458
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy

Pages 50-74 | Received 20 Oct 2022, Accepted 19 Dec 2022, Published online: 27 Dec 2022

References

  • Aboutabl ME, Zordoky BNM, El‐Kadi AOS. 2009. 3‐Methylcholanthrene and benzo (a) pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. Br J Pharmacol. 158(7):1808–1819.
  • Aboutabl ME, Zordoky BNM, Hammock BD, El-Kadi AOS. 2011. Inhibition of soluble epoxide hydrolase confers cardioprotection and prevents cardiac cytochrome P450 induction by benzo (a) pyrene. J Cardiovasc Pharmacol. 57(3):273–281.
  • Aggarwal BB. 2004. Nuclear factor-κB: the enemy within. Cancer Cell. 6(3):203–208.
  • Aitken AE, Lee C-M, Morgan ET. 2008. Roles of nitric oxide in inflammatory downregulation of human cytochromes P450. Free Radic Biol Med. 44(6):1161–1168.
  • Aitken AE, Morgan ET. 2007. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 35(9):1687–1693.
  • Aitken AE, Richardson TA, Morgan ET. 2006. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 46:123–149.
  • Alammari AH, Shoieb SM, Maayah ZH, El-Kadi AOS. 2020. Fluconazole represses cytochrome P450 1B1 and its associated arachidonic acid metabolites in the heart and protects against angiotensin II-induced cardiac hypertrophy. J Pharm Sci. 109(7):2321–2335.
  • Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. 2018. Orphan G protein-coupled receptors: the role in CNS disorders. Biomed Pharmacother. 98:222–232.
  • Aliwarga T, Guo X, Evangelista EA, Lemaitre RN, Sotoodehnia N, Gharib SA, Zeldin DC, Liu Q, Totah RA. 2020. Higher epoxyeicosatrienoic acids in cardiomyocytes-specific CYP2J2 transgenic mice are associated with improved myocardial remodeling. Biomedicines. 8(6):144.
  • Alsaad AMS, Zordoky BNM, El-Sherbeni AA, El-Kadi AOS. 2012. Chronic doxorubicin cardiotoxicity modulates cardiac cytochrome P450-mediated arachidonic acid metabolism in rats. Drug Metab Dispos. 40(11):2126–2135.
  • Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. 2013. Role of cytochrome P450–mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev. 45(2):173–195.
  • Althurwi HN, Elshenawy OH, El-Kadi AOS. 2014. Fenofibrate modulates cytochrome P450 and arachidonic acid metabolism in the heart and protects against isoproterenol-induced cardiac hypertrophy. J Cardiovasc Pharmacol. 63(2):167–177.
  • Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AOS. 2015. Early changes in cytochrome P450s and their associated arachidonic acid metabolites play a crucial role in the initiation of cardiac hypertrophy induced by isoproterenol. Drug Metab Dispos. 43(8):1254–1266.
  • Althurwi HN, Tse MMY, Abdelhamid G, Zordoky BNM, Hammock BD, El‐Kadi AOS. 2013. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline‐induced cardiac hypertrophy. Br J Pharmacol. 168(8):1794–1807.
  • Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, III, Tranter M. 2019. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci. 133(22):2329–2344.
  • Anwar-Mohamed A, Elshenawy OH, El-Sherbeni AA, Abdelrady M, El-Kadi AOS. 2014. Acute arsenic treatment alters arachidonic acid and its associated metabolite levels in the brain of C57Bl/6 mice. Can J Physiol Pharmacol. 92(8):693–702.
  • Anwar-Mohamed A, Zordoky BNM, Aboutabl ME, El-Kadi AOS. 2010. Alteration of cardiac cytochrome P450-mediated arachidonic acid metabolism in response to lipopolysaccharide-induced acute systemic inflammation. Pharmacol Res. 61(5):410–418.
  • Ashkar S, Mesentsev A, Zhang W-X, Mastyugin V, Dunn MW, Laniado-Schwartzman M. 2004. Retinoic acid induces corneal epithelial CYP4B1 gene expression and stimulates the synthesis of inflammatory 12-hydroxyeicosanoids. J Ocul Pharmacol Ther. 20(1):65–74.
  • Bao Y, Wang X, Li W, Huo D, Shen X, Han Y, Tan J, Zeng Q, Sun C. 2011. 20-HETE induces apoptosis in neonatal rat cardiomyocytes through mitochondrial-dependent pathways. J Cardiovasc Pharmacol. 57(3):294–301.
  • Barbosa-Sicard E, Markovic M, Honeck H, Christ B, Muller DN, Schunck W-H. 2005. Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochem Biophys Res Commun. 329(4):1275–1281.
  • Bednar MM, Gross CE, Balazy M, Falck JR. 1997. Antineutrophil strategies. Neurology. 49(5 Suppl 4):S20–S22.
  • Bednar MM, Gross CE, Balazy MK, Belosludtsev Y, Colella DT, Falck JR, Balazy M. 2000. 16 (R)-hydroxy-5, 8, 11, 14-eicosatetraenoic acid, a new arachidonate metabolite in human polymorphonuclear leukocytes. Biochem Pharmacol. 60(3):447–455.
  • Bednar MM, Gross CE, Russell SR, Fuller SP, Ahern TP, Howard DB, Falck JR, Reddy KM, Balazy M. 2000. 16 (R)-hydroxyeicosatetraenoic acid, a novel cytochrome P450 product of arachidonic acid, suppresses activation of human polymorphonuclear leukocytes and reduces intracranial pressure in a rabbit model of thromboembolic stroke. Neurosurgery. 47(6):1410–1419.
  • Beigneux AP, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. 2002. Reduction in cytochrome P-450 enzyme expression is associated with repression of CAR (constitutive androstane receptor) and PXR (pregnane X receptor) in mouse liver during the acute phase response. Biochem Biophys Res Commun. 293(1):145–149.
  • Bièche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R, Beaune P, de Waziers I. 2007. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP) 1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics. 17(9):731–742.
  • Bishop‐Bailey D. 2000. Peroxisome proliferator‐activated receptors in the cardiovascular system. Br J Pharmacol. 129(5):823–834.
  • Bocher V, Chinetti G, Fruchart J-C, Staels B. 2002. Rôles des “Peroxisome Proliferator-Activated Receptors” (PPARs) dans la régulation du métabolisme des lipides et le contrôle de l’inflammation. J Soc Biol. 196(1):47–52.
  • Bottex-Gauthier C, Pollet S, Favier A, Vidal DR. 2002. The Rel/NF-kappa-B transcription factors: complex role in cell regulation. Pathol Biol. 50(3):204–211.
  • Brash AR. 1999. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 274(34):23679–23682.
  • Burgess A, Vanella L, Bellner L, Schwartzman ML, Abraham NG. 2012. Epoxyeicosatrienoic acids and heme oxygenase-1 interaction attenuates diabetes and metabolic syndrome complications. Prostaglandins Other Lipid Mediat. 97(1–2):1–16.
  • Burhop KE, Selig WM, Malik AB. 1988. Monohydroxyeicosatetraenoic acids (5-HETE and 15-HETE) induce pulmonary vasoconstriction and edema. Circ Res. 62(4):687–698.
  • Bystrom J, Wray JA, Sugden MC, Holness MJ, Swales KE, Warner TD, Edin ML, Zeldin DC, Gilroy DW, Bishop-Bailey D. 2011. Endogenous epoxygenases are modulators of monocyte/macrophage activity. PLoS One. 6(10):e26591.
  • Caligiuri SPB, Rodriguez-Leyva D, Aukema HM, Ravandi A, Weighell W, Guzman R, Pierce GN. 2016. Dietary flaxseed reduces central aortic blood pressure without cardiac involvement but through changes in plasma oxylipins. Hypertension. 68(4):1031–1038.
  • Campbell WB, Fleming I. 2010. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch Eur J Physiol. 459(6):881–895.
  • Campbell WB, Gebremedhin D, Pratt PF, Harder DR. 1996. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 78(3):415–423.
  • Campbell WB, Imig JD, Schmitz JM, Falck JR. 2017. Drugs in the pipeline series: orally active epoxyeicosatrienoic acid analogs. J Cardiovasc Pharmacol. 70(4):211–224.
  • Campbell WB. 2000. New role for epoxyeicosatrienoic acids as anti-inflammatory mediators. Trends Pharmacol Sci. 21(4):125–127.
  • Cao J, Singh SP, McClung JA, Joseph G, Vanella L, Barbagallo I, Jiang H, Falck JR, Arad M, Shapiro JI, et al. 2017. EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am J Physiol Circ Physiol. 313(2):H368–H380.
  • Cao J, Tsenovoy PL, Thompson EA, Falck JR, Touchon R, Sodhi K, Rezzani R, Shapiro JI, Abraham NG. 2015. Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway. Prostaglandins Other Lipid Mediat. 116-117:76–86.
  • Capdevila J, Marnett LJ, Chacos N, Prough RA, Estabrook RW. 1982. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc Natl Acad Sci U S A. 79(3):767–770.
  • Capdevila JH, Falck JR, Harris RC. 2000. Cytochrome P450 and arachidonic acid bioactivation: molecular and functional properties of the arachidonate monooxygenase. J Lipid Res. 41(2):163–181.
  • Carroll MA, Balazy M, Huang D-D, Rybalova S, Falck JR, Mcgiff JC. 1997. Cytochrome P450-derived renal HETEs: storage and release. Kidney Int. 51(6):1696–1702.
  • Certíková Chábová V, Kramer HJ, Vanecková I, Vernerová Z, Eis V, Tesar V, Skaroupková P, Thumová M, Schejbalová S, Husková Z, et al. 2007. Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in Ren-2 transgenic rats. Vascul Pharmacol. 47(2–3):145–159.
  • Certíková Chábová V, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Kujal P, Vernerová Z, Vanourková Z, Kopkan L, Kramer HJ, Falck JR, et al. 2010. Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertensioninduced end-organ damage in Ren-2 transgenic rats. Clin Sci. 118(10):617–632.
  • Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. 2015. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in R en‐2 transgenic hypertensive rats with aorto‐caval fistula. Clin Exp Pharmacol Physiol. 42(7):795–807.
  • Chadderdon SM, Belcik JT, Bader L, Kievit P, Grove KL, Lindner JR. 2016. Vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin-resistant primates. Int J Obes. 40(10):1600–1603.
  • Chehal MK, Granville DJ. 2006. Cytochrome p450 2C (CYP2C) in ischemic heart injury and vascular dysfunction. Can J Physiol Pharmacol. 84(1):15–20.
  • Chen D, Whitcomb R, MacIntyre E, Tran V, Do ZN, Sabry J, Patel DV, Anandan SK, Gless R, Webb HK. 2012. Pharmacokinetics and pharmacodynamics of AR9281, an inhibitor of soluble epoxide hydrolase, in single‐and multiple‐dose studies in healthy human subjects. J Clin Pharmacol. 52(3):319–328.
  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9(6):7204–7218. https://pubmed.ncbi.nlm.nih.gov/29467962.
  • Chen R, Jiang J, Xiao X, Wang D. 2005. Effects of epoxyeicosatrienoic acids on levels of eNOS phosphorylation and relevant signaling transduction pathways involved. Sci China C Life Sci. 48(5):495–505.
  • Cheng J, Ou J-S, Singh H, Falck JR, Narsimhaswamy D, Pritchard KA, Jr, Schwartzman ML. 2008. 20-hydroxyeicosatetraenoic acid causes endothelial dysfunction via eNOS uncoupling. Am J Physiol Heart Circ Physiol. 294(2):H1018–H1026.
  • Cheng J, Wu C-C, Gotlinger KH, Zhang F, Falck JR, Narsimhaswamy D, Schwartzman ML. 2010. 20-Hydroxy-5, 8, 11, 14-eicosatetraenoic acid mediates endothelial dysfunction via IκB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther. 332(1):57–65.
  • Chiamvimonvat N, Ho C-M, Tsai H-J, Hammock BD. 2007. The soluble epoxide hydrolase as a pharmaceutical target for hypertension. J Cardiovasc Pharmacol. 50(3):225–237.
  • Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I. 2003. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys. 414(1):91–100.
  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. 2004. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos. 32(8):840–847.
  • Ciepiela P, Bączkowski T, Drozd A, Kazienko A, Stachowska E, Kurzawa R. 2015. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization–a prospective analysis of follicular fluid and a matched oocyte in a ‘one follicle–one retrieved oocyte–one resulting embryo’ investigational setting. PLoS One. 10(3):e0119087.
  • Cui X, Kalsotra A, Robida AM, Matzilevich D, Moore AN, Boehme CL, Morgan ET, Dash PK, Strobel HW. 2003. Expression of cytochromes P450 4F4 and 4F5 in infection and injury models of inflammation. Biochim Biophys Acta (BBA)-General Subj. 1619(3):325–331.
  • Daikh BE, Lasker JM, Raucy JL, Koop DR. 1994. Regio-and stereoselective epoxidation of arachidonic acid by human cytochromes P450 2C8 and 2C9. J Pharmacol Exp Ther. 271(3):1427–1433.
  • Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. 2020. CYP2J2 molecular recognition: a new axis for therapeutic design. Pharmacol Ther. 215:107601.
  • Delcayre C, Silvestre J-S. 1999. Aldosterone and the heart: towards a physiological function? Cardiovasc Res. 43(1):7–12.
  • Delerive P, Fruchart JC, Staels B. 2001. Eurosterone meeting–peroxisome proliferator-activated receptors in inflammation control. J Endocrinol. 169(3):453–459.
  • Deng Y, Theken KN, Lee CR. 2010. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol. 48(2):331–341.
  • Dhanya BL, Swathy RP, Indira M. 2014. Selenium downregulates oxidative stress-induced activation of leukotriene pathway in experimental rats with diabetic cardiac hypertrophy. Biol Trace Elem Res. 161(1):107–115.
  • Dorrance AM, Rupp N, Pollock DM, Newman JW, Hammock BD, Imig JD. 2005. An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol. 46(6):842–848.
  • Du G, Lv J, He L, Ma Y. 2011. Influence of silencing soluble epoxide hydrolase with RNA interference on cardiomyocytes apoptosis induced by doxorubicin. J Huazhong Univ Sci Technolog Med Sci. 31(3):324–328.
  • Dyerberg J, Bang HO. 1979. Lipid metabolism, atherogenesis, and haemostasis in Eskimos: the role of the prostaglandin-3 family. Pathophysiol Haemost Thromb. 8(3–5):227–233.
  • Elkhatali S, El-Sherbeni AA, Elshenawy OH, Abdelhamid G, El-Kadi AOS. 2015. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy. Toxicol Appl Pharmacol. 289(3):550–559.
  • Elkhatali S, Maayah ZH, El-Sherbeni AA, Elshenawy OH, Abdelhamid G, Shoieb SM, El-Kadi AOS. 2017. Inhibition of mid-chain HETEs protects against angiotensin II–induced cardiac hypertrophy. J Cardiovasc Pharmacol. 70(1):16–24.
  • El-Sherbeni AA, El-Kadi AOS. 2014. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol. 87(3):456–466.
  • El-Sherbeni AA, El-Kadi AOS. 2017. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev. 49(1):1–17.
  • Enayetallah AE, French RA, Thibodeau MS, Grant DF. 2004. Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. J Histochem Cytochem. 52(4):447–454.
  • Erten Y, Tulmac M, Derici U, Pasaoglu H, Reis KA, Bali M, Arinsoy T, Cengel A, Sindel S. 2005. An association between inflammatory state and left ventricular hypertrophy in hemodialysis patients. Ren Fail. 27(5):581–589.
  • Evangelista EA, Aliwarga T, Sotoodehnia N, Jensen PN, McKnight B, Lemaitre RN, Totah RA, Gharib SA. 2020. CYP2J2 modulates diverse transcriptional programs in adult human cardiomyocytes. Sci Rep. 10(1):5329.
  • Falck JR, Reddy LM, Reddy YK, Bondlela M, Krishna UM, Ji Y, Sun J, Liao JK. 2003. 11, 12-Epoxyeicosatrienoic acid (11, 12-EET): structural determinants for inhibition of TNF-α-induced VCAM-1 expression. Bioorg Med Chem Lett. 13(22):4011–4014.
  • Fang L, Ellims AH, Beale AL, Taylor AJ, Murphy A, Dart AM. 2017. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am J Transl Res. 9(11):5063–5073.
  • Fer M, Dréano Y, Lucas D, Corcos L, Salaün J-P, Berthou F, Amet Y. 2008. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch Biochem Biophys. 471(2):116–125.
  • Fernández-Velasco M, González-Ramos S, Boscá L. 2014. Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochem J. 458(2):187–193.
  • Fleming I, Michaelis UR, Bredenkötter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R. 2001. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res. 88(1):44–51.
  • Fleming I. 2011. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev. 30(3–4):541–555.
  • Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF, Dakarapu R, Gandham SK, Reddy NR, Graves JP, Gruzdev A, et al. 2017. 20-HETE signals through G-protein–coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ Res. 120(11):1776–1788.
  • Gerges SH, El-Kadi AOS. 2022. Sex differences in eicosanoid formation and metabolism: a possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther. 234:108046.
  • Gerges SH, El-Kadi AOS. 2022. Sexual dimorphism in the expression of cytochrome P450 enzymes in rat heart, liver, kidney, lung, brain, and small intestine. Drug Metab Dispos. 51:DMD-AR-2022-000915.
  • Gonzalez-Fernandez E, Staursky D, Lucas K, Nguyen BV, Li M, Liu Y, Washington C, Coolen LM, Fan F, Roman RJ. 2020. 20-HETE enzymes and receptors in the neurovascular unit: implications in cerebrovascular disease. Front Neurol. 11:983.
  • González-Núñez D, Claria J, Rivera F, Poch E. 2001. Increased levels of 12 (S)-HETE in patients with essential hypertension. Hypertension. 37(2):334–338.
  • Gross ER, Nithipatikom K, Hsu AK, Peart JN, Falck JR, Campbell WB, Gross GJ. 2004. Cytochrome P450 ω-hydroxylase inhibition reduces infarct size during reperfusion via the sarcolemmal KATP channel. J Mol Cell Cardiol. 37(6):1245–1249.
  • Gruntman AM, Flotte TR. 2018. The rapidly evolving state of gene therapy. FASEB J. 32(4):1733–1740.
  • Guengerich FP. 2008. Cytochrome p450 and chemical toxicology. Chem Res Toxicol. 21(1):70–83.
  • Harris TR, Li N, Chiamvimonvat N, Hammock BD. 2008. The potential of soluble epoxide hydrolase inhibition in the treatment of cardiac hypertrophy. Congest Heart Fail. 14(4):219–224.
  • He Z, Zhang X, Chen C, Wen Z, Hoopes SL, Zeldin DC, Wang DW. 2015. Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II. Cardiovasc Res. 105(3):304–317.
  • Hercule HC, Schunck W-H, Gross V, Seringer J, Leung FP, Weldon SM, da Costa Goncalves AC, Huang Y, Luft FC, Gollasch M. 2009. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 29(1):54–60.
  • Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen REW, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, et al. 2013. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation. 128(13):1420–1432.
  • Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand J-L, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, et al. 2009. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 11(2):119–129.
  • Hildreth K, Kodani SD, Hammock BD, Zhao L. 2020. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. J Nutr Biochem. 86:108484.
  • Hilfiker-Kleiner D, Shukla P, Klein G, Schaefer A, Stapel B, Hoch M, Müller W, Scherr M, Theilmeier G, Ernst M, et al. 2010. Continuous glycoprotein-130–mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation. 122(2):145–155.
  • Hirota H, Yoshida K, Kishimoto T, Taga T. 1995. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci U S A. 92(11):4862–4866.
  • Hofmann U, Frantz S. 2013. How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol. 108(4):356. https://pubmed.ncbi.nlm.nih.gov/23740214.
  • Huang C-C, Chang M-T, Leu H-B, Yin W-H, Tseng W-K, Wu Y-W, Lin T-H, Yeh H-I, Chang K-C, Wang J-H. 2020. Association of arachidonic acid-derived lipid mediators with subsequent onset of acute myocardial infarction in patients with coronary artery disease. Sci Rep. 10(1):8105.
  • Huang H, Morisseau C, Wang J, Yang T, Falck JR, Hammock BD, Wang M-H. 2007. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am J Physiol Renal Physiol. 293(1):F342–F349.
  • Hutchens MP, Nakano T, Dunlap J, Traystman RJ, Hurn PD, Alkayed NJ. 2008. Soluble epoxide hydrolase gene deletion reduces survival after cardiac arrest and cardiopulmonary resuscitation. Resuscitation. 76(1):89–94.
  • Ignatov A, Robert J, Gregory‐Evans C, Schaller HC. 2006. RANTES stimulates Ca2+ mobilization and inositol trisphosphate (IP3) formation in cells transfected with G protein‐coupled receptor 75. Br J Pharmacol. 149(5):490–497.
  • Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. 2002. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 39(2 Pt 2):690–694.
  • Imig JD, Zhao X, Zaharis CZ, Olearczyk JJ, Pollock DM, Newman JW, Kim I-H, Watanabe T, Hammock BD. 2005. An orally active epoxide hydrolase inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension. Hypertension. 46(4):975–981.
  • Imig JD. 2005. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol. 289(3):F496–F503.
  • Imig JD. 2012. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 92(1):101–130.
  • Imig JD. 2018. Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther. 192:1–19.
  • Imig JD. 2019. Epoxyeicosanoids in hypertension. Physiol Res. 68(5):695–704.
  • Inceoglu B, Schmelzer KR, Morisseau C, Jinks SL, Hammock BD. 2007. Soluble epoxide hydrolase inhibition reveals novel biological functions of epoxyeicosatrienoic acids (EETs). Prostaglandins Other Lipid Mediat. 82(1–4):42–49.
  • Ishizuka T, Cheng J, Singh H, Vitto MD, Manthati VL, Falck JR, Laniado-Schwartzman M. 2008. 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-κB activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther. 324(1):103–110.
  • Issan Y, Hochhauser E, Guo A, Gotlinger KH, Kornowski R, Leshem-Lev D, Lev E, Porat E, Snir E, Thompson CI, et al. 2013. Elevated level of pro-inflammatory eicosanoids and EPC dysfunction in diabetic patients with cardiac ischemia. Prostaglandins Other Lipid Mediat. 100-101:15–21.
  • Ivanov I, Romanov S, Ozdoba C, Holzhütter HG, Myagkova G, Kuhn H. 2004. Enantioselective substrate specificity of 15-lipoxygenase 1. Biochemistry. 43(50):15720–15728.
  • Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. 2017. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther. 179:47–83.
  • Jennings BL, Sahan-Firat S, Estes AM, Das K, Farjana N, Fang XR, Gonzalez FJ, Malik KU. 2010. Cytochrome P450 1B1 contributes to angiotensin II–induced hypertension and associated pathophysiology. Hypertension. 56(4):667–674.
  • Jiang J-G, Chen C-L, Card JW, Yang S, Chen J-X, Fu X-N, Ning Y-G, Xiao X, Zeldin DC, Wang DW. 2005. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65(11):4707–4715.
  • Jiang JG, Chen RJ, Xiao B, Yang S, Wang JN, Wang Y, Cowart LA, Xiao X, Wang DW, Xia Y. 2007. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat. 82(1–4):162–174.
  • Johnson AL, Edson KZ, Totah RA, Rettie AE. 2015. Cytochrome P450 ω-hydroxylases in inflammation and cancer. Adv Pharmacol. 74:223–262.
  • Kalsotra A, Anakk S, Brommer CL, Kikuta Y, Morgan ET, Strobel HW. 2007. Catalytic characterization and cytokine mediated regulation of cytochrome P450 4Fs in rat hepatocytes. Arch Biochem Biophys. 461(1):104–112.
  • Kalsotra A, Zhao J, Anakk S, Dash PK, Strobel HW. 2007. Brain trauma leads to enhanced lung inflammation and injury: evidence for role of P4504Fs in resolution. J Cereb Blood Flow Metab. 27(5):963–974.
  • Kaur S, Gill SS. 1985. Age-related changes in the activities of epoxide hydrolases in different tissues of mice. Drug Metab Dispos. 13(6):711–715.
  • Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya J, Yokoyama M, et al. 2009. Cardiac 12/15 lipoxygenase–induced inflammation is involved in heart failure. J Exp Med. 206(7):1565–1574.
  • Ke S, Rabson AB, Germino JF, Gallo MA, Tian Y. 2001. Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-α and lipopolysaccharide. J Biol Chem. 276(43):39638–39644.
  • Keserü B, Barbosa-Sicard E, Popp R, Fisslthaler B, Dietrich A, Gudermann T, Hammock BD, Falck JR, Weissmann N, Busse R, et al. 2008. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. Faseb J. 22(12):4306–4315.
  • Khan MAH, Pavlov TS, Christain SV, Neckář J, Staruschenko A, Gauthier KM, Capdevila JH, Falck JR, Campbell WB, Imig JD. 2014. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin Sci. 127(7):463–474.
  • Khan MZ, He L. 2017. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology. 234(8):1181–1207.
  • Kim DH, Vanella L, Inoue K, Burgess A, Gotlinger K, Manthati VL, Koduru SR, Zeldin DC, Falck JR, Schwartzman ML, et al. 2010. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell–derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ. Stem Cells Dev. 19(12):1863–1873.
  • Kim MS, Shigenaga J, Moser A, Feingold K, Grunfeld C. 2003. Repression of farnesoid X receptor during the acute phase response. J Biol Chem. 278(11):8988–8995.
  • Kiss L, Bier J, Röder Y, Weissmann N, Grimminger F, Seeger W. 2008. Direct and simultaneous profiling of epoxyeicosatrienoic acid enantiomers by capillary tandem column chiral-phase liquid chromatography with dual online photodiode array and tandem mass spectrometric detection. Anal Bioanal Chem. 392(4):717–726.
  • Kompa AR, Wang BH, Xu G, Zhang Y, Ho P-Y, Eisennagel S, Thalji RK, Marino JP, Kelly DJ, Behm DJ, et al. 2013. Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction. Int J Cardiol. 167(1):210–219.
  • Kong EKC, Huang Y, Sanderson JE, Chan K-B, Yu S, Yu C-M. 2010. Baicalein and wogonin inhibit collagen deposition in SHR and WKY cardiac fibroblast cultures. BMB Rep. 43(4):297–303.
  • Kong EKC, Yu S, Sanderson JE, Chen K-B, Huang Y, Yu C-M. 2011. A novel anti-fibrotic agent, baicalein, for the treatment of myocardial fibrosis in spontaneously hypertensive rats. Eur J Pharmacol. 658(2–3):175–181.
  • Kroetz DL, Xu F. 2005. Regulation and inhibition of arachidonic acid [omega]-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol. 45:413–438.
  • Kuehl FA, Jr, Egan RW. 1980. Prostaglandins, arachidonic acid, and inflammation. Science. 210(4473):978–984.
  • Kuusisto J, Kärjä V, Sipola P, Kholová I, Peuhkurinen K, Jääskeläinen P, Naukkarinen A, Ylä-Herttuala S, Punnonen K, Laakso M. 2012. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart. 98(13):1007–1013.
  • Lee C-M, Kim B-Y, Li L, Morgan ET. 2008. Nitric oxide-dependent proteasomal degradation of cytochrome P450 2B proteins. J Biol Chem. 283(2):889–898.
  • Levick SP, Loch DC, Taylor SM, Janicki JS. 2007. Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J Immunol. 178(2):641–646.
  • Levis BE, Binkley PF, Shapiro CL. 2017. Cardiotoxic effects of anthracycline-based therapy: what is the evidence and what are the potential harms? Lancet Oncol. 18(8):e445–e456.
  • Li N, Liu J-Y, Timofeyev V, Qiu H, Hwang SH, Tuteja D, Lu L, Yang J, Mochida H, Low R, et al. 2009. Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: insight gained using metabolomic approaches. J Mol Cell Cardiol. 47(6):835–845.
  • Liu Y, Tang H, Liu X, Chen H, Feng N, Zhang J, Wang C, Qiu M, Yang J, Zhou X. 2019. Frontline Science: reprogramming COX‐2, 5‐LOX, and CYP4A‐mediated arachidonic acid metabolism in macrophages by salidroside alleviates gouty arthritis. J Leukoc Biol. 105(1):11–24.
  • Liu Y, Zhang Y, Schmelzer K, Lee T-S, Fang X, Zhu Y, Spector AA, Gill S, Morisseau C, Hammock BD, et al. 2005. The antiinflammatory effect of laminar flow: the role of PPARγ, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proc Natl Acad Sci U S A. 102(46):16747–16752.
  • López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Hwang SH, Titos E, Lopategi A, Hammock BD, Arroyo V, Clària J. 2015. Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides. Proc Natl Acad Sci U S A. 112(2):536–541.
  • Lv X, Wan J, Yang J, Cheng H, Li Y, Ao Y, Peng R. 2008. Cytochrome P450 ω-hydroxylase inhibition reduces cardiomyocyte apoptosis via activation of ERK1/2 signaling in rat myocardial ischemia-reperfusion. Eur J Pharmacol. 596(1–3):118–126.
  • Maayah ZH, Abdelhamid G, El-Kadi AOS. 2015. Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol Toxicol. 31(4–5):241–259.
  • Maayah ZH, Althurwi HN, Abdelhamid G, Lesyk G, Jurasz P, El-Kadi AOS. 2016. CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacol Res. 105:28–43.
  • Maayah ZH, Althurwi HN, El-Sherbeni AA, Abdelhamid G, Siraki AG, El-Kadi AOS. 2017. The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem. 429(1–2):151–165.
  • Maayah ZH, El-Kadi AOS. 2016. 5-, 12-and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK-and NF-κB-dependent mechanism. Arch Toxicol. 90(2):359–373.
  • Maayah ZH, Elshenawy OH, Althurwi HN, Abdelhamid G, El-Kadi AOS. 2015. Human fetal ventricular cardiomyocyte, RL-14 cell line, is a promising model to study drug metabolizing enzymes and their associated arachidonic acid metabolites. J Pharmacol Toxicol Methods. 71:33–41.
  • Maayah ZH, Levasseur J, Siva Piragasam R, Abdelhamid G, Dyck JRB, Fahlman RP, Siraki AG, El-Kadi AOS. 2018. 2-Methoxyestradiol protects against pressure overload-induced left ventricular hypertrophy. Sci Rep. 8(1):1–15.
  • Maciejewska D, Ossowski P, Drozd A, Ryterska K, Jamioł-Milc D, Banaszczak M, Kaczorowska M, Sabinicz A, Raszeja-Wyszomirska J, Stachowska E. 2015. Metabolites of arachidonic acid and linoleic acid in early stages of non-alcoholic fatty liver disease—A pilot study. Prostaglandins Other Lipid Mediat. 121(Pt B):184–189.
  • Malaplate-Armand C, Ferrari L, Masson C, Siest G, Batt AM. 2003. Astroglial CYP1B1 up-regulation in inflammatory/oxidative toxic conditions: IL-1β effect and protection by N-acetylcysteine. Toxicol Lett. 138(3):243–251.
  • Mandy MY, Aboutabl ME, Althurwi HN, Elshenawy OH, Abdelhamid G, El-Kadi AOS. 2013. Cytochrome P450 epoxygenase metabolite, 14, 15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. Vascul Pharmacol. 58(5–6):363–373.
  • Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. 2012. Inflammation in myocardial diseases. Circ Res. 110(1):126–144.
  • Marino J, Joseph P. 2009. Soluble epoxide hydrolase, a target with multiple opportunities for cardiovascular drug discovery. Curr Top Med Chem. 9(5):452–463.
  • Matavelli LC, Huang J, Siragy HM. 2011. Angiotensin AT2 receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension. 57(2):308–313.
  • Matsumura N, Takahara S, Maayah ZH, Parajuli N, Byrne NJ, Shoieb SM, Soltys C-LM, Beker DL, Masson G, El-Kadi AOS, et al. 2018. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J Mol Cell Cardiol. 125:162–173.
  • May MJ, Ghosh S. 1998. Signal transduction through NF-κB. Immunol Today. 19(2):80–88.
  • McKay LI, Cidlowski JA. 1999. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways. Endocr Rev. 20(4):435–459.
  • Merabet N, Bellien J, Glevarec E, Nicol L, Lucas D, Remy-Jouet I, Bounoure F, Dreano Y, Wecker D, Thuillez C, et al. 2012. Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure. J Mol Cell Cardiol. 52(3):660–666.
  • Minamiyama Y, Takemura S, Akiyama T, Imaoka S, Inoue M, Funae Y, Okada S. 1999. Isoforms of cytochrome P450 on organic nitrate-derived nitric oxide release in human heart vessels. FEBS Lett. 452(3):165–169.
  • Miyata N, Seki T, Tanaka Y, Omura T, Taniguchi K, Doi M, Bandou K, Kametani S, Sato M, Okuyama S, et al. 2005. Beneficial effects of a new 20-hydroxyeicosatetraenoic acid synthesis inhibitor, TS-011 [N-(3-chloro-4-morpholin-4-yl) phenyl-N′-hydroxyimido formamide], on hemorrhagic and ischemic stroke. J Pharmacol Exp Ther. 314(1):77–85.
  • Monsen ER, Okey R, Lyman RL. 1962. Effect of diet and sex on the relative lipid composition of plasma and red blood cells in the rat. Metabolism. 11:1113–1124.
  • Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gösele C, Heuser A, Fischer R, Schmidt C, Schirdewan A, et al. 2008. Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet. 40(5):529–537.
  • Morgan ET. 2001. Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos. 29(3):207–212.
  • Morgan ET. 2009. Impact of infectious and inflammatory disease on cytochrome P450–mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 85(4):434–438.
  • Morin C, Sirois M, Echave V, Gomes MM, Rousseau E. 2008. EET displays anti-inflammatory effects in TNF-α–stimulated human bronchi: putative Role of CPI-17. Am J Respir Cell Mol Biol. 38(2):192–201.
  • Moshal KS, Zeldin DC, Sithu SD, Sen U, Tyagi N, Kumar M, Hughes WM, Metreveli N, Rosenberger DSE, Singh M, et al. 2008. Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP‐9 via inhibition of NF‐κβ in hyperhomocysteinemia. J Cell Physiol. 215(3):771–781.
  • Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8(12):958–969.
  • Muller DN, Schmidt C, Barbosa-Sicard E, Wellner M, Gross V, Hercule H, Markovic M, Honeck H, Luft FC, Schunck W-H. 2007. Mouse Cyp4a isoforms: enzymatic properties, gender-and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochem J. 403(1):109–118.
  • Murray PJ, Wynn TA. 2011. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11(11):723–737.
  • Muthalif MM, Benter IF, Karzoun N, Fatima S, Harper J, Uddin MR, Malik KU. 1998. 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 95(21):12701–12706.
  • Nakamura M, Sadoshima J. 2018. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15(7):387–407. doi:10.1038/s41569-018-0007-y.
  • Neckář J, Hye Khan MA, Gross GJ, Cyprová M, Hrdlička J, Kvasilová A, Falck JR, Campbell WB, Sedláková L, Škutová Š, et al. 2019. Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin Sci. 133(8):939–951.
  • Newman JW, Morisseau C, Hammock BD. 2005. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res. 44(1):1–51.
  • Ng VY, Huang Y, Reddy LM, Falck JR, Lin ET, Kroetz DL. 2007. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor α. Drug Metab Dispos. 35(7):1126–1134.
  • Nithipatikom K, Brody DM, Tang AT, Manthati VL, Falck JR, Williams CL, Campbell WB. 2010. Inhibition of carcinoma cell motility by epoxyeicosatrienoic acid (EET) antagonists. Cancer Sci. 101(12):2629–2636.
  • Nithipatikom K, Gross ER, Endsley MP, Moore JM, Isbell MA, Falck JR, Campbell WB, Gross GJ. 2004. Inhibition of cytochrome P450ω-hydroxylase: a novel endogenous cardioprotective pathway. Circ Res. 95(8):e65–e71.
  • Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK. 1999. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 285(5431):1276–1279.
  • Norwood S, Liao J, Hammock BD, Yang G-Y. 2010. Epoxyeicosatrienoic acids and soluble epoxide hydrolase: potential therapeutic targets for inflammation and its induced carcinogenesis. Am J Transl Res. 2(4):447–457.
  • Omura T, Tanaka Y, Miyata N, Koizumi C, Sakurai T, Fukasawa M, Hachiuma K, Minagawa T, Susumu T, Yoshida S, et al. 2006. Effect of a new inhibitor of the synthesis of 20-HETE on cerebral ischemia reperfusion injury. Stroke. 37(5):1307–1313.
  • Pace S, Sautebin L, Werz O. 2017. Sex-biased eicosanoid biology: impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol. 145:1–11.
  • Pang W, Li N, Ai D, Niu X, Guan Y, Zhu Y. 2011. Activation of peroxisome proliferator‐activated receptor‐γ downregulates soluble epoxide hydrolase in cardiomyocytes. Clin Exp Pharmacol Physiol. 38(6):358–364.
  • Panigrahy D, Edin ML, Lee CR, Huang S, Bielenberg DR, Butterfield CE, Barnés CM, Mammoto A, Mammoto T, Luria A, et al. 2012. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J Clin Invest. 122(1):178–191.
  • Panigrahy D, Greene ER, Pozzi A, Wang DW, Zeldin DC. 2011. EET signaling in cancer. Cancer Metastasis Rev. 30(3–4):525–540.
  • Parmentier J-H, Muthalif MM, Saeed AE, Malik KU. 2001. Phospholipase D activation by norepinephrine is mediated by 12 (S)-, 15 (S)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase A2: tyrosine phosphorylation of phospholipase D2 in response to norepinephrine. J Biol Chem. 276(19):15704–15711.
  • Pascale JV, Lucchesi PA, Garcia V. 2021. Unraveling the role of 12-and 20-HETE in cardiac pathophysiology: G-protein– coupled receptors, pharmacological inhibitors, and transgenic approaches. J Cardiovasc Pharmacol. 77(6):707–717.
  • Pasceri V, Wu HD, Willerson JT, Yeh ETH. 2000. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator–activated receptor-γ activators. Circulation. 101(3):235–238.
  • Patten RD, Hall-Porter MR. 2009. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2(2):138–144.
  • Pfister SL, Gauthier KM, Campbell WB. 2010. Vascular pharmacology of epoxyeicosatrienoic acids. Adv Pharmacol. 60:27–59.
  • Pokreisz P, Fleming I, Kiss L, Barbosa-Sicard E, Fisslthaler B, Falck JR, Hammock BD, Kim I-H, Szelid Z, Vermeersch P, et al. 2006. Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension. 47(4):762–770.
  • Powell WS, Rokach J. 2015. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta (BBA) Molecular Cell Biol Lipids. 1851(4):340–355.
  • Pozzi A, Macias-Perez I, Abair T, Wei S, Su Y, Zent R, Falck JR, Capdevila JH. 2005. Characterization of 5, 6-and 8, 9-epoxyeicosatrienoic acids (5, 6-and 8, 9-EET) as potent in vivo angiogenic lipids. J Biol Chem. 280(29):27138–27146.
  • Prasad S, Ravindran J, Aggarwal BB. 2010. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem. 336(1–2):25–37.
  • Regitz-Zagrosek V, Kararigas G. 2017. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev. 97(1):1–37.
  • Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R. 2010. Sex and gender differences in myocardial hypertrophy and heart failure. Circ J. 74(7):1265–1273.
  • Renic M, Klaus JA, Omura T, Kawashima N, Onishi M, Miyata N, Koehler RC, Harder DR, Roman RJ. 2009. Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 29(3):629–639.
  • Renton KW. 2004. Cytochrome P450 regulation and drug biotransformation during inflammation and infection. Curr Drug Metab. 5(3):235–243.
  • Revermann M, Mieth A, Popescu L, Paulke A, Wurglics M, Pellowska M, Fischer AS, Steri R, Maier TJ, Schermuly RT, et al. 2011. A pirinixic acid derivative (LP105) inhibits murine 5‐lipoxygenase activity and attenuates vascular remodelling in a murine model of aortic aneurysm. Br J Pharmacol. 163(8):1721–1732.
  • Roederer MW. 2009. Cytochrome P450 enzymes and genotype-guided drug therapy. Curr Opin Mol Ther. 11(6):632–640.
  • Roman RJ. 2002. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 82(1):131–185.
  • Rompe F, Artuc M, Hallberg A, Alterman M, Ströder K, Thöne-Reineke C, Reichenbach A, Schacherl J, Dahlöf B, Bader M, et al. 2010. Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor κB. Hypertension. 55(4):924–931.
  • Sacerdoti D, Colombrita C, Di Pascoli M, Schwartzman ML, Bolognesi M, Falck JR, Gatta A, Abraham NG. 2007. 11, 12-Epoxyeicosatrienoic acid stimulates heme-oxygenase-1 in endothelial cells. Prostaglandins Other Lipid Mediat. 82(1–4):155–161.
  • Sahan-Firat S, Jennings BL, Yaghini FA, Song CY, Estes AM, Fang XR, Farjana N, Khan AI, Malik KU. 2010. 2, 3′, 4, 5′-Tetramethoxystilbene prevents deoxycorticosterone-salt-induced hypertension: contribution of cytochrome P-450 1B1. Am J Physiol Circ Physiol. 299(6):H1891–H1901.
  • Samokhvalov V, Jamieson KL, Darwesh AM, Keshavarz-Bahaghighat H, Lee TYT, Edin M, Lih F, Zeldin DC, Seubert JM. 2018. Deficiency of soluble epoxide hydrolase protects cardiac function impaired by LPS-induced acute inflammation. Front Pharmacol. 9:1572.
  • Sasaki M, Hori MT, Hino T, Golub MS, Tuck ML. 1997. Elevated 12-lipoxygenase activity in the spontaneously hypertensive rat. Am J Hypertens. 10(4 Pt 1):371–378.
  • Schmelzer KR, Kubala L, Newman JW, Kim I-H, Eiserich JP, Hammock BD. 2005. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci U S A. 102(28):9772–9777.
  • Sethi G, Sung B, Aggarwal BB. 2008. Nuclear factor-κB activation: from bench to bedside. Exp Biol Med. 233(1):21–31.
  • Shi Z, He Z, Wang DW. 2022. CYP450 epoxygenase metabolites, epoxyeicosatrienoic acids, as novel anti-inflammatory mediators. Molecules. 27(12):3873.
  • Shoieb SM, Dakarapu R, Falck JR, El-Kadi AOS. 2021. Novel synthetic analogues of 19 (S/R)-hydroxyeicosatetraenoic acid exhibit noncompetitive inhibitory effect on the activity of cytochrome P450 1A1 and 1B1. Eur J Drug Metab Pharmacokinet. 46(5):613–624.
  • Shoieb SM, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. 2020. Cytochrome P450-derived eicosanoids and inflammation in liver diseases. Prostaglandins Other Lipid Mediat. 147:106400.
  • Shoieb SM, El-Kadi AOS. 2018. S-enantiomer of 19-hydroxyeicosatetraenoic acid preferentially protects against angiotensin II-induced cardiac hypertrophy. Drug Metab Dispos. 46(8):1157–1168.
  • Shoieb SM, El-Sherbeni AA, El-Kadi AOS. 2019a. Identification of 19-(S/R) hydroxyeicosatetraenoic acid as the first endogenous noncompetitive inhibitor of cytochrome P450 1B1 with enantioselective activity. Drug Metab Dispos. 47(2):67–70.
  • Shoieb SM, El-Sherbeni AA, El-Kadi AOS. 2019b. Subterminal hydroxyeicosatetraenoic acids: crucial lipid mediators in normal physiology and disease states. Chem Biol Interact. 299:140–150.
  • Silvestre J-S, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic J-M, Swynghedauw B, Delcayre C. 1998. Myocardial production of aldosterone and corticosterone in the rat: physiological regulation. J Biol Chem. 273(9):4883–4891.
  • Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, Gonzalez FJ. 2000. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 275(51):40504–40510.
  • Singh H, Cheng J, Deng H, Kemp R, Ishizuka T, Nasjletti A, Schwartzman ML. 2007. Vascular cytochrome P450 4A expression and 20-hydroxyeicosatetraenoic acid synthesis contribute to endothelial dysfunction in androgen-induced hypertension. Hypertension. 50(1):123–129.
  • Smith KR, Pinkerton KE, Watanabe T, Pedersen TL, Ma SJ, Hammock BD. 2005. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc Natl Acad Sci U S A. 102(6):2186–2191.
  • Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. 2018. Arachidonic acid metabolites in cardiovascular and metabolic diseases. IJMS. 19(11):3285.
  • Spector AA, Norris AW. 2007. Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol. 292(3):C996–1012.
  • Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause K-H, Madamanchi NR, Runge MS. 2019. NADPH oxidase 4 regulates inflammation in ischemic heart failure: role of soluble epoxide hydrolase. Antioxid Redox Signal. 31(1):39–58.
  • Sudhahar V, Shaw S, Imig JD. 2010. Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem. 17(12):1181–1190.
  • Sunman JA, Hawke RL, LeCluyse EL, Kashuba ADM. 2004. Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab Dispos. 32(3):359–363.
  • Takeda N, Manabe I. 2011. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam. 2011:535241.
  • Theken KN, Deng Y, Kannon MA, Miller TM, Poloyac SM, Lee CR. 2011. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab Dispos. 39(1):22–29.
  • Thum T, Borlak J. 2000. Gene expression in distinct regions of the heart. Lancet. 355(9208):979–983.
  • Tian Y. 2009. Ah receptor and NF-κB interplay on the stage of epigenome. Biochem Pharmacol. 77(4):670–680.
  • Tsai M-J, Chang W-A, Tsai P-H, Wu C-Y, Ho Y-W, Yen M-C, Lin Y-S, Kuo P-L, Hsu Y-L. 2017. Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells. IJMS. 18(7):1353.
  • Tsao C-C, Foley J, Coulter SJ, Maronpot R, Zeldin DC, Goldstein JA. 2000. CYP2C40, a unique arachidonic acid 16-hydroxylase, is the major CYP2C in murine intestinal tract. Mol Pharmacol. 58(2):279–287.
  • Tunctan B, Korkmaz B, Buharalioglu CK, Firat SS, Anjaiah S, Falck J, Roman RJ, Malik KU. 2008. A 20-hydroxyeicosatetraenoic acid agonist, N-[20-hydroxyeicosa-5 (Z), 14 (Z)-dienoyl] glycine, opposes the fall in blood pressure and vascular reactivity in endotoxin-treated rats. Shock. 30(3):329–335.
  • Tunctan B, Senol SP, Temiz-Resitoglu M, Yilmaz DE, Guden DS, Bahceli O, Horat MF, Sahan-Firat S, Sari AN, Falck JR, et al. 2022. Activation of GPR75 signaling pathway contributes to the effect of a 20-HETE mimetic, 5, 14-HEDGE, to prevent hypotensive and tachycardic responses to lipopolysaccharide in a rat model of septic shock. J Cardiovasc Pharmacol. 80(2):276–293.
  • Umannová L, Zatloukalová J, Machala M, Krcmár P, Májková Z, Hennig B, Kozubík A, Vondrácek J. 2007. Tumor necrosis factor-α modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver “stem-like” cells. Toxicol Sci. 99(1):79–89.
  • Vacková Š, Kikerlová S, Melenovsky V, Kolář F, Imig JD, Kompanowska-Jezierska E, Sadowski J, Červenka L. 2019. Altered renal vascular responsiveness to vasoactive agents in rats with angiotensin II-dependent hypertension and congestive heart failure. Kidney Blood Press Res. 44(4):792–809.
  • Van den Akker F, De Jager SCA, Sluijter JPG. 2013. Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm. 2013:181020.
  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 11(10):700–714.
  • VanRollins M, Baker RC, Sprecher HW, Murphy RC. 1984. Oxidation of docosahexaenoic acid by rat liver microsomes. J Biol Chem. 259(9):5776–5783.
  • Velten M, Duerr GD, Pessies T, Schild J, Lohner R, Mersmann J, Dewald O, Zacharowski K, Klaschik S, Hilbert T, et al. 2012. Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice. Cardiovasc Res. 96(3):422–432.
  • Vitale C, Mendelsohn ME, Rosano G. 2009. Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol. 6(8):532–542.
  • von Jeinsen B, Watrous J, Henglin M, Rong J, Niiranen TJ, Vasan RS, Larson MG, Jain M, Cheng S. 2017. Eicosanoid variation may contribute to sex differences in cardiovascular risk. Circulation. 136(suppl_1):A19156–A19156.
  • Wallukat G, Morwinski R, Kühn H. 1994. Modulation of the beta-adrenergic response of cardiomyocytes by specific lipoxygenase products involves their incorporation into phosphatidylinositol and activation of protein kinase C. J Biol Chem. 269(46):29055–29060.
  • Wang B, Zeng H, Wen Z, Chen C, Wang DW. 2016. CYP 2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPK α2 and enhancing nuclear translocation of Akt1. Aging Cell. 15(5):940–952.
  • Wang D, DuBois RN. 2012. Epoxyeicosatrienoic acids: a double-edged sword in cardiovascular diseases and cancer. J Clin Invest. 122(1):19–22.
  • Wang H, Lin L, Jiang J, Wang Y, Lu ZY, Bradbury JA, Lih FB, Wang DW, Zeldin DC. 2003. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther. 307(2):753–764.
  • Wang N, Verna L, Chen N-G, Chen J, Li H, Forman BM, Stemerman MB. 2002. Constitutive activation of peroxisome proliferator-activated receptor-γ suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Biol Chem. 277(37):34176–34181.
  • Wang W, Lu M. 1995. Effect of arachidonic acid on activity of the apical K + channel in the thick ascending limb of the rat kidney. J Gen Physiol. 106(4):727–743.
  • Wang Y, Wei X, Xiao X, Hui R, Card JW, Carey MA, Wang DW, Zeldin DC. 2005. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J Pharmacol Exp Ther. 314(2):522–532.
  • Wang Z-H, B Davis B, Jiang D-Q, Zhao T-T, Xu D-Y. 2013. Soluble epoxide hydrolase inhibitors and cardiovascular diseases. Curr Vasc Pharmacol. 11(1):105–111.
  • Wen Y, Gu J, Liu Y, Wang PH, Sun Y, Nadler JL. 2001. Overexpression of 12-lipoxygenase causes cardiac fibroblast cell growth. Circ Res. 88(1):70–76.
  • Wen Y, Gu J, Peng X, Zhang G, Nadler J. 2003. Overexpression of 12-lipoxygenase and cardiac fibroblast hypertrophy. Trends Cardiovasc Med. 13(4):129–136.
  • Wu J, Dai F, Li C, Zou Y. 2020. Gender differences in cardiac hypertrophy. J Cardiovasc Transl Res. 13(1):73–84.
  • Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. 1996. Molecular Cloning and Expression of CYP2J2, a Human Cytochrome P450 Arachidonic Acid Epoxygenase Highly Expressed in Heart (∗). J Biol Chem. 271(7):3460–3468.
  • Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai H-J, Kim I-H, Tuteja D, Mateo RKP, Singapuri A, et al. 2006. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A. 103(49):18733–18738.
  • Xu L, Brink M. 2016. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. Biochim Biophys Acta (BBA) Molecular Cell Res. 1863(7):1894–1903.
  • Xu X, Zhang XA, Wang DW. 2011. The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Adv Drug Deliv Rev. 63(8):597–609.
  • Yaghi A, Sims SM. 2005. Constrictor-induced translocation of NFAT3 in human and rat pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol. 289(6):L1061–L1074.
  • Yang F, Dong A, Mueller P, Caicedo J, Sutton AM, Odetunde J, Barrick CJ, Klyachkin YM, Abdel-Latif A, Smyth SS. 2012. Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PLoS One. 2012;7(8):e40196.
  • Yousif MHM, Benter IF, Roman RJ. 2009. Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury. Auton Autacoid Pharmacol. 29(1–2):33–41.
  • Yu S, Reddy JK. 2007. Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta (BBA) Molecular Cell Biol Lipids. 1771(8):936–951.
  • Zeldin DC, Dubois RN, Falck JR, Capdevila JH. 1995. Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys. 322(1):76–86.
  • Zeldin DC, Moomaw CR, Jesse N, Tomer KB, Beetham J, Hammock BD, Wu S. 1996. Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. Arch Biochem Biophys. 330(1):87–96.
  • Zeldin DC. 2001. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem. 276(39):36059–36062.
  • Zeng Q, Han Y, Bao Y, Li W, Li X, Shen X, Wang X, Yao F, O'Rourke ST, Sun C. 2010. 20-HETE increases NADPH oxidase-derived ROS production and stimulates the L-type Ca2+ channel via a PKC-dependent mechanism in cardiomyocytes. Am J Physiol Heart Circ Physiol. 299(4):H1109–H1117.
  • Zhang B, Cao H, Rao GN. 2006. Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14, 15-epoxyeicosatrienoic acid-induced angiogenesis. J Biol Chem. 281(2):905–914.
  • Zhang F, Deng H, Kemp R, Singh H, Gopal VR, Falck JR, Laniado-Schwartzman M, Nasjletti A. 2005. Decreased levels of cytochrome P450 2E1–derived eicosanoids sensitize renal arteries to constrictor agonists in spontaneously hypertensive rats. Hypertension. 45(1):103–108.
  • Zhang L, Li Y, Chen M, Su X, Yi D, Lu P, Zhu D. 2014. 15‐LO/15‐HETE mediated vascular adventitia fibrosis via p38 MAPK‐dependent TGF‐β. J Cell Physiol. 229(2):245–257.
  • Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. 2022. Epoxyeicosatrienoic acid: a potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother. 153:113326.
  • Zhang Y, El-Sikhry H, Chaudhary KR, Batchu SN, Shayeganpour A, Jukar TO, Bradbury JA, Graves JP, DeGraff LM, Myers P, et al. 2009. Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol. 297(1):H37–H46.
  • Zhao G, Wang J, Xu X, Jing Y, Tu L, Li X, Chen C, Cianflone K, Wang P, Dackor RT, et al. 2012. Epoxyeicosatrienoic acids protect rat hearts against tumor necrosis factor-α-induced injury. J Lipid Res. 53(3):456–466.
  • Zhao X, Quigley JE, Yuan J, Wang M-H, Zhou Y, Imig JD. 2006. PPAR-α activator fenofibrate increases renal CYP-derived eicosanoid synthesis and improves endothelial dilator function in obese Zucker rats. Am J Physiol Heart Circ Physiol. 290(6):H2187–H2195.
  • Zhou B, Wang X, Li F, Wang Y, Yang L, Zhen X, Tan W. 2017. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol Med Rep. 16(1):174–180.
  • Zhou C, Huang J, Chen J, Lai J, Zhu F, Xu X, Wang DW. 2016. CYP2J2-derived EETs attenuated angiotensin II-induced adventitial remodeling via reduced inflammatory response. Cell Physiol Biochem. 39(2):721–739.
  • Zhou Y, Khan H, Xiao J, Cheang WS. 2021. Effects of arachidonic acid metabolites on cardiovascular health and disease. IJMS. 22(21):12029.
  • Zhu Y, Schieber EB, McGiff JC, Balazy M. 1995. Identification of arachidonate P-450 metabolites in human platelet phospholipids. Hypertension. 25(4 Pt 2):854–859.
  • Zordoky BNM, Aboutabl ME, El-Kadi AOS. 2008. Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metab Dispos. 36(11):2277–2286.
  • Zordoky BNM, Anwar-Mohamed A, Aboutabl ME, El-Kadi AOS. 2010. Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol. 242(1):38–46.
  • Zordoky BNM, El-Kadi AOS. 2009. Role of NF-κB in the regulation of cytochrome P450 enzymes. Curr Drug Metab. 10(2):164–178.
  • Zordoky BNM, El-Kadi AOS. 2010. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther. 125(3):446–463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.