3,120
Views
111
CrossRef citations to date
0
Altmetric
Reviews

A Review on Preparation, Properties and Applications of Polymeric Nanoparticle-Based Materials

, &

REFERENCES

  • Olad, A.; Azar, R.H.; Babaluo, A.A. Investigation on the mechanical and thermal properties of intercalated epoxy/layered silicate nanocomposites. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 1035–1049.
  • Kausar, A.; Hussain, S.T. Azo-polymer based hybrids reinforced with carbon nanotubes and silver nanoparticles: solution and melt processing. J. Polym. Mater. Polym. Biomater. 2014, 63, 207–212.
  • Mehwish, N.; Kausar, A.; Siddiq, M. Advances in polymer-based nanostructured membranes for water treatment. Polym.-Plast. Technol. Eng. 2014, 53, 1290–1316.
  • Jeon, I.-Y.; Baek, J.-B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials. 2010, 3, 3654–3674.
  • Bansal, A.; Yang, H.; Li, C.; Cho, K.; Benicewicz, B.C.; Kumar, S.K.; Schadler, L.S. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 2005, 4, 693–698.
  • Gacitua, E.W.; Ballerini, A.A.; Zhang, J. Polymer nanocomposites: Synthetic and natural fillers—A review. Maderas. Ciencia. Tecnol. 2005, 7, 159–178.
  • Francis, R.; Joy, N.; Aparna, E.P.; Vijayan, R. Polymer grafted inorganic nanoparticles, preparation, properties, and applications: A review. Polym. Rev. 2014, 54, 268–347.
  • Zhang, Y.; Chen, Z.; Dong, Z.; Zhao, M.; Ning, S.; He, P. Preparation of raspberry-like adsorbed silica nanoparticles via miniemulsion polymerization using a glycerol-functionalized silica sol. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 397–401.
  • Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913.
  • Wang, X.; Hall, J.E.; Warren, S.; Krom, J.; Magistrelli, J.M.; Rackaitis, M.; Bohm, G.G.A. Synthesis, characterization, and application of novel polymeric nanoparticles. Macromolecules 2007, 40, 499–508.
  • Zhang, C.; Guo, Y.; Priestley, R.D. Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 2011, 44, 4001–4006.
  • Overney, R.M.; Buenviaje, C.; Luginbühl, R.; Dinelli, F. Glass and structural transitions measured at polymer surfaces on the nanoscale. J. Therm. Anal. Calorim. 2000, 59, 205–225.
  • Zhang, C.; Guo, Y.; Priestley, R.D.C. Confined glassy properties of polymer nanoparticles. J. Polym. Sci. B: Polym. Phys. 2013, 51, 574–586.
  • Khan, J.; Harton, S.E.; Akcora, P.; Benicewicz, B.C.; Kumar, S.K. Polymer crystallization in nanocomposites: spatial reorganization of nanoparticles. Macromolecules. 2009, 42, 5741–5744.
  • Hosokawa, M.; Nogi, K.; Naito, M.; Yokoyama, T. (Eds.). Nanoparticle Technology Handbook, 2nd ed. Elsevier: Amsterdam, Netherlands, 2007, Chapter 1; p. 44.
  • Cismaru, L.; Popa, M. Polymeric nanoparticles with biomedical applications. Rev. Roum. Chim. 2008, 55, 433–442.
  • Shouldice, G.T.D.; Vandezande, G.A.; Rudin, A. Practical aspects of the emulsifier-free emulsion polymerization of styrene. Eur. Polym. J. 1994, 30, 179–183.
  • Yildiz, U.; Landfester, K. Miniemulsion polymerization of styrene in the presence of macromonomeric initiators. Polymer 2008, 49, 4930–4934.
  • Udagama, R.; Degrandi-Contraires, E.; Creton, C.; Graillat, C.; McKenna, T.F.L.; Bourgeat-Lami, E. Synthesis of polymer-polymer hybrids by miniemulsion polymerization and characterization of hybrid latex. Macromolecules 2011, 44, 2632–2642.
  • Gaudin, F.; Zydowicz, N.S. Core-shell biocompatible polyurethane nanocapsules obtained by interfacial step polymerization in miniemulsion. Coll. Surf. A 2008, 331, 133–142.
  • Guterres, S.S.; Beck, R.C.R.; Pohlmann, A.R. Spray-drying technique to prepare innovative nanoparticulated formulations for drug administration: A brief overview. Braz. J. Phys. 2009, 39, 205–209.
  • Eslamian, M.; Shekarriz, M. Recent advances in nanoparticle preparation by spray and microemulsion methods. Rec. Pat. Nanotechnol. 2009, 3, 99–115.
  • Khan, M.S.; Rohitash, K.; Vijaykumar, M.; Pandey, S.C.; Vishakante, G.D.; Ahmed, F.M.; Sidiqui, A.R. Development and evaluation of nasal mucoadhesive nanoparticles of an analgesic drug. Der Pharmac. Lett. 2012, 4, 1846–1854.
  • López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Teijón, J.M.; Blanco, M.D. Paclitaxel-loaded polyester nanoparticles prepared by spray-drying technology: in vitro bioactivity evaluation. J. Microencapsul. 2011, 28, 417–429.
  • Lee, S.H.; Heng, D.; Ng, W.K.; Chan, H.-K.; Tan, R.B.H. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharmaceut. 2011, 403, 192–200.
  • Jeong, Y.-I.; Cho, C.-S.; Kim, S.-H.; Ko, K.-S.; Kim, S.-I.; Yong-Hoshim; Nah, J.-W. Preparation of poly(DL-lactide-co-glycolide) nanoparticles without surfactant. J. Appl. Polym. Sci. 2001, 80, 2228–2236.
  • Vu, M.-T; Jeong, Y.-I.; Choi, C.; Nam, J.-P; Son, D.-H; Park, J.-K.; Kim, W.-S.; Kim, M.-Y.; Jang, M.-K.; Nah, J.-W.; Kim, K.-J. Surfactant-free nanoparticles of doxorubicin-conjugated poly(DL-lactide-co-glycolide). Macromol. Res. 2010, 18, 1115–1120.
  • Bilati, U.; Allemann, E.; Doelker, E. Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm. Dev. Technol. 2003, 8, 1–9.
  • Hoa, L.T.M.; Chi, N.T.; Triet, N.M.; Nhan, L.N.T.; Chien, D.M. Preparation of drug nanoparticles by emulsion evaporation method. J. Phys. Conf. Ser. 2009, 187, 012047.
  • Tansık, G.; Yakar, A.; Gunduz, U. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. J. Nanopart. Res. 2013, 16, 2171.
  • Marsden, H.R.; Gabrielli, L.; Kros, A. Rapid preparation of polymersomes by a water addition/solvent evaporation method. Polym. Chem. 2010, 1, 1512–1518.
  • Quintanar-Guerrero, D.; Zambrano-Zaragoza, M.L.; Gutierrez-Cortez, E.; Mendoza-Munoz, N. Impact of the emulsification-diffusion method on the development of pharmaceutical nanoparticles. Recent Pat. Drug Deliv. Formul. 2012, 6, 184–194.
  • Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceut. Res. 2008, 26, 1025–1058.
  • Lee, M.Y.; Min, S.G.; Bourgeois, S.; Choi, M.J. Development of a novel nanocapsule formulation by emulsion-diffusion combined with high hydrostatic pressure. J. Microencapsul. 2009, 26, 122–129.
  • Hassou, M.; Couenne, F.; leGorrec, Y.; Tayakout, M. Modeling and simulation of polymeric nanocapsule formation by emulsion diffusion method. AIChE J. 2009, 55, 2094–2105.
  • Surassmo, S.; Ming, S.-G.; Bejrapha, P.; Choi, M.-J. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Res. Int. 2010, 43, 8–17.
  • Srivastava, D.; Lee, I. Asymmetric nanoparticles from polymer nanospheres—Adsorption on patterned polyelectrolyte templates. Polym. Mater. Sci. Eng. 2007, 96, 869–870.
  • Karve, S.; Werner, M.E.; Cummings, N.D.; Sukumar, R.; Wang, E.C.; Zhang, Y.A.; Wang, A.Z. Formulation of diblock polymeric nanoparticles through nanoprecipitation technique. J. Vis. Exp. 2011, 55, pii: 3398.
  • Mehrotra, A.; Pandit, J.K. Critical process parameters evaluation of modified nanoprecipitation method on lomustine nanoparticles and cytostatic activity study on L132 human cancer cell line. J. Nanomed. Nanotechol. 2012, 3, 1–8.
  • Liu, Y.; Lu, Y.C.; Luo, G.S. Modified nanoprecipitation method for polysulfone nanoparticles preparation. Soft Matter. 2014, 10, 3414–3420.
  • Chidambaram, M.; Krishnasamy, K. Modifications to the conventional nanoprecipitation technique: An approach to fabricate narrow sized polymeric nanoparticles. Adv. Pharm. Bull. 2014, 4, 205–208.
  • Chen, R.; Huang, D. Preparation of polymer nanoparticles, and the effect of nanoconfinement on glass transition, structural relaxation and crystallization. Front. Chem. China. 2011, 6, 332–340.
  • Huang, D.; Yang, Y.; Zhuang, G.; Li, B. Influence of entanglements on the glass transition and structural relaxation behaviors of macromolecules. 1. Polycarbonate. Macromolecules 1999, 32, 6675–6678.
  • Huang, D.; Yang, Y.; Zhuang, G.; Li, B. Influence of intermolecular entanglements on the glass transition and structural relaxation behaviors of macromolecules. 2. Polystyrene and phenolphthalein poly(ether sulfone). Macromolecules 2000, 33, 461–464.
  • Allémann, E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size. Int. J. Pharmaceut. 1992, 87, 247–253.
  • Zohri, M.; Gazori, T.; Mirdamadi, S.S.; Asadi, A.; Haririan, I. Polymeric Nanoparticles: Production, Applications and Advantage. Int. J. Nanotechnol. 2009, 3, 1.
  • Galindo-Rodriguez, S.; Allémann, E.; Fessi, H.; Doelker, E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004, 21, 1428–1439.
  • Mendoza-Muñoz, N.; Quintanar-Guerrero, D.; Allémann, E. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Rec. Pat. Drug Deliv. Formul. 2012, 6, 236–249.
  • Liu, C.-Y.; Morawetz, H. Kinetics of the unfolding of collapsed polystyrene chains above the glass transition temperature. Macromolecules 1988, 21, 515–518.
  • Yin, W.; Yang, H.; Cheng, R. Glass transition of the two distinct single-chain particles of poly(N-isopropylacrylamide). Eur. Phys. J. 2005, 17, 1–5.
  • Chen, J., Zhenga, G.; Xu, L.; Lu, Y.; Xue, G.; Yang, Y. Spectroscopic study of ordered structures of atactic poly(methyl methacrylate) freeze-extracted from poly(ethylene glycol) solution. Polymer 2001, 42, 4459–4462.
  • Zhou, D.; Li, L.; Li, Y.; Zhang, J.; Xue, G. Metastable isotactic polystyrene prepared by freeze-extracting concentrated solutions in solvents of middle molecular size. Macromolecules. 2003, 36, 4609–4613.
  • Xiao, Z.; Sun, Q.; Xue, G.; Yuan, Z.; Dai, Q.; Hu, Y. Thermal behavior of isotactic polypropylene freeze-extracted from solutions with varying concentrations. Eur. Polym. J. 2003, 39, 927–931.
  • Kumaki, J. Polystyrene monomolecular particles obtained by spreading dilute solutions on the water surface. Macromolecules 1986, 19, 2258–2263.
  • Kumaki, J. Monolayer of polystyrene monomoecular on a water surface studied by Langmuir-type film balance and transmission electron microscopy. Macromolecules 1988, 21, 749–755.
  • Kumaki, J. Accumulation of monomolecular polystyrene particles from a water surface onto a substrate. Polym. Phys. 1990, 28, 105–111.
  • Das, S.K.; Roy, S.; Kalimuthu, Y.; Khanam, J.; Nanda, A. Solid dispersions: An approach to enhance the bioavailability of poorly water-soluble drugs. Int. J. Pharmacol. Pharmaceut. Technol. 2012, 1, 37–46.
  • Banchero, M.; Ronchetti, S.; Manna, L. Characterization of ketoprofen/methyl-β-cyclodextrin complexes prepared using supercritical carbon dioxide. J. Chem. 2013, 2013, 1–8.
  • Moorthi, C.; Kathiresan, K. Fabrication of dual drug loaded polymeric nanosuspension: incorporating analytical hierarchy process and data envelopment analysis in the selection of a suitable method. Int. J. Pharm. Pharm. Sci. 2013, 5, 499–504.
  • Blasig, A.; Shi, C.; Enick, R.M.; Thies, M.C. Effect of concentration and degree of saturation on RESS of a CO2-soluble fluoropolymer. Ind. Eng. Chem. Res. 2002, 41, 4976–4983.
  • Sekhon, B.S. Supercritical fluid technology: An overview of pharmaceutical applications. Int. J. Pharm Tech Res. 2. 2010, 2, 810–826.
  • Sane, A.; Limtrakul, J.F. Formation of retinyl palmitate-loaded poly(l-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV). J. Supercrit. Fluids 2009, 51, 230–237.
  • Nagavarma, B.V.N.; Yadav, H.K.S.; Ayaz, A.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles—A review. Asian J. Pharm. Clin. Res. 2012, 5, 16–23.
  • Luan, J.; Wang, S.; Hu, Z.; Zhang, L. Synthesis techniques, properties and applications of polymer nanocomposites. Curr. Org. Synth. 2012, 9, 114–136.
  • Zenerino, A.; Amigoni, S.; de Givenchy, E.T.; Josse, D.; Guittard, F. New fluorinated hybrid organic/inorganic water soluble polymeric network. Polymer 2013, 54, 6089–6095.
  • Tjong, A.S.C.; Mai, Y.-W. Physical Properties and Applications of Polymer Nanocomposites. Woodhead Publishing: Philadelphia, PA, 2010.
  • Yuan, W.; Yuan, J.; Zhou, L.; Wu, S.; Hong, X. Fe3O4/poly(2-hydroxyethyl methacrylate)-graft-poly(ϵ-caprolactone) magnetic nanoparticles with branched brush polymeric shell. Polymer 2010, 51, 2540–2547.
  • Tomer, V.; Polizos, G.; Manias, E.; Randall, C.A. Epoxy-based nanocomposites for electrical energy storage, Part I: Effects of montmorillonite and barium titanate nanofillers. J. Appl. Phys. 2010, 108, 074116.
  • Putz, K.W.; Compton, O.C.; Palmeri, M.J.; Nguyen, S.T.; Brinson, L.C. High-nanofiller-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 2010, 20, 3322–3329.
  • Mallakpour, S.; Iderli, M. Preparation of new polymer nanocomposites based on chiral poly(amide-imide)/surface-modified ZnO nanoparticles containing 4,4′-methylene bis(3-chloro-2,6-diethylaniline) linkages via ultrasonication-assisted process. Polym. Bull. 2013, 70, 2137–2149.
  • Valek, R.; Hell, J. Impact properties of polymeric nanocomposites with different shape of nanoparticles. Nanocon 2011, 9, 21–23.
  • Liu, Q.; Nayfeh, M.H.; Yau, S-T. A silicon nanoparticle-based polymeric nano-composite material for glucose sensing. J. Electroanal. Chem. 2011, 657, 172–175.
  • Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C.G.; Wilkie, C.A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym. Degrad. Stab. 2012, 97, 2481–2486.
  • Kim, D.; Srivastava, S.; Narayanan, S.; Archer, L.A. Polymer nanocomposites: polymer and particle dynamics. Soft Matter. 2012, 8, 10813–10818.
  • Madkour, T.M.; Hagag, F.M.; Mamdouh, W.; Azzam, R.A. Molecular-level modeling and experimental investigation into the high performance nature and low hysteresis of thermoplastic polyurethane/multi-walled carbon nanotube nanocomposites. Polymer 2012, 53, 5788–5797.
  • Tao, P.; Viswanath, A.; Li, Y.; Siegel, R.W.; Benicewicz, B.C.; Schadler, L.S. Bulk transparent epoxy nanocomposites filled with poly(glycidyl methacrylate) brush-grafted TiO2 nanoparticles. Polymer 2013, 54, 1639–1646.
  • Etxeberria, H.; Zalakain, I.; Mondragon, I.; Eceiza, A.; Kortaberria, G. Generation of nanocomposites based on polystyrene-grafted CdSe nanoparticles by grafting through and block copolymer. Coll. Polym. Sci. 2013, 291, 1881–1886.
  • Zapata, P.A.; Palza, H.; Cruz, L.S.; Lieberwirth, I.; Catalina, F.; Corrales, T.; Rabagliat, F.M. Polyethylene and poly(ethylene-co-1-octadecene) composites with TiO2 based nanoparticles by metallocenic “in situ” polymerization. Polymer 2013, 54, 2690–2698.
  • Chao, H.; Riggleman, R.A. Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 2013, 54, 5222–5229.
  • Pourhossaini, M.-R.; Razzaghi-Kashani, M. Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer 2014, 55, 2279–2284.
  • Wåhlander, M.; Nilsson, F.; Larsson, E.; Tsai, W.-C.; Hillborg, H.; Carlmark, A.; Gedde, U.W.; Malmström, E. Polymer-grafted Al2O3-nanoparticles for controlled dispersion in poly(ethylene-co-butyl acrylate) nanocomposites. Polymer 2014, 55, 2125–2138.
  • Winey, K.I.; Vaia, R.A. Polymer nanocomposites. MRS Bull. 2007, 32, 314–322.
  • Sahiner, N.; Ilgin, P. Synthesis and characterization of soft polymeric nanoparticles and composites with tunable properties. J. Polym. Sci. A Polym. Chem. 2010, 48, 5239–5246.
  • Szaloki, M., Gall, J.; Bukovinszki, K.; Borbely, J.; Hegedus, C.S. Synthesis and characterization of cross-linked polymeric nanoparticles and their composites for reinforcement of photocurable dental resin. React. Funct. Polym. 2013, 73, 465–473.
  • Welsch, N.; Lu, Y.; Dzubiella, J.; Ballauff, M. Adsorption of proteins to functional polymeric nanoparticles. Polymer 2013, 54, 2835–2849.
  • Kehren, D.; Lopez, A.C.M.; Pich, A. Nanogel-modified polycaprolactone microfibres with controlled water uptake and degradability. Polymer 2014, 55, 2153–2162.
  • Whittington, A.P.; SonBinh, N.T.; Jun-Hyun, K. Thermal behavior of polystyrene-silica nanocomposites. Nanoscape 2009, 6, 26–29.
  • Chen, Y.-Z.; Guo, Z.-X.; Yu, J.; Zhan, M.-S. Preparation of polystyrene/SiO2 composite nanoparticles bearing sulfonic groups on the surface via emulsion copolymerization using a polymerizable emulsifier. Chin. J. Polym. Sci. 2009, 27, 629–637.
  • Wang, Y.; Dave, R.N.; Pfeffer, R. Polymer encapsulation of fine particles—A supercritical anti-solvent (SAS) process. J. Supercrit. Fluids. 2004, 28, 85–99.
  • Wu, Y.; Zhang, Y.; Xu, J.; Chen, M.; Wu, L. One-step preparation of PS/TiO2 nanocomposite particles via miniemulsion polymerization. J. Coll. Interf. Sci. 2010, 343, 18–24.
  • Hood, M.A.; Mari, M.; Muñoz-Espí, R. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 2014, 7, 4057–4087.
  • Zhu, W.; Wu, Y.; Yan, C.; Wang, C.; Zhang, M.; Wu, Z. Facile synthesis of mono-dispersed polystyrene (PS)/Ag composite microspheres via modified chemical reduction. Materials 2013, 6, 5625–5638.
  • Patole, A.S.; Patole, S.P.; Yoo, J.-B.; Ahn, J.-H.; Kim, T.-H. Effective in situ synthesis and characteristics of polystyrene nanoparticle-covered multiwall carbon nanotube composite. J. Polym. Sci. B Polym. Phys. 2009, 47, 1523–1529.
  • Rong, Y.; Chen, H.-Z.; Wu, G.; Wang, M. Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Mater. Chem. Phys. 2005, 91, 370–374.
  • Li, Y.; Pan, Y.; Zhu, L.; Wang, Z.; Su, D.; Xue, G. Facile and controlled fabrication of functional gold nanoparticle-coated polystyrene composite particle. Macromol. Rapid Commun. 2011, 32, 1741–1747.
  • Lu, M.; Zhou, J.; Wang, L.; Zhao, W.; Lu, Y.; Zhang, L.; Liu, Y. Design and preparation of cross-linked polystyrene nanoparticles for elastomer reinforcement. J. Nanomater. 2010, 2010, 1–8.
  • Daigle, J.-C.; Claverie, J.P. Simple method for forming hybrid core-shell nanoparticles suspended in water. J. Nanomater. 2008, 2008, 1–8.
  • Wibawa, P.J.; Saim, H.; Agam, M.A.; Nur, H. Manufacturing and morphological analysis of composite material of polystyrene nanospheres/cadmium metal nanoparticles. Bull. Chem. React. Eng. Catal. 2013, 7, 224–232.
  • Harun, N.A.; Horrocks, B.R.; Fulton, D.A. A Miniemulsion polymerization technique for encapsulation of silicon quantum dots in polymer nanoparticles. Nanoscale 2011, 3, 4733–4741.
  • Harun, N.A.; Benning, M.J.; Horrocks, B.R.; Fulton, D.A. Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated within polymer nanoparticles. Nanoscale 2013, 5, 3817–3827.
  • Sherman, Jr., R.L.; Ford, W.T. Semiconductor nanoparticle/polystyrene latex composite materials. Langmuir. 2005, 21, 5218–5222.
  • Hennache, A.; Mustapha, N.; Fekai, Z. Polymeric solar cells efficiency increase using doped conjugated polymer nanoparticles. Br. J. Appl. Sci. Technol. 2014, 4, 604–616.
  • Labastide, J.A.; Baghgar, M.; Dujovne, I.; Yang, Y.; Dinsmore, A.D.; Sumpter, B.G.; Venkataraman, D.; Barnes, M.D. Polymer nanoparticle superlattices for organic photovoltaic applications. J. Phys. Chem. Lett. 2011, 2, 3085–3091.
  • Breeze, A.J.; Schlesinger, Z.; Carter, S.A.; Hörhold, H.H.; Tillmann, H.; Ginley, D.S.; Brock, P.J. Nanoparticle polymer and polymer—Polymer blend composite photovoltaics. Proc. SPIE 2001, 4108, 57–61.
  • Ghosh, M.; Kurian, M.; Veerender, P.; Padma, N.; Aswal, D.K.; Gupta, S.K.; Yakhmi, J.V. Photovoltaic properties of ZnO nanoparticle based solid polymeric photoelectrochemical cells. Int. Conf. Phys. Emerg. Funct. Mater. AIP Conf. Proceed. 2010, 1313, 394–396.
  • Liang, Z.; Dzienis, K.L.; Xu, J.; Wang, Q. Covalent layer-by-layer assembly of Conjugated polymers and CdSe nanoparticles: Multilayer structure and photovoltaic properties. Adv. Funct. Mater. 2006, 16, 542–548.
  • Günes, S.; Marjanovic, N.; Nedeljkovic, J.M.; Sariciftci, N.S. Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene. Nanotechnology 2008, 19, 1–5.
  • Saunders, B.R.; Turner, M.L. Nanoparticle–polymer photovoltaic cells. Adv. Coll. Interf. Sci. 2008, 138, 1–23.
  • Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28, 869–876.
  • Dong, Y.; Feng, S.-S. Poly(D,L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26, 6068–6076.
  • Zhang, S.Y.; Wu, Y.; He, B.; Luo, K.; Gu, Z.W. Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Sci. China Chem. 2014, 57, 461–475.
  • Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Coll. Surf. B: Biointerf. 2009, 75, 1–18.
  • Milane, L.; Duan, Z.; Amiji, M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharm. 2011, 8, 185–203.
  • Sahu, S.K.; Maiti, S.; Maiti, T.K.; Ghosh, S.K.; Pramanik, P. Folate-decorated succinylchitosan nanoparticles conjugated with doxorubicin for targeted drug delivery. Macromol. Biosci. 2011, 11, 285–295.
  • Vlerken, L.E.V.; Duan, Z.; Little, S.R.; Seiden, M.V.; Amiji, M.M. Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol. Pharm. 2008, 5, 516–526.
  • Topete, A.; Alatorre-Meda, M.; Villar-Alvarez, E.M.; Carregal-Romero, S.; Barbosa, S.; Parak, W.J.; Taboada, P.; Mosquer, V. Polymeric-gold nanohybrids for combined imaging and cancer therapy. Adv. Healthcare Mater. Early View. 2014, 3, 1309–1325.
  • Reis, C.P.; Gomes, A.; Rijo, P.; Candeias, S.; Pinto, P.; Baptista, M.; Martinho, N.; Ascensão, L. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles. Microscop. Microanal. 2013, 19, 1141–1150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.