408
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Antitubercular drugs induced liver injury: an updated insight into molecular mechanisms

Pages 239-253 | Received 01 Mar 2023, Accepted 12 May 2023, Published online: 22 May 2023

References

  • Abbara A, Chitty S, Roe JK, Ghani R, Collin SM, Ritchie A, Kon OM, Dzvova J, Davidson H, Edwards TE, et al. 2017. Drug-induced liver injury from antituberculous treatment: a retrospective study from a large TB centre in the UK. BMC Infect Dis. 17(1):231.
  • Acharya SK. 2021. Acute liver failure: Indian perspective. Clin Liver Dis. 18(3):143–149.
  • Ali AAM, Abdel-Ghaffar O, Aly DAM. 2022. The protective effect of naringenin against pyrazinamide-induced hepatotoxicity in male Wistar rats. JOBAZ. 83(1):49.
  • Attri S, Rana SV, Vaiphei K, Sodhi CP, Katyal R, Goel RC, Nain CK, Singh K. 2000. Isoniazid and rifampicin-induced oxidative hepatic injury-protection by N-acetylcysteine. Hum Exp Toxicol. 19(9):517–522.
  • Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. 2011. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 54(4):773–794.
  • Bénichou C. 1990. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol. 11:272–276.
  • Bhilare NV, Dhaneshwar SS, Mahadik KR, Dasgupta A. 2022. Co-drug of isoniazid and sulfur containing antioxidant for attenuation of hepatotoxicity and treatment of tuberculosis. Drug Chem Toxicol. 45(2):850–860.
  • Biswas A, Santra S, Bishnu D, Dhali GK, Chowdhury A, Santra A. 2020. Isoniazid and rifampicin produce hepatic fibrosis through an oxidative stress-dependent mechanism. Int J Hepatol. 2020:6987295.
  • Björnsson ES. 2020. Epidemiology, predisposing factors, and outcomes of drug-induced liver injury. Clin Liver Dis. 24(1):1–10.
  • Björnsson HK, Björnsson ES. 2022. Drug-induced liver injury: pathogenesis, epidemiology, clinical features, and practical management. Eur J Intern Med. 97:26–31.
  • Chamorro JG, Castagnino JP, Musella RM, Nogueras M, Aranda FM, Frías A, Visca M, Aidar O, Perés S, de Larrañaga GF. 2013. Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. J Gastroenterol Hepatol. 28(2):323–328.
  • Chen J, Raymond K. 2006. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 5:3.
  • Chen X, Xu J, Zhang C, Yu T, Wang H, Zhao M, Duan ZH, Zhang Y, Xu JM, Xu DX. 2011. The protective effects of ursodeoxycholic acid on isoniazid plus rifampicin induced liver injury in mice. Eur J Pharmacol. 659(1):53–60.
  • Cheng J, Krausz KW, Li F, Ma X, Gonzalez FJ. 2013. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid. Toxicol Appl Pharmacol. 266(2):245–253.
  • Chou C, Veracruz N, Chitnis AS, Wong RJ. 2022. Risk of drug-induced liver injury in chronic hepatitis B and tuberculosis co-infection: a systematic review and meta-analysis. J Viral Hepat. 29(12):1107–1114.
  • Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. 2006. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J Hepatol. 45(1):117–126.
  • Dartois VA, Rubin EJ. 2022. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol. 20(11):685–701.
  • Dash A, Figler RA, Sanyal AJ, Wamhoff BR. 2017. Drug-induced steatohepatitis. Expert Opin Drug Metab Toxicol. 13(2):193–204.
  • Debre R, Perdrizet S, Lotte A, Naveau M, Lert F. 1973. Isoniazid chemoprophylaxis of latent primary tuberculosis: in five trial centres in France from 1959 to 1969. Int J Epidemiol. 2(2):153–160.
  • Devaraj E, Perumal E, Subramaniyan R, Mustapha N. 2022. Liver fibrosis: extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology. 76(1):275–285.
  • Devarbhavi H, Patil M, Reddy VV, Singh R, Joseph T, Ganga D. 2018. Drug-induced acute liver failure in children and adults: results of a single-centre study of 128 patients. Liver Int. 38(7):1322–1329.
  • Devarbhavi H, Singh R, Patil M, Sheth K, Adarsh CK, Balaraju G. 2013. Outcome and determinants of mortality in 269 patients with combination anti-tuberculosis drug-induced liver injury. J Gastroenterol Hepatol. 28(1):161–167.
  • Donato MT, Jiménez N, Serralta A, Mir J, Castell JV, Gómez-Lechón MJ. 2007. Effects of steatosis on drug-metabolizing capability of primary human hepatocytes. Toxicol in Vitro. 21(2):271–276.
  • Edwards BD, Mah H, Sabur NF, Brode SK. 2023. Hepatotoxicity and tuberculosis treatment outcomes in chronic liver disease. J Assoc Med Microbiol Infect Dis Can. 8(1):64–74.
  • Enriquez-Cortina C, Almonte-Becerril M, Clavijo-Cornejo D, Palestino-Domínguez M, Bello-Monroy O, Nuño N, López A, Bucio L, Souza V, Hernández-Pando R, et al. 2013. Hepatocyte growth factor protects against isoniazid/rifampicin-induced oxidative liver damage. Toxicol Sci. 135(1):26–36.
  • Erwin ER, Addison AP, John SF, Olaleye OA, Rosell RC. 2019. Pharmacokinetics of isoniazid: the good, the bad, and the alternatives. Tuberculosis. 116S:S66–S70.
  • European Association for the Study of the Liver. 2019. Electronic address: [email protected]; Clinical practice guideline panel: chair: panel members; EASL governing board representative: EASL clinical practice guidelines: drug-induced liver injury. J Hepatol. 70(6):1222–1261.
  • Ezhilarasan D, Evraerts J, Brice S, Buc-Calderon P, Karthikeyan S, Sokal E, Najimi M. 2016. Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 Cells. J Clin Exp Hepatol. 6(3):167–174.
  • Ezhilarasan D, Raghunandhakumar S. 2021. Boldine treatment protects acetaminophen-induced liver inflammation and acute hepatic necrosis in mice. J Biochem Mol Toxicol. 35(4):e22697.
  • Ezhilarasan D. 2021a. Dapsone-induced hepatic complications: it’s time to think beyond methemoglobinemia. Drug Chem Toxicol. 44(3):330–333.
  • Ezhilarasan D. 2021b. Hepatotoxic potentials of methotrexate: understanding the possible toxicological molecular mechanisms. Toxicology. 458:152840.
  • Ezhilarasan D, Sokal E, Najimi M. 2018. Hepatic fibrosis: it is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int. 17(3):192–197.
  • Fountain FF, Tolley E, Chrisman CR, Self TH. 2005. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic. Chest. 128(1):116–123.
  • Centers for Disease Control and Prevention. 2001. Fatal and severe hepatitis associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection–New York and Georgia, 2000. JAMA. 285(20):2572–2573.
  • Guo HL, Hassan HM, Ding PP, Wang SJ, Chen X, Wang T, Sun LX, Zhang LY, Jiang ZZ. 2017. Pyrazinamide-induced hepatotoxicity is alleviated by 4-PBA via inhibition of the PERK-eIF2α-ATF4-CHOP pathway. Toxicology. 378:65–75.
  • Guo HL, Hassan HM, Zhang Y, Dong SZ, Ding PP, Wang T, Sun LX, Zhang LY, Jiang ZZ. 2016. Pyrazinamide induced rat cholestatic liver injury through inhibition of FXR regulatory effect on bile acid synthesis and transport. Toxicol Sci. 152(2):417–428.
  • Halilbasic E, Claudel T, Trauner M. 2013. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 58(1):155–168.
  • Hassan HM, Guo HL, Yousef BA, Luyong Z, Zhenzhou J. 2015. Hepatotoxicity mechanisms of isoniazid: a mini-review. J Appl Toxicol. 35(12):1427–1432.
  • He F, Ru X, Wen T. 2020. NRF2, a transcription factor for stress response and beyond. IJMS. 21(13):4777.
  • He X, Song Y, Wang L, Xu J. 2020. Protective effect of pyrrolidine dithiocarbamate on isoniazid/rifampicin‑induced liver injury in rats. Mol Med Rep. 21(1):463–469.
  • Holdiness MR. 1984. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 9(6):511–544.
  • Hoofnagle JH, Björnsson ES. 2019. Drug-induced liver injury–types and phenotypes. N Engl J Med. 381(3):264–273.
  • Huang JH, Zhang C, Zhang DG, Li L, Chen X, Xu DX. 2016. Rifampicin-induced hepatic lipid accumulation: association with up-regulation of peroxisome proliferator-activated receptor γ in mouse liver. PLOS One. 11(11):e0165787.
  • Hussain Z, Zhu J, Ma X. 2021. Metabolism and hepatotoxicity of pyrazinamide, an antituberculosis drug. Drug Metab Dispos. 49(8):679–682.
  • Ichai P, Saliba F, Antoun F, Azoulay D, Sebagh M, Antonini TM, Escaut L, Delvart V, Castaing D, Samuel D. 2010. Acute liver failure due to antitubercular therapy: strategy for antitubercular treatment before and after liver transplantation. Liver Transpl. 16(10):1136–1146.
  • Iorga A, Dara L, Kaplowitz N. 2017. Drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. IJMS. 18(5):1018.
  • Jaramillo-Valverde L, Levano KS, Tarazona DD, Capristano S, Zegarra-Chapoñan R, Sanchez C, Yufra-Picardo VM, Tarazona-Santos E, Ugarte-Gil C, Guio H. 2022. NAT2 and CYP2E1 polymorphisms and antituberculosis drug-induced hepatotoxicity in Peruvian patients. Mol Genet Genomic Med. 10(8):e1987.
  • Jia ZL, Cen J, Wang JB, Zhang F, Xia Q, Wang X, Chen XQ, Wang RC, Hsiao CD, Liu KC, et al. 2019. Mechanism of isoniazid-induced hepatotoxicity in zebrafish larvae: activation of ROS-mediated ERS, apoptosis and the Nrf2 pathway. Chemosphere. 227:541–550.
  • Kabbara WK, Sarkis AT, Saroufim PG. 2016. Acute and fatal isoniazid-induced hepatotoxicity: a case report and review of the literature. Case Rep Infect Dis. 2016:3617408.
  • Karthikeyan S. 2005. Isoniazid and rifampicin treatment on phospholipids and their subfractions in liver tissue of rabbits. Drug Chem Toxicol. 28(3):273–280.
  • Kim JH, Nam WS, Kim SJ, Kwon OK, Seung EJ, Jo JJ, Shresha R, Lee TH, Jeon TW, Ki SH, et al. 2017. Mechanism investigation of rifampicin-induced liver injury using comparative toxicoproteomics in mice. IJMS. 18(7):1417.
  • Kolarić TO, Ninčević V, Smolić R, Smolić M, Wu GY. 2019. Mechanisms of hepatic cholestatic drug injury. J Clin Transl Hepatol. 7(1):86–92.
  • Korver S, Bowen J, Pearson K, Gonzalez RJ, French N, Park K, Jenkins R, Goldring C. 2021. The application of cytokeratin-18 as a biomarker for drug-induced liver injury. Arch Toxicol. 95(11):3435–3448.
  • Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, Aithal GP. 2017. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut. 66(6):1154–1164.
  • Lee YK, Park JE, Lee M, Hardwick JP. 2018. Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. Liver Res. 2(4):209–215.
  • Lei S, Gu R, Ma X. 2021. Clinical perspectives of isoniazid-induced liver injury. Liver Res. 5(2):45–52.
  • Li X, Tang J, Mao Y. 2022. Incidence and risk factors of drug-induced liver injury. Liver Int. 42(9):1999–2014.
  • Lian Y, Zhao J, Xu P, Wang Y, Zhao J, Jia L, Fu Z, Jing L, Liu G, Peng S. 2013. Protective effects of metallothionein on isoniazid and rifampicin-induced hepatotoxicity in mice. PLOS One. 8(8):e72058.
  • Libby AE, Bales E, Orlicky DJ, McManaman JL. 2016. Perilipin-2 deletion impairs hepatic lipid accumulation by interfering with sterol regulatory element-binding protein (SREBP) activation and altering the hepatic lipidome. J Biol Chem. 291(46):24231–24246.
  • Liu T, Zhang L, Joo D, Sun SC. 2017. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:17023–17023.
  • Masuka JT, Chipangura P, Nyambayo PP, Stergachis A, Khoza S. 2018. A comparison of adverse drug reaction profiles in patients on antiretroviral and antitubercular treatment in zimbabwe. Clin Drug Investig. 38(1):9–17.
  • McAtee C. 2022. Drug-induced liver injury. Crit Care Nurs Clin North Am. 34(3):267–275.
  • McGill MR, Jaeschke H. 2019. Biomarkers of drug-induced liver injury. Adv Pharmacol. 85:221–239.
  • Menzies D, Adjobimey M, Ruslami R, Trajman A, Sow O, Kim H, Obeng Baah J, Marks GB, Long R, Hoeppner V, et al. 2018. Four months of rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med. 379(5):440–453.
  • Metushi I, Uetrecht J, Phillips E. 2016. Mechanism of isoniazid-induced hepatotoxicity: then and now. Br J Clin Pharmacol. 81(6):1030–1036.
  • Mitchell JR, Zimmerman HJ, Ishak KG, Thorgeirsson UP, Timbrell JA, Snodgrass WR, Nelson SD. 1976. Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. Ann Intern Med. 84(2):181–192.
  • Miyazawa S, Matsuoka S, Hamana S, Nagai S, Nakamura H, Nirei K, Moriyama M. 2015. Isoniazid-induced acute liver failure during preventive therapy for latent tuberculosis infection. Intern Med. 54(6):591–595.
  • Molla Y, Wubetu M, Dessie B. 2021. Anti-tuberculosis drug induced hepatotoxicity and associated factors among tuberculosis patients at selected hospitals, ethiopia. Hepat Med. 13:1–8.
  • Naidoo K, Hassan-Moosa R, Mlotshwa P, Yende-Zuma N, Govender D, Padayatchi N, Abdool-Karim SSS. 2020. High rates of drug-induced liver injury in people living with HIV coinfected with tuberculosis (TB) irrespective of antiretroviral therapy timing during antituberculosis treatment: results from the starting antiretroviral therapy at three points in TB trial. Clin Infect Dis. 70(12):2675–2682.
  • Naji KM, Al-Khatib BY, Al-Haj NS, D'souza MR. 2021. Hepatoprotective activity of melittin on isoniazid- and rifampicin-induced liver injuries in male albino rats. BMC Pharmacol Toxicol. 22(1):39.
  • Padda IS, Muralidhara Reddy K. 2022. Antitubercular medications. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557666/
  • Pal R, Rana SV, Vaiphei K, Singh K. 2008. Isoniazid-rifampicin induced lipid changes in rats. Clin Chim Acta. 389(1–2):55–60.
  • Qu X, Zhang Y, Zhang S, Zhai J, Gao H, Tao L, Song Y. 2018. Dysregulation of BSEP and MRP2 may play an important role in isoniazid-induced liver injury via the SIRT1/FXR pathway in rats and HepG2 cells. Biol Pharm Bull. 41(8):1211–1218.
  • Raghu R, Karthikeyan S. 2016. Zidovudine and isoniazid induced liver toxicity and oxidative stress: Evaluation of mitigating properties of silibinin. Environ Toxicol Pharmacol. 46:217–226.
  • Raj Mani SS, Iyyadurai R, Mishra AK, Manjunath K, Prasad J, Lakshmanan J, Yadav B, Reginald A, Jasmine S, Hansdak SG. 2021. Predicting antitubercular drug-induced liver injury and its outcome and introducing a novel scoring system. Int J Mycobacteriol. 10(2):116–121.
  • Ramappa V, Aithal GP. 2013. Hepatotoxicity related to anti-tuberculosis drugs: mechanisms and management. J Clin Exp Hepatol. 3(1):37–49.
  • Rana SV, Sharma SK, Ola RP, Kamboj JK, Malik A, Morya RK, Sinha SK. 2014. N-acetyltransferase 2, cytochrome P4502E1 and glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians. J Clin Pharm Ther. 39(1):91–96.
  • Rawat A, Chaturvedi S, Singh AK, Guleria A, Dubey D, Keshari AK, Raj V, Rai A, Prakash A, Kumar U, et al. 2018. Metabolomics approach discriminates toxicity index of pyrazinamide and its metabolic products, pyrazinoic acid and 5-hydroxy pyrazinoic acid. Hum Exp Toxicol. 37(4):373–389.
  • Saad EI, El-Gowilly SM, Sherhaa MO, Bistawroos AE. 2010. Role of oxidative stress and nitric oxide in the protective effects of alpha-lipoic acid and aminoguanidine against isoniazid-rifampicin-induced hepatotoxicity in rats. Food Chem Toxicol. 48(7):1869–1875.
  • Sanjay S, Girish C, Toi PC, Bobby Z. 2021. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar Rats. J Pharm Pharmacol. 73(4):473–486.
  • Santhosh S, Sini TK, Anandan R, Mathew PT. 2006. Effect of chitosan supplementation on antitubercular drugs-induced hepatotoxicity in rats. Toxicology. 219(1-3):53–59.
  • Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, et al. 2006. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 174(8):935–952.
  • Shen C, Meng Q, Zhang G, Hu W. 2008. Rifampicin exacerbates isoniazid-induced toxicity in human but not in rat hepatocytes in tissue-like cultures. Br J Pharmacol. 153(4):784–791.
  • Shih TY, Ho SC, Hsiong CH, Huang TY, Hu OY. 2013. Selected pharmaceutical excipient prevent isoniazid and rifampicin induced hepatotoxicity. Curr Drug Metab. 14(6):720–728.
  • Shih TY, Pai CY, Yang P, Chang WL, Wang NC, Hu OY. 2013. A novel mechanism underlies the hepatotoxicity of pyrazinamide. Antimicrob Agents Chemother. 57(4):1685–1690.
  • Shih TY, Young TH, Lee HS, Hsieh CB, Hu OY. 2013. Protective effects of kaempferol on isoniazid- and rifampicin-induced hepatotoxicity. Aaps J. 15(3):753–762.
  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. 2000. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 102(6):731–744.
  • Singla N, Gupta D, Birbian N, Singh J. 2014. Association of NAT2, GST and CYP2E1 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. Tuberculosis. 94(3):293–298.
  • Sodhi CP, Rana SV, Mehta SK, Vaiphei K, Attari S, Mehta S. 1997. Study of oxidative-stress in isoniazid-rifampicin induced hepatic injury in young rats. Drug Chem Toxicol. 20(3):255–269.
  • Song Y, Qu X, Tao L, Gao H, Zhang Y, Zhai J, Gong J, Hu T. 2022. Exploration of the underlying mechanisms of isoniazid/rifampicin-induced liver injury in mice using an integrated proteomics and metabolomics approach. J Biochem Mol Toxicol. 36(12):e23217.
  • Su Q, Kuang W, Hao W, Liang J, Wu L, Tang C, Wang Y, Liu T. 2021. Antituberculosis drugs (rifampicin and isoniazid) induce liver injury by regulating NLRP3 inflammasomes. Mediators Inflamm. 2021:8086253.
  • Suh JI. 2020. Drug-induced liver injury. Yeungnam Univ J Med. 37(1):2–12.
  • Sun C, Mao S, Chen S, Zhang W, Liu C. 2021. PPARs-orchestrated metabolic homeostasis in the adipose tissue. IJMS. 22(16):8974.
  • Sundaram V, Björnsson ES. 2017. Drug-induced cholestasis. Hepatol Commun. 1(8):726–735.
  • Tafazoli S, Mashregi M, O'Brien PJ. 2008. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol. 229(1):94–101.
  • Tasduq SA, Kaiser P, Sharma SC, Johri RK. 2007. Potentiation of isoniazid-induced liver toxicity by rifampicin in a combinational therapy of antitubercular drugs (rifampicin, isoniazid and pyrazinamide) in Wistar rats: a toxicity profile study. Hepatol Res. 37(10):845–853.
  • Tasduq SA, Peerzada K, Koul S, Bhat R, Johri RK. 2005. Biochemical manifestations of anti-tuberculosis drugs induced hepatotoxicity and the effect of silymarin. Hepatol Res. 31(3):132–135.
  • Tiberi S, Scardigli A, Centis R, D'Ambrosio L, Muñoz-Torrico M, Salazar-Lezama MÁ, Spanevello A, Visca D, Zumla A, Migliori GB, et al. 2017. Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis. 56:181–184.
  • Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WC, van der Ven AJ, Dekhuijzen R. 2008. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. 23(2):192–202.
  • WHO. 2009. Treatment of tuberculosis: guidelines. 4th ed. WHO; p. 420.
  • Tweed CD, Wills GH, Crook AM, Dawson R, Diacon AH, Louw CE, McHugh TD, Mendel C, Meredith S, Mohapi L, et al. 2018. Liver toxicity associated with tuberculosis chemotherapy in the REMoxTB study. BMC Med. 16(1):46.
  • Verma AK, Yadav A, Dewangan J, Singh SV, Mishra M, Singh PK, Rath SK. 2015. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis. Redox Biol. 6:80–92.
  • Verma AK, Yadav A, Singh SV, Mishra P, Rath SK. 2018. Isoniazid induces apoptosis: role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Life Sci. 199:23–33.
  • Villarino ME, Ridzon R, Weismuller PC, Elcock M, Maxwell RM, Meador J, Smith PJ, Carson ML, Geiter LJ. 1997. Rifampin preventive therapy for tuberculosis infection: experience with 157 adolescents. Am J Respir Crit Care Med. 155(5):1735–1738.
  • Vivekanandan P, Gobianand K, Priya S, Vijayalakshmi P, Karthikeyan S. 2007. Protective effect of picroliv against hydrazine-induced hyperlipidemia and hepatic steatosis in rats. Drug Chem Toxicol. 30(3):241–252.
  • Wang C, Fan RQ, Zhang YX, Nie H, Li K. 2016. Naringenin protects against isoniazid- and rifampicin-induced apoptosis in hepatic injury. World J Gastroenterol. 22(44):9775–9783.
  • Wang J, Luo W, Li B, Lv J, Ke X, Ge D, Dong R, Wang C, Han Y, Zhang C, et al. 2018. Sagittaria sagittifolia polysaccharide protects against isoniazid- and rifampicin-induced hepatic injury via activation of nuclear factor E2-related factor 2 signaling in mice. J Ethnopharmacol. 227:237–245.
  • Wang P, Pradhan K, Zhong XB, Ma X. 2016. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B. 6(5):384–392.
  • Wang YC, Chen KH, Chen YL, Lin SW, Liu WD, Wang JT, Hung CC. 2022. Pyrazinamide related prolonged drug-induced liver injury: a case report. Medicine. 101(39):e30955.
  • Westphal JF, Vetter D, Brogard JM. 1994. Hepatic side-effects of antibiotics. J Antimicrob Chemother. 33(3):387–401.
  • WHO. 2022. Tuberculosis. https://www.who.int/news-room/fact-sheets/detail/tuberculosis
  • Xu Y, Jiang Y, Li Y. 2020. Pyrazinamide enhances lipid peroxidation and antioxidant levels to induce liver injury in rat models through PI3k/Akt inhibition. Toxicol Res. 9(3):149–157.
  • Yang J, Li G, Bao X, Suo Y, Xu H, Deng Y, Feng T, Deng G. 2022. Hepatoprotective effects of phloridzin against isoniazid-rifampicin induced liver injury by regulating CYP450 and Nrf2/HO-1 pathway in mice. Chem Pharm Bull. 70(11):805–811.
  • Yang JJ, Tao H, Huang C, Li J. 2013. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis. Food Chem Toxicol. 59:421–427.
  • Younossian AB, Rochat T, Ketterer JP, Wacker J, Janssens JP. 2005. High hepatotoxicity of pyrazinamide and ethambutol for treatment of latent tuberculosis. Eur Respir J. 26(3):462–464.
  • Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB, Rosadas LA, Costa MJ, Quintana MS, de Castro L. 2014. The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients. Tuberculosis. 94(3):299–305.
  • Zhang G, Zhu J, Zhou Y, Wei Y, Xi L, Qin H, Rao Z, Han M, Ma Y, Wu X. 2016. Hesperidin alleviates oxidative stress and upregulates the multidrug resistance protein 2 in isoniazid and rifampicin-induced liver injury in rats. J Biochem Mol Toxicol. 30(7):342–349.
  • Zhao H, Si ZH, Li MH, Jiang L, Fu YH, Xing YX, Hong W, Ruan LY, Li PM, Wang JS. 2017. Pyrazinamide-induced hepatotoxicity and gender differences in rats as revealed by a 1H NMR based metabolomics approach. Toxicol Res. 6(1):17–29.
  • Zipper LM, Mulcahy RT. 2003. Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in HepG2 cells. Toxicol Sci. 73(1):124–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.