179
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Polymer-decorated Plasmonic Nanoparticles

REFERENCES

  • Service, R.F. Small clusters hit the big time. Science 1996, 271, 920.
  • Puntes, V.F.; Krishnan, K.M.; Alivisatos, A.P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 2001, 291, 2115.
  • Sun, Y.G.; Xia, Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176.
  • Daniel, M.C.; Astruc, D. Novel effects of twin-tailed cationic surfactants on the formation of gold nanorods. Chem. Rev. 2004, 104, 293.
  • Feldmann, C. Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 2003, 13, 101.
  • Liz-Marzán, M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32.
  • Moores, A.; Goettman, F. The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem. 2006, 30, 1121.
  • Miller, M.M.; Lazarides, A.A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556.
  • Hostetler, M.J.; Templeton, A.C.; Murray, R.W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 1999, 15, 3782.
  • Stewart, M.E.; Anderton, C.R.; Thompson, L.B.; Maria, J.; Gray, S.K.; Rogers, J.A.; Nuzzo, R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494.
  • Edmondson, S.; Osbourne, V.L.; Huck, W.T.S. Chem. Soc. Rev. 2004, 33, 14.
  • Jain, P.K.; Huang, X.H.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578.
  • Grainger, D.W., Castner, D.G. NanoBiomaterials, and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv. Mater. 2008, 20, 867.
  • Liu, J.W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642.
  • Javier, D.J.; Nitin, N.; Levy, M.; Ellington, A.; Richards-Kortum, R.; Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconju. Chem. 2008, 19, 1309.
  • Giljohann, D.A.; Seferos, D.S.; Prigodich, A.E.; Patel, P.C.; Mirkin, C.A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 2009, 131, 2072.
  • Modi, A.; Koratkar, N.; Lass, E.; Wei, B.Q.; Ajayan, P.M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171.
  • Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 2000, 65, 271.
  • Kim, K.; Kim, J.H. Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. J. Controlled Release 2010, 146, 219.
  • Heller, D.A.; Jeng, E.S.; Yeung, T.K.; Martinez, B.M.; Moll, A.E.; Gastala, J.B.; Strano, M.S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, 508.
  • El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006, 239, 129.
  • Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Delivery Rev. 2008, 60, 1307.
  • Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J.; Kiely, C.J. Synthesis and reactions of functionalised gold nanoparticles. J. Chem. Soc., Chem. Commun. 1995, 1655.
  • Murray, R.W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688.
  • Wang, Z.X., Tan, B.; Hussain, I.; Schaeffer, N.; Wyatt, M.F.; Brust, M.; Cooper, A.I. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 2007, 23, 885.
  • Turkevich, T.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Faraday Soc. 1951, 11, 55.
  • Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293.
  • Jans, H.; Stakenborg, Y.; Jans, K.; Van de Broek, B.; Peeters, S.; Bonroy, K.; Lagae, L.; Borgh, G.; Maes, G. Increased stability of mercapto alkane functionalized Au nanoparticles towards DNA sensing. Nanotechnology 2010, 21, 285608.
  • Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20.
  • Van Aerschot, A.; Rozenski, J.J. Characterization and sequence verification of thiolated deoxyoligonucleotides used for microarray construction. Am. Soc. Mass Spectrom. 2006, 17, 1396.
  • Cao, C.; Gontard, L.C.; Tram, L.L.T.; Wolff, A.; Bang, D.D. Dual enlargement of gold nanoparticles: From mechanism to scanometric detection of pathogenic bacteria. Small 2011, 7, 1701.
  • Bianmei, C.; Tingfei, X.; David, H. Applications of nanoparticles in biology. AMES 2011, 17, 79.
  • Zhang, H.L.; Qiao, F.Y.; Liu, J.; Li, F.; Kong, X.L; Zhou, H.X. Antibody and DNA dual-labeled gold nanoparticles: Stability and reactivity. Appl. Surf. Sci. 2008, 254, 2941.
  • Zhang, F.; Dressen, D.G.; Skoda, M.W.A.; Jacobs, R.M.J.; Zorn, S.; Martin, R.A.; Marting, C.M.; Clark, G.F.; Schreiber, F. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: Kinetics of colloid aggregation driven by depletion forces. Eur. Biophys. J. 2008, 37, 551.
  • Weisbecker, C.S.; Merritt, M.V.; Whitesides, G.M. Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 1996, 12, 3763.
  • Zhang, F.; Skoda, M.W.A.; Jacobs, R.M.J.; Zorn, S.; Martin, R.A.; Martin, C.M.; Clark, G.F.; Goerigk, G.; Scheiber, F.J. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: protein resistance and colloidal stability. Phys. Chem. A 2007, 111, 12229.
  • Preston, T.C.; Nuruzzaman M; Jones ND; Mittler S. Role of hydrogen bonding in the pH-dependent aggregation of colloidal gold particles bearing solution-facing carboxylic acid groups. J. Phys. Chem. C 2009, 113, 14236.
  • Jan van Oss, C. The Properties of Water and Their Role in Colloidal and Biological Systems, Elsevier/Academic: London, 2008, pp 119–120.
  • Hunag, W.X.; Skanth, G.; Baker, G.L.; Bruening, M.L. Surface-initiated thermal radical polymerization on gold. Langmuir 2001, 17, 1731.
  • Senaratne, W.; Andruzzi, L.; Ober, C.K. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 2005, 6, 2427.
  • Israelachvili, J.N. Intermolecular and Surface Forces, Academic Press: New York, 1992.
  • Jia, H.; Titmuss, S.; Polymer-functionalized nanoparticles: from stealth viruses to biocompatible quantum dots. Nanomedicine 2009, 4, 951.
  • Zeng, S.; Ken-Tye, Y.; Indrajit, R.; Xuan-Quyen, D.; Xia, Y.; Feng, L. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491.
  • Zheng, J.; Nicovich, P.R.; Dickson, R.M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409.
  • Liu, J.; Cao, Z.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948.
  • Thaxton, C.S.; Georganopoulou, D.G.; Mirkin, C.A. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta 2006, 363, 120.
  • Hodes, G. When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater. 2007, 19, 639.
  • Templeton, A.C.; Wuelfing, M.P.; Murray, R.W. Monolayer protected cluster molecules. Acc. Chem. Res. 2000, 33, 27.
  • Zheng, J.; Nicovich, P.R.; Dickson, R.M. Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. Annu. Rev. Phys. Chem. 2007, 58, 409.
  • Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M.A.; Schaaff, T.G.; Whetten, R.L. Visible to infrared luminescence form a 28-atom gold cluster. J. Phys. Chem. B 2002, 106, 3410.
  • Datar, R.H.; Richard, J.C. Nanomedicine: concepts, status and the future. Med. Innov. Bus. 2010, 2, 6.
  • Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771.
  • Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759.
  • Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078.
  • Chen, S.J.; Huang, Y.F.; Huang, C.C.; Lee, K.H.; Lin, Z.H.; Chang, H.T. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens. Bioelectron. 2008, 23, 1749.
  • Aili, D.; Selegard, R.; Baltzer, L.; Enander, K.; Liedberg, B.; Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Small 2009, 5, 2445.
  • Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 2780.
  • Thompson, D.G.; Enright, A.; Faulds, K.; Smith, W.E.; Graham, D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem. 2008, 80, 2805.
  • Song, G.; Chen, C.; Qu.X.; Miyoshi, D.; Ren, J.; Sugimoto. N. Small-molecule-directed assembly of DNA: a gold-nanoparticle-based strategy for screening of a DNA duplex binders. Adv. Mater. 2008, 20, 706.
  • Hurst, S.J.; Han, M.S.; Lytton-Jean, A.K.R.; Mirkin, C.A. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach. Anal. Chem. 2007, 79, 7201.
  • Song, G.T.; Chen, C.; Ren, J.S.; Qu, X.G. Universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano. 2009, 3, 1183.
  • Lee, J.S.; Ulmann, P.A.; Han, M.S.; Mirkin, C.A. A DNA-gold nanoparticle based colorimetric competition assay for the detection of cysteine. Nano Lett. 2008, 8, 529.
  • Jana, N.R. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small, 2005, 1, 875.
  • Boyd, G.T.; Yu, Z.H.; Shen, Y.R.; Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B. 1986, 33, 7923.
  • Mohamed, M.B.; Volkov, V; Link, S.; El-Sayed, M.A.; Chem. The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Phys. Lett. 2000, 517.
  • Durr, N.J.; Larson, T.; Smith, D.K.; Korgel, B.A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941.
  • Chen, J.; Irudayaraj, J. Quantitative investigation of compartmentalized dynamics of erbb2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano 2009, 3, 4071.
  • Tan, Y.N.; Su, X.; Zhu, Y.; Lee, J.Y. Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements. ACS Nano 2010, 4, 5101.
  • Fang, J.; Yu, L.L.; Gao, P.; Wei, Y.N.; Detection of protein-DNA interaction and regulation using gold nanoparticles. Anal. Biochem. 2010, 39, 262.
  • Zhao, W.A.; Lam, J.C.F.; Chiuman, W.; Brook, M.A.; Li, Y.F. Enzymatic cleavage of nucleic acids on gold nanoparticles: A generic platform for facile colorimetric biosensors. Small 2008, 4, 810.
  • Huang, C.C.; Huang, Y.F.; Cao, Z.; Tan, W.; Chang, H.T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 2005, 77, 5735.
  • Hao, E.; Schatz, G.C.; Hupp, J.T. Synthesis and optical properties of anisotropic metal nanoparticles. J. Fluoresc. 2004, 14, 331.
  • Chen, C.C.; Lin, Y.P.; Wang, C.W.; Tzeng, H.C.; Wu, C.H.; Chen, Y.C.; Chen, C.P.; Chen, L.C.; Wu, Y.C. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 2006, 128, 3709.
  • Sweeney, E.C.; Tonevitsky, A.G.; Temiakov, D.E.; Agapov, I.I.; Saward, S.; Palmer, R.A. Preliminary crystallographic characterization of ricin agglutinin. Proteins 1997, 28, 586.
  • Mie, G. Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 1908, 25, 377.
  • Shang, L.; Dong, S. Sensitive detection of cysteine based on fluorescent silver clusters. J. Biosens. Bioelectron. 2009, 24, 1569.
  • Yu, J.H.; Choi, S.; Dickson, R.M. Shuttle-based fluorogenic silver-cluster biolabels. Angew. Chem., Int. Ed. 2009, 48, 318.
  • Xu, H.; Suslick, K.S.; Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010, 4, 3209.
  • Zhang, J.G.; Xu, S.Q.; Kumacheva, E. Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv. Mater. 2005, 17, 2336.
  • Shang, L.; Dong, S.J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun. 2008, 1088.
  • Shen, Z.; Duan, H.W.; Frey, H. Water-soluble fluorescent Ag-nanoclusters obtained from multi-arm star poly(acrylic acid) as “molecular hydrogel” template. Adv. Mater. 2007, 19, 349.
  • Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A.S.; Muller, A.H.E.; Ikkala, O.; Ras, R.H.A. Color tunability and electrochemiluminescence of silver nanoclusters. Angew. Chem., Int. Ed. 2009, 48, 2122.
  • Litman, G.W.; Rast, J.P.; Shamblott, M.J.; Haire, R.N.; Hulst, M.; Roess, W.; Litman, R.T.; Hinds-Frey, K.R.; Zilch, A.; Amemiya, C.T. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol. Biol. Evol. 1993, 10, 60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.