et al. 2019. Discovery of potential biomarkers for osteoporosis using LC-MS/MS metabolomic methods. Osteoporos Int. 30(7):1491–1499.
  • Wells RJ, Cheung J, Hook JM. 2004. Dimethylsulfone as a universal standard for analysis of organics by QNMR. Accred Qual Assur. 9(8):450–456.
  • Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, et al. 2008. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci. 871(2):164–173.
  • Wishart DS. 2011. Advances in metabolite identification. Bioanalysis. 3(15):1769–1782.
  • Wishart DS. 2016. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 15(7):473–484.
  • Wright Muelas M, Roberts I, Mughal F, O’Hagan S, Day PJ, Kell DBJM. 2020. An untargeted metabolomics strategy to measure differences in metabolite uptake and excretion by mammalian cell lines. Metabolomics. 16(10):1–12.
  • Wrona M, Mauriala T, Bateman KP, Mortishire-Smith RJ, O’Connor D. 2005. All-in-one’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun Mass Spectrom. 19(18):2597–2602.
  • Wu N, Wang W, Yi M, Cheng S, Wang D. 2018. Study of the metabolomics characteristics of patients with metabolic syndrome based on liquid chromatography quadrupole time-of-flight mass spectrometry. Ann Endocrinol (Paris). 79(1):37–44.
  • Wu X, Zhang J, Yan X, Zhu Y, Li W, Li P, Chen H, Zhang W, Cheng N, Xiang T. 2021. Characterization of liver failure by the analysis of exhaled breath by extractive electrospray ionization mass spectrometry (EESI-MS): a pilot study. Anal Lett. 54(6):1038–1054.
  • Xia J, Sinelnikov IV, Han B, Wishart DS. 2015. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 43(W1):W251–257.
  • Xiao J, Shi J, Li R, Her L, Wang X, Li J, Sorensen MJ, Bhatt-Mehta V, Zhu HJ. 2021. Developing a SWATH capillary LC-MS/MS method for simultaneous therapeutic drug monitoring and untargeted metabolomics analysis of neonatal plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 1179:122865.
  • Xie G, Wang L, Chen T, Zhou K, Zhang Z, Li J, Sun B, Guo Y, Wang X, Wang Y, et al. 2021. A metabolite array technology for precision medicine. Anal Chem. 93(14):5709–5717.
  • Yamini Y, Rezazadeh M, Seidi S. 2019. Liquid-phase microextraction – the different principles and configurations. TrAC Trends Anal Chem. 112:264–272.
  • Yang H, Lau WB, Lau B, Xuan Y, Zhou S, Zhao L, Luo Z, Lin Q, Ren N, Zhao X, et al. 2017. A mass spectrometric insight into the origins of benign gynecological disorders. Mass Spectrom Rev. 36(3):450–470.
  • Yin P, Xu G. 2014. Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications. J Chromatogr A. 1374:1–13.
  • Yoshida M, Hatano N, Nishiumi S, Irino Y, Izumi Y, Takenawa T, Azuma T. 2012. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry. J Gastroenterol. 47(1):9–20.
  • Yu H, Zhao Y, Zhang Y, Zhong L. 2020. Metabolic profiling of acromegaly using a GC-MS-based nontargeted metabolomic approach. Endocrine. 67(2):433–441.
  • Yuan M, Breitkopf SB, Yang X, Asara J. 2012. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 7(5):872–881.
  • Yuan X, Oleschuk RD. 2018. Advances in microchip liquid chromatography. Anal Chem. 90(1):283–301.
  • Zagade AD, Shard A, Shinde S, Sahu AK, Sengupta P. 2020. Bioanalysis and quadrupole-time of flight-mass spectrometry driven in vitro metabolite profiling of a new boronic acid-based anticancer molecule. J Chromatogr Sci. 58(9):796–803.
  • Zampieri M, Sekar K, Zamboni N, Sauer U. 2017. Frontiers of high-throughput metabolomics. Curr Opin Chem Biol. 36:15–23.
  • Zhang A, Liu Q, Zhao H, Zhou X, Sun H, Nan Y, Zou S, Ma CW, Wang X. 2016. Phenotypic characterization of nanshi oral liquid alters metabolic signatures during disease prevention. Sci Rep. 6(1):19333.
  • Zhang A, Sun H, Wang P, Han Y, Wang X. 2012. Modern analytical techniques in metabolomics analysis. Analyst. 137(2):293–300.
  • Zhang A, Sun H, Wang X. 2018. Mass spectrometry-driven drug discovery for development of herbal medicine. Mass Spectrom Rev. 37(3):307–320.
  • Zhang A, Sun H, Yan G, Wang P, Wang X. 2015. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int. 2015:1–6.
  • Zhang AH, Sun H, Qiu S, Wang XJ. 2013. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magn Reson Chem. 51(9):549–556. eng.
  • Zhang S, Wang H, Zhu M-J. 2019. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 196:249–254.
  • Zhang W, Segers K, Mangelings D, Van Eeckhaut A, Hankemeier T, Vander Heyden Y, Ramautar RJE. 2019. Assessing the suitability of capillary electrophoresis-mass spectrometry for biomarker discovery in plasma-based metabolomics. Electrophoresis. 40(18–19):2309–2320.
  • Zhang X, Zhu X, Wang C, Zhang H, Cai ZJO. 2016. Non-targeted and targeted metabolomics approaches to diagnosing lung cancer and predicting patient prognosis. Oncotarget. 7(39):63437–63448.
  • Zhou M, McDonald JF, Fernández FM. 2010. Optimization of a direct analysis in real time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting. J Am Soc Mass Spectrom. 21(1):68–75.
  • Zhu X, Chen Y, Subramanian R. 2014. Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem. 86(2):1202–1209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.