544
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Biotransformation research advances – 2022 year in review

ORCID Icon, , ORCID Icon, , , , , , , , , , , , , , , & show all
Pages 301-342 | Received 19 Apr 2023, Accepted 05 Jun 2023, Published online: 03 Oct 2023

References

  • Baillie TA, Dalvie D, Rietjens IMCM, Khojasteh SC. 2016. Biotransformation and bioactivation reactions–2015 literature highlights. Drug Metab Rev. 48(2):113–138. doi:10.1080/03602532.2016.1195404.
  • Khojasteh SC, Argikar UA, Cho S, Crouch R, Heck CJS, Johnson KM, Kalgutkar AS, King L, Maw HH, Seneviratne HK, et al. 2022. Biotransformation novel advances – 2021 year in review. Drug Metab Rev. 54(3):207–245. doi:10.1080/03602532.2022.2097253.
  • Khojasteh SC, Argikar UA, Driscoll JP, Heck CJS, King L, Jackson KD, Jian W, Kalgutkar AS, Miller GP, Kramlinger V, et al. 2021. Novel advances in biotransformation and bioactivation research–2020 year in review. Drug Metab Rev. 53(3):384–433. doi:10.1080/03602532.2021.1916028.
  • Khojasteh SC, Bumpus NN, Driscoll JP, Miller GP, Mitra K, Rietjens IMCM, Zhang D. 2019. Biotransformation and bioactivation reactions–2018 literature highlights. Drug Metab Rev. 51(2):121–161. doi:10.1080/03602532.2019.1615937.
  • Khojasteh SC, Driscoll JP, Jackson KD, Miller GP, Mitra K, Rietjens IMCM, Zhang D. 2020. Novel advances in biotransformation and bioactivation research-2019 year in review. Drug Metab Rev. 52(3):333–365. doi:10.1080/03602532.2020.1772281.
  • Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. 2018. Biotransformation and bioactivation reactions–2017 literature highlights. Drug Metab Rev. 50(3):221–255. doi:10.1080/03602532.2018.1473875.
  • Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. 2017. Biotransformation and bioactivation reactions–2016 literature highlights. Drug Metab Rev. 49(3):285–317. doi:10.1080/03602532.2017.1326498.
  • Nobles M, Womack C, Wonkam A, Wathuti E. 2022. Jun Science must overcome its racist legacy: nature’s guest editors speak. Nature. 606(7913):225–227. doi:10.1038/d41586-022-01527-z.
  • Taylor S, Henshall J, Beaumont K, Hood S, Jones B, Wilson I, Smith D. 2022. Aug The 50th anniversary of the DMDG. Xenobiotica. 52(8):767–769. doi:10.1080/00498254.2022.2134835.

References

  • McDougall R, Ramsden D, Agarwal S, Agarwal S, Aluri K, Arciprete M, Brown C, Castellanos-Rizaldos E, Charisse K, Chong S, et al. 2022. The nonclinical disposition and pharmacokinetic/pharmacodynamic properties of N-Acetylgalactosamine–conjugated small interfering RNA are highly predictable and build confidence in translation to human. Drug Metab Dispos. 50(6):781–797. doi:10.1124/dmd.121.000428.
  • Ramsden D, Wu J-T, Zerler B, Iqbal S, Jiang J, Clausen V, Aluri K, Gu Y, Dennin S, Kim J, et al. 2019. In vitro drug-drug interaction evaluation of GalNAc conjugated siRNAs against CYP450 enzymes and transporters. Drug Metab Dispos. 47(10):1183–1194. doi:10.1124/dmd.119.087098.
  • Takakusa H, Iwazaki N, Nishikawa M, Yoshida T, Obika S, Inoue T. 2023. Drug metabolism and pharmacokinetics of antisense oligonucleotide therapeutics: typical profiles, evaluation approaches, and points to consider compared with small molecule drugs. Nucleic Acid Ther. 33(2):83–94. doi:10.1089/nat.2022.0054.

References

  • Amantana A, Iversen PL. 2005. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol. 5(5):550–555. doi:10.1016/j.coph.2005.07.001.
  • Migliorati JM, Liu S, Liu A, Gogate A, Nair S, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. 2022. Absorption, distribution, metabolism, and excretion of US food and drug administration-approved antisense oligonucleotide drugs. Drug Metab Dispos. 50(6):888–897. doi:10.1124/dmd.121.000417.

References

  • Dragovich PS. 2022. Degrader-antibody conjugates. Chem Soc Rev. 51(10):3886–3897. doi:10.1039/d2cs00141a.
  • Dragovich PS, Adhikari P, Blake RA, Blaquiere N, Chen J, Cheng YX, den Besten W, Han J, Hartman SJ, He J, et al. 2020. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg Med Chem Lett. 30(4):126907. doi:10.1016/j.bmcl.2019.126907.

References

  • Ryan A. 2017. Azoreductases in drug metabolism. Br J Pharmacol. 174(14):2161–2173. doi:10.1111/bph.13571.
  • Rocha BS, Laranjinha J. 2020. Nitrate from diet might fuel gut microbiota metabolism: minding the gap between redox signaling and inter-kingdom communication. Free Radic Biol Med. 149:37–43. doi:10.1016/j.freeradbiomed.2020.02.001.
  • Zou L, Spanogiannopoulos P, Pieper LM, Chien H-C, Cai W, Khuri N, Pottel J, Vora B, Ni Z, Tsakalozou E, et al. 2020. Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proc Natl Acad Sci USA. 117(27):16009–16018. doi:10.1073/pnas.1920483117.

References

  • Ahmad N, Albassam AA, Faiyaz Khan M, Ullah Z, Mohammed Buheazah T, Salman AlHomoud H, Ali Al-Nasif H. 2022. A novel 5-Fluorouracil multiple-nanoemulsion used for the enhancement of oral bioavailability in the treatment of colorectal cancer. Saudi J Biol Sci. 29(5):3704–3716. doi:10.1016/j.sjbs.2022.02.017.
  • Chirstophidis N, Vajda FJ, Lucas I, Drummer O, Moon WJ, Louis WJ. 1978. Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet. 3(4):330–336. doi:10.2165/00003088-197803040-00006.
  • Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 341(6143):295–298. doi:10.1126/science.1235872.
  • Javdan B, Lopez JG, Chankhamjon P, Lee YJ, Hull R, Wu Q, Wang X, Chatterjee S, Donia MS. 2020. Personalized mapping of drug metabolism by the human gut microbiome. Cell. 181(7):1661–1679.e22. doi:10.1016/j.cell.2020.05.001.
  • Koppel N, Maini Rekdal V, Balskus EP. 2017. Chemical transformation of xenobiotics by the human gut microbiota. Science. 356:6344.
  • McCabe M, Sane RS, Keith-Luzzi M, Xu J, King I, Whitcher-Johnstone A, Johnstone N, Tweedie DJ, Li Y. 2015. Defining the role of gut bacteria in the metabolism of deleobuvir: in vitro and in vivo studies. Drug Metab Dispos. 43(10):1612–1618. doi:10.1124/dmd.115.064477.
  • Reigner B, Blesch K, Weidekamm E. 2001. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 40(2):85–104. doi:10.2165/00003088-200140020-00002.
  • Spanogiannopoulos P, Kyaw TS, Guthrie BGH, Bradley PH, Lee JV, Melamed J, Malig YNA, Lam KN, Gempis D, Sandy M, et al. 2022. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat Microbiol. 7(10):1605–1620. doi:10.1038/s41564-022-01226-5.
  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. 2019. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 570(7762):462–467. doi:10.1038/s41586-019-1291-3.

References

  • Wang J, Li-Chan XX, Atherton J, Deng L, Espina R, Yu L, Horwatt P, Ross S, Lockhead S, Ahmad S, et al. 2010. Characterization of HKI-272 covalent binding to human serum albumin. Drug Metab Dispos. 38(7):1083–1093. doi:10.1124/dmd.110.032292.
  • Meng J, Liu X, Ma S, Zhang H, Yu S, Zhang Y, Chen M, Zhu X, Liu Y, Yi L, et al. 2019. Metabolism and disposition of pyrotinib in healthy male volunteers: covalent binding with human plasma protein. Acta Pharmacol Sin. 40(7):980–988. doi:10.1038/s41401-018-0176-6.
  • Liu X, Feng D, Zheng M, Cui Y, Zhong D. 2020. Characterization of covalent binding of tyrosine kinase inhibitors to plasma proteins. Drug Metab Pharmacokinet. 35(5):456–465. doi:10.1016/j.dmpk.2020.07.002.
  • Wu Y, Chen L, Chen J, Xue H, He Q, Zhong D, Diao X. 2023. Covalent binding mechanism of furmonertinib and osimertinib with human serum albumin. Drug Metab Dispos. 51(1):8–16. doi:10.1124/dmd.122.001019.
  • Vuu I, Dahal U, Wang Z, Shen X, Rodgers J, Wahlstrom J, Houk B. 2022. Absorption, metabolism and excretion of [14C]-sotorasib in healthy male subjects: characterization of metabolites and a minor albumin-sotorasib conjugate. Cancer Chemother Pharmacol. 90(4):357–367. doi:10.1007/s00280-022-04470-y.

References

  • Cassidy J, Twelves C, Cameron D, Steward W, O'Byrne K, Jodrell D, Banken L, Goggin T, Jones D, Roos B, et al. 1999. Bioequivalence of two tablet formulations of capecitabine and exploration of age, gender, body surface area, and creatinine clearance as factors influencing systemic exposures in cancer patients. Cancer Chemother Pharmacol. 44(6):453–460. doi:10.1007/s002800051118.
  • Eng H, Dantonio AL, Kadar EP, Obach RS, Di L, Lin J, Patel NC, Boras B, Walker GS, Novak JJ, et al. 2022. Disposition of nirmatrelvir, an orally bioavailable inhibitor of SARS-CoV-2 3C-like protease, across animals and humans. Drug Metab Dispos. 50(5):576–590. doi:10.1124/dmd.121.000801.
  • Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, Baniecki M, Hendrick VM, Damle B, Simón-Campos A, et al. 2022. Oral nirmatrelvir for high-risk nonhospitalized adults with Covid-19. N Engl J Med. 386(15):1397–1408. doi:10.1056/NEJMoa2118542.
  • James AD, Marvalin C, Luneau A, Meissner A, Camenisch G. 2017. Comparison of 19F NMR and 14C measurements for the assessment of ADME of BYL719 (Alpelisib) in humans. Drug Metab Dispos. 45(8):900–907. doi:10.1124/dmd.117.075424.
  • Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, et al. 2021. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 374(6575):1586–1593. doi:10.1126/science.abl4784.
  • Pearson D, Garnier M, Luneau A, James AD, Walles M. 2019. 19F-NMR-based determination of the absorption, metabolism and excretion of the oral phosphatidylinositol-3-kinase (PI3K) delta inhibitor leniolisib (CDZ173) in healthy volunteers. Xenobiotica. 49(8):953–960. doi:10.1080/00498254.2018.1523488.
  • Singh RSP, Walker GS, Kadar EP, Cox LM, Eng H, Sharma R, Bergman AJ, Van Eyck L, Hackman F, Toussi SS, et al. 2022. Metabolism and excretion of nirmatrelvir in humans using quantitative fluorine nuclear magnetic resonance spectroscopy: a novel approach for accelerating drug development. Clin Pharmacol Ther. 112(6):1201–1206. doi:10.1002/cpt.2683.

References

  • Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. 2023. A comprehensive investigation of dog cytochrome P450 3A (CYP3A) reveals a functional role of newly identified CYP3A98 in small intestine. Drug Metab Dispos. 51(1):38–45. doi:10.1124/dmd.121.000749.
  • Hutzler JM, Obach RS, Dalvie D, Zientek MA. 2013. Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol. 9(2):153–168. doi:10.1517/17425255.2013.738668.

References

  • Kim KA, Park JY, Lee JS, Lim S. 2003. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 26(8):631–637. doi:10.1007/BF02976712.
  • Paludetto MN, Kurkela M, Kahma H, Backman JT, Niemi M, Filppula AM. 2023. Hydroxychloroquine is metabolized by cytochrome P450 2D6, 3A4, and 2C8, and inhibits cytochrome P450 2D6, while its metabolites also inhibit cytochrome P450 3A. Drug Metab Dispos. 51(3):293–305. doi:10.1124/dmd.122.001018.
  • Projean D, Baune B, Farinotti R, Flinois J-P, Beaune P, Taburet A-M, Ducharme J. 2003. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 31(6):748–754. doi:10.1124/dmd.31.6.748.
  • Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. 2015. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 23(5):231–269. doi:10.1007/s10787-015-0239-y.

References

  • Dennis DG, Anand SD, Lopez AJ, Petrovčič J, Das A, Sarlah D. 2022. Synthesis of cannabimovone and cannabifuran class of minor phytocannabinoids and their anti-inflammatory activity. J Org Chem. 87(9):6075–6086. doi:10.1021/acs.joc.2c00336.
  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE. 2012. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci USA. 109(31):12811–12816. doi:10.1073/pnas.1200330109.
  • Lemberger L, Martz R, Rodda B, Forney R, Rowe H. 1973. Comparative pharmacology of Δ9-tetrahydrocannabinol and its metabolite 11-OH-Δ9-tetrahydrocannabinol. J Clin Invest. 52(10):2411–2417. doi:10.1172/JCI107431.
  • Nachnani R, Raup-Konsavage WM, Vrana KE. 2021. The pharmacological case for cannabigerol. J Pharmacol Exp Ther. 376(2):204–212. doi:10.1124/jpet.120.000340.
  • Pacher P, Kogan NM, Mechoulam R. 2020. Beyond THC and endocannabinoids. Annu Rev Pharmacol Toxicol. 60(1):637–659. doi:10.1146/annurev-pharmtox-010818-021441.
  • Roy P, Dennis DG, Eschbach MD, Anand SD, Xu F, Maturano J, Hellman J, Sarlah D, Das A. 2022. Metabolites of cannabigerol generated by human cytochrome P450s are bioactive. Biochemistry. 61(21):2398–2408. doi:10.1021/acs.biochem.2c00383.
  • Smeriglio A, Giofrè SV, Galati EM, Monforte MT, Cicero N, D’Angelo V, Grassi G, Circosta C. 2018. Inhibition of aldose reductase activity by cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia. 127:101–108. doi:10.1016/j.fitote.2018.02.002.

References

  • Bansal S, Paine MF, Unadkat JD. 2022. Comprehensive predictions of cytochrome P450 (P450)-mediated in vivo cannabinoid-drug interactions based on reversible and time-dependent P450 inhibition in human liver microsomes. Drug Metab Dispos. 50(4):351–360. doi:10.1124/dmd.121.000734.
  • Bansal S, Maharao N, Paine MF, Unadkat JD. 2020. Predicting the potential for cannabinoids to precipitate pharmacokinetic drug interactions via reversible inhibition or inactivation of major cytochromes P450. Drug Metab Dispos. 48(10):1008–1017. doi:10.1124/dmd.120.000073.
  • Tseng E, Eng H, Lin J, Cerny MA, Tess DA, Goosen TC, Obach RS. 2021. Static and dynamic projections of drug-drug interactions caused by cytochrome P450 3A time-dependent inhibitors measured in human liver microsomes and hepatocytes. Drug Metab Dispos. 49(10):947–960. doi:10.1124/dmd.121.000497.
  • Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, Toren P, Parkinson A. 2006. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos. 34(1):191–197. doi:10.1124/dmd.105.007633.

References

  • Wynalda MA, Hauer MJ, Wienkers LC. 2000. Oxidation of the novel oxazolidinone antibiotic linezolid in human liver microsomes. Drug Metab Dispos. 28(9):1014–1017.
  • Slatter JG, Stalker DJ, Feenstra KL, Welshman IR, Bruss JB, Sams JP, Johnson MG, Sanders PE, Hauer MJ, Fagerness PE, et al. 2001. Pharmacokinetics, metabolism, and excretion of linezolid following an oral dose of [14C] linezolid to healthy human subjects. Drug Metab Dispos. 29(8):1136–1145.
  • Evangelista EA, Kaspera R, Mokadam NA, Jones JP, Totah RA. 2013. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos. 41(12):2087–2094. doi:10.1124/dmd.113.053389.
  • Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. 1996. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem. 271(7):3460–3468. doi:10.1074/jbc.271.7.3460.
  • Jungbluth GL, Welshman IR, Hopkins NK. 2003. Linezolid pharmacokinetics in pediatric patients: an overview. Pediatr Infect Dis J. 22(9 Suppl):S153–S157. doi:10.1097/01.inf.0000086954.43010.63.
  • Zhang SH, Zhu ZY, Chen Z, Li Y, Zou Y, Yan M, Xu Y, Wang F, Liu MZ, Zhang M, et al. 2020. Population pharmacokinetics and dosage optimization of linezolid in patients with liver dysfunction. Antimicrob Agents Chemother. 64(6):e00133-20. doi:10.1128/AAC.00133-20.
  • Brier ME, Stalker DJ, Aronoff GR, Batts DH, Ryan KK, O’Grady M, Hopkins NK, Jungbluth GL. 2003. Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob Agents Chemother. 47(9):2775–2780. doi:10.1128/AAC.47.9.2775-2780.2003.

References

  • Öeren M, Walton PJ, Suri J, Ponting DJ, Hunt PA, Segall MD. 2022. Predicting regioselectivity of AO, CYP, FMO, and UGT metabolism using quantum mechanical simulations and machine learning. J Med Chem. 65(20):14066–14081. doi:10.1021/acs.jmedchem.2c01303.

References

  • Le A, Huang KJ, Cirrincione LR. 2022. Regulation of drug-metabolizing enzymes by sex-related hormones: clinical implications for transgender medicine. Trends Pharmacol Sci. 43(7):582–592. doi:10.1016/j.tips.2022.03.006.
  • Winter S, Diamond M, Green J, Karasic D, Reed T, Whittle S, Wylie K. 2016. Transgender people: health at the margins of society. Lancet. 388(10042):390–400. 23doi:10.1016/S0140-6736(16)00683-8.
  • Bumpus NN. 2021. For better drugs, diversify clinical trials. Science. 371(6529):570–571. doi:10.1126/science.abe2565.
  • Cirrincione LR, Huang KJ. 2021. Sex and gender differences in clinical pharmacology: implications for transgender medicine. Clin Pharmacol Ther. 110(4):897–908. doi:10.1002/cpt.2234.
  • Alpert AB, Brewer JR, Adams S, Rivers L, Orta S, Blosnich JR, Miedlich S, Kamen C, Dizon DS, Pazdur R, et al. 2023. Addressing barriers to clinical trial participation for transgender people with cancer to improve access and generate data. J Clin Oncol. 41(10):1825–1829. doi:10.1200/JCO.22.01174.
  • Owen-Smith AA, Woodyatt C, Sineath RC, Hunkeler EM, Barnwell T, Graham A, Stephenson R, Goodman M. 2016. Perceptions of barriers to and facilitators of participation in health research among transgender people. Transgend Health. 1(1):187–196. doi:10.1089/trgh.2016.0023.

References

  • Chiang JYL, Ferrell JM. 2020. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 4(2):47–63. doi:10.1016/j.livres.2020.05.001.
  • Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. 2013. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes. 62(12):4184–4191. doi:10.2337/db13-0639.
  • Kaur A, Patankar JV, de Haan W, Ruddle P, Wijesekara N, Groen AK, Verchere CB, Singaraja RR, Hayden MR. 2015. Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes. 64(4):1168–1179. doi:10.2337/db14-0716.
  • Liu J, Carlson HD, Scott EE. 2022. The structure and characterization of human cytochrome P450 8B1 supports future drug design for nonalcoholic fatty liver disease and diabetes. J Biol Chem. 298(9):102344. doi:10.1016/j.jbc.2022.102344.
  • Staels B, Fonseca VA. 2009. Bile acids and metabolic regulation. Diabetes Care. 32(Suppl 2):S237–S245. doi:10.2337/dc09-S355.
  • Vane J, Corin RE. 2003. Prostacyclin: a vascular mediator. Eur J Vasc Endovasc Surg. 26(6):571–578. doi:10.1016/s1078-5884(03)00385-x.

References

  • Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. 2012. The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos. 40(5):856–864. doi:10.1124/dmd.111.043828.
  • Hutzler JM, Yang YS, Brown C, Heyward S, Moeller T. 2014. Aldehyde oxidase activity in donor-matched fresh and cryopreserved human hepatocytes and assessment of variability in 75 donors. Drug Metab Dispos. 42(6):1090–1097. doi:10.1124/dmd.114.057984.
  • Itoh K, Masubuchi A, Sasaki T, Adachi M, Watanabe N, Nagata K, Yamazoe Y, Hiratsuka M, Mizugaki M, Tanaka Y. 2007. Genetic polymorphism of aldehyde oxidase in Donryu rats. Drug Metab Dispos. 35(5):734–739. doi:10.1124/dmd.106.011502.

References

  • Reese MJ, Wurm RM, Muir KT, Generaux GT, St John-Williams L, McConn DJ. 2008. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction. Drug Metab Dispos. 36(7):1198–1201. doi:10.1124/dmd.107.020198.
  • Ichida H, Fukami T, Amai K, Suzuki K, Mishiro K, Takano S, Obuchi W, Zhang Z, Watanabe A, Nakano M, et al. 2023. Quantitative evaluation of the contribution of each aldo-keto reductase and short-chain dehydrogenase/reductase isoform to reduction reactions of compounds containing a ketone group in the human liver. Drug Metab Dispos. 51(1):17–28. doi:10.1124/dmd.122.001037.

References

  • Agranat I, Wainschtein SR, Zusman EZ. 2012. The predicted demise of racemic new molecular entities is an exaggeration. Nat Rev Drug Discov. 11(12):972–973. doi:10.1038/nrd3657-c1.
  • Coelho MM, Fernandes C, Remiao F, Tiritan ME. 2021. Enantioselectivity in drug pharmacokinetics and toxicity: pharmacological relevance and analytical methods. Molecules. 26(11):3113. doi:10.3390/molecules26113113.
  • Milani N, Qiu N, Fowler S. 2023. Contribution of UGT enzymes to human drug metabolism stereoselectivity: a case study of medetomidine, RO5263397, propranolol and testosterone. Drug Metab Dispos. 51(3):306–317. doi:10.1124/dmd.122.001024.

References

  • Rendić SP, Guengerich FP. 2021. Human family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol. 95(2):395–472. doi:10.1007/s00204-020-02971-4.
  • Surapaneni S, Yerramilli U, Bai A, Dalvie D, Brooks J, Wang X, Selkirk JV, Yan YG, Zhang P, Hargreaves R, et al. 2021. Absorption, metabolism, and excretion, in vitro pharmacology, and clinical pharmacokinetics of ozanimod, a novel sphingosine 1-phosphate receptor modulator. Drug Metab Dispos. 49(5):405–419. doi:10.1124/dmd.120.000220.

References

  • Argikar UA. 2012. Unusual glucuronides. Drug Metab Dispos. 40(7):1239–1251. doi:10.1124/dmd.112.045096.
  • Bushee JL, Argikar UA. 2011. An experimental approach to enhance precursor ion fragmentation for metabolite identification studies: application of dual collision cells in an orbital trap. Rapid Commun Mass Spectrom. 25(10):1356–1362. doi:10.1002/rcm.4996.
  • Foti RS, Argikar UA. 2019. UDP-Glucuronosyltransferases (UGTs). Handbook of Drug Metabolism. Third Edition ed. 2019. Boca Raton: CRC Press; p. 109–159.
  • Hatsis P, Waters NJ, Argikar UA. 2017. Implications for metabolite quantification by mass spectrometry in the absence of authentic standards. Drug Metab Dispos. 45(5):492–496. doi:10.1124/dmd.117.075259.
  • James MO. 2021. Enzyme kinetics of PAPS-sulfotransferase. Methods Mol Biol. 2342:285–300. doi:10.1007/978-1-0716-1554-6_11.
  • Mutlib AE, Chen H, Nemeth G, Gan LS, Christ DD. 1999. Liquid chromatography/mass spectrometry and high-field nuclear magnetic resonance characterization of novel mixed diconjugates of the non-nucleoside human immunodeficiency virus-1 reverse transcriptase inhibitor, efavirenz. Drug Metab Dispos. 27(9):1045–1056.
  • Pearson D, Jin Y, Romeo A, Birlinger BL, Schiller H, Ji Y, Gunduz M, Baldoni D, Walles M. 2022. Species-dependent hepatic and intestinal metabolism of selective oestrogen receptor degrader LSZ102 by sulphation and glucuronidation. Xenobiotica. 52(1):26–37. doi:10.1080/00498254.2022.2037027.
  • Zhou J, Argikar UA, Miners JO. 2021. Enzyme kinetics of uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol. 2342:301–338. doi:10.1007/978-1-0716-1554-6_12.

References

  • Manevski N, King L, Pitt WR, Lecomte F, Toselli F. 2019. Metabolism by aldehyde oxidase: drug design and complementary approaches to challenges in drug discovery. J Med Chem. 62(24):10955–10994. doi:10.1021/acs.jmedchem.9b00875.
  • Russak EM, Bednarczyk EM. 2019. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Ann Pharmacother. 53(2):211–216. doi:10.1177/1060028018797110.
  • Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, et al. 2017. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 6(1):6. doi:10.1186/s40035-017-0077-5.

References

  • Kalgutkar AS, Jones J, Sawant A. 2010. Chapter 5. Sulfonamide as an essential functional group in drug design Metabolism. In Pharmacokinetics and Toxicity of Functional Groups: impact of Chemical Building Blocks on ADMET. London: The Royal Society of Chemistry. p. 210–274.
  • McCoy EK, Lisenby KM. 2021. Aprocitentan (a Dual Endothelin-Receptor Antagonist) for treatment-resistant hypertension. J Cardiovasc Pharmacol. 77(6):699–706. doi:10.1097/FJC.0000000000001023.
  • Wrobleski ST, Moslin R, Lin S, Zhang Y, Spergel S, Kempson J, Tokarski JS, Strnad J, Zupa-Fernandez A, Cheng L, et al. 2019. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem. 62(20):8973–8995. doi:10.1021/acs.jmedchem.9b00444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.