126
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Nonisothermal Crystallization and Melting Behavior of EVA/OMWNTs Nanocomposites

&

REFERENCES

  • (a) Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58; (b) Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes, Imperial College Press: London, 1998.
  • (a) Ajayan, P.M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 1994, 265, 1212–1214; (b) Ajayan, P.M.; Schadler, L.S.; Giannaris, C.; Rubio, A. Single-walled carbon nanotube-polymer composites: strength and weakness. Adv. Mater. 2000, 12, 750–753.
  • Dalton, A.B.; Collins, S.; Muñoz, E.; Razal, J.M.; Ebron, V.H.; Ferraris, J.P.; Coleman, J.N.; Kim, B.G.; Baughman, R.H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703–703.
  • Ago, H.; Petritsch, K.; Shaffer, M.S.P.; Windle, A.H.; Friend, R.H. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 1999, 11, 1281–1285.
  • Roberts, J.A.; Imholt, T.; Ye, Z.; Dyke, C.A.; Price, D.W.; Tour J.M. Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe. J. Appl. Phys. 2004, 95, 4352–4356.
  • Goh, H.W.; Goh, S.H.; Xu, G.Q.; Lee, K.Y.; Yang, G.Y.; Lee, Y.W.; Zhang, W.D. Optical limiting properties of double-C60-end-capped poly(ethylene oxide), double-C60-end-capped poly(ethylene oxide)/poly(ethylene oxide) blend, and double-C60-end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. J. Phys. Chem. B. 2003, 107, 6056–6062.
  • Watts, P.C.P.; Hsu, W.K.; Kroto, H.W.; Walton, D.R.M. Are bulk defective carbon nanotubes less electrically conducting. Nano Lett. 2003, 3, 549–553.
  • Barrau, S.; Demont, P.; Peigney, A.; Laurent, C.; Lacabanne, C. DC and AC conductivity of carbon nanotube-epoxy composites. Macromolecules 2003, 36, 5187–5194.
  • (a) Xu, G.; Wu, W.; Wang, Y.; Pang, W.; Zhu, Q.; Wang, P.; You, Y. Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization. Polymer 2006, 47, 5909–5918; (b) Xu, G.; Wu, W.; Wang, Y.; Pang, W.; Zhu, Q.; Lu, F. Synthesis and characterization of water-soluble multiwalled carbon nanotubes graft by a thermoresponsive polymer. Nanotechnology 2006, 17, 2458–2465: (c) Xu, G.; Wu, W.; Wang, Y.; Pang, W.; Zhu, Q.; Wang, P. Functionalized carbon nanotubes with polystyrene-block-poly (N-isopropylacrylamide) by in situ RAFT polymerization. Nanotechnology 2007, 18, 145606 (7 pp); (d) Xu, G.; Wang, Y.; Pang, W.; Wu, W.; Zhu, Q.; Wang, P. Fabrication of multiwalled carbon nanotubes with polymer shells through surface RAFT polymerization. Polym. Inter. 2007, 56, 847–852.
  • Wang, S.W.; Hoppe, S.; Yang, M.B. Effect of nucleating fillers on the structure and properties of polypropylene blends. Polym-Plast. Technol. 2002, 51, 998–1005.
  • Chen, Z.Q.; Chen, S.J.; Zhang, J. Properties of LDPE/POE-g-MA Composites containing multiwall carbon nanotubes modified by fumed silicon dioxide. Polym-Plast. Technol. 2002, 51, 277–282.
  • Potschke, P.; Fornes, T.D.; Paul, D.R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002, 43, 3247–3255.
  • Haggenmuller, R.; Conmas, H.H.; Rinzler, A.G.; Fischer, J.E.; Winey, K.I. Aligned single-wall carbon nanotubes in nomposites by melt processing methods. Chem. Phys. Lett. 2000, 330, 219–225.
  • Grady, B.P.; Pompeo, F.; Shambaugh, R.L.; Resasco, D.E. Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J. Phys. Chem. B 2002, 106, 5852–5858.
  • (a) Moore, E.M.; Ortiz, D.L.; Marla, V.T.; Shambaugh, R.L.; Grady, B.P. Enhancing the strength of polypropylene fibers with carbon nanotubes. J. Appl. Polym. Sci. 2004, 93, 2926–2933; (b) Seo, M.K.; Park, S.J. A kinetic study on the thermal degradation of multi-walled carbon nanotubes-reinforced poly(propylene) composites. Macromol. Mater. Eng. 2004, 289, 368–374.
  • (a) Zhang, X.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.C.; Hauge, R.T. Poly(vinyl alcohol)/SWCNT composite film. Nano Lett. 2003, 3, 1285–1288; (b) Probst, O.; Moore, E.M.; Resasco, D.E.; Grady, B.P. Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 2004, 45, 4437–4443.
  • (a) Liu, T.; Phang, I.Y.; Shen, L.; Chow, S.Y.; Zhang, W. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004, 37, 7214–7222; (b) Li, J.; Fang, Z.; Tong, L.; Gu, A.; Liu, F. Effect of multi-walled carbon nanotubes on nonisothermal crystallization kinetics of polyamide 6. Eur. Polym. J. 2006, 42, 3230–3235.
  • Wang, Z.W.; Hu, J.; An, F.Z.; Gao, X.Q.; Deng, C.; Zhang, J.; Shen, K.Z. Mechanical properties and morphology of polypropylene/nano-montmorillonite composites prepared by dynamic packing injection molding. Polym.-Plast. Technol. 2013, 52, 1242–1249.
  • Basaran, I.; Oral, A. Synthesis and characterization of poly(L-Lactic acid)/clay nanocomposite via metal-free process. Polym.-Plast. Technol. 2013, 52, 1271–1276.
  • Fu, B.X.; Yang, L.; Somani, R.H.; Zong, S.X.; Hsiao, B.S.; Phillips, S. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 2727–2739.
  • Joshi, A.; Butola, B.S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 2004, 45, 4953–4968.
  • Ito, M.; Mizuochi, K.; Kanamoto, T. Effects of crystalline forms on the deformation behavior of nylon-6. Polymer 1998, 39, 4593–4598.
  • Li, S.N.; Li, Z.M.; Yang, M.B.; Hu, Z.Q.; Xu, X.B.; Huang, R. Carbon nanotubes induced nonisothermal crystallization of ethylene-vinyl acetate copolymer. Mater. Lett. 2004, 58, 3967–3970.
  • Pang, H.; Zhong, G.; Wang, Y.; Xu, J.; Li, Z.; Lei, J.; Chen, C.; Ji, X. In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene-vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets. J. Polym. Res. 2012, 19, 9837–9841.
  • Xu, G.; Cheng, J.; Wu, H.; Lin, Z.; Zhang, Y.; Wang, H. Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly(ethylene vinyl acetate) nanocomposites. Polym. Compos. 2013, 34, 109–121.
  • Herrero, C.R.; Acosta, J.L. Effect of poly(epichlorhydrin) on the crystallization and compatibility behavior of poly(ethylene oxide)/polyphosphazene blends. Polym. J. 1994, 26, 786–796.
  • Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1147.
  • Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568–575.
  • (a) Dobreva, A.; Gutzow, I.J. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J. Non-Cryst Solids 1993, 162, 1–12; (b) Dobreva, A.; Gutzow, I.J. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J. Non.-Cryst. Solids 1993, 162, 13–25.
  • Alonso, M.; Velasco, J.I.; De Saja, J.A. Constrained crystallization and activity of filler in surface modified talc polypropylene composites. Eur. Polym. J. 1997, 33, 255–262.
  • Kissinger, H.E. Variation of peak temperature with heation rate in differential thermal analysis. J. Res. Natl. Bur. Stand. (US) 1956, 57, 217–232.
  • Vyazovkin, S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol. Rapid. Commun. 2002, 23, 771–775.
  • Brown, M.E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R.; Sempere, J.; Burnham, A.; Opfermann, J.; Strey, R.; Anderson, H.L.; Kemmler, A.; Keuleers, R.; Janssens, J.; Desseyn, H.O.; Li, C.R.; Tang, T.B.; Roduit, B.; Malek, J.; Mitsuhashi, T. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project—data, methods and results. Thermochim. Acta 2000, 355, 125–143.
  • Flynn, J.H.; Wall, L.A. A general treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. (US) 1966, 487–523.
  • Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886.
  • Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J. Phys. Chem. B 2003, 107, 882–888.
  • Friedman, H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Pt. C 1964, 6, 183–195.
  • Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 2001, 22, 178–183.
  • (a) Supaphol, P.; Dangseeyun, N.; Srimoaon, P.; Nithitanakul, M. Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters. Thermochim. Acta 2003, 406, 207–220; (b) Supaphol, P.; Dangseeyun, N.; Srimoaon, P.; Nithitanakul, M. Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym. Test. 2004, 23, 175–185.
  • Bernhard, W. Macromolecular Physics, Academic Press: New York, 1980, p. 3.
  • Cadek, M.; Coleman, J.N.; Ryan, K.P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J.B.; Szostak, K.; Beguin, F.; Blau, W.J. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 2004, 4, 353–356.
  • Minus, M.L.; Chae, H.G.; Kumar, S. Single wall carbon nanotube templated oriented crystallization of poly(vinyl alcohol). Polymer 2006, 47, 3705–3710.
  • Herrero, C.R.; Morales, B.; Acosta, J.L. Compatibilization of semicrystalline polymeric alloys through sepiolite addition. J. Appl. Polym. Sci. 1994, 51, 1189–1197.
  • Leelapornpisit, W.; Ton-That, M.T.; Perrin-Sarazin, F.; Cole, K.C.; Denault, J.; Simard, B. Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci. Pt. B: Polym. Phys. 2005, 43, 2445–2453.
  • McNally, T.; Potschke, P.; Halley, P.; Murphy, M.; Martin, D.; Bell, S.E.J.; Brennan, G.P.; Bein, D.; Lemonie, P.; Quinn, J.P. Polyethylene multiwalled carbon nanotube composites. Polymer 2005, 46, 8222–8232.
  • Xie, X.L.; Aloys, K.; Zhou, X.P.; Zeng, F.D. Ultrahigh molecular mass polyethylene/carbon nanotube composites crystallization and melting properties. J. Therm. Anal. Calorim. 2003, 74, 317–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.