429
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Covalent Immobilization of Tyrosinase on Electrospun Polyacrylonitrile/Polyurethane/Poly(m-anthranilic acid) Nanofibers: An Electrochemical Impedance Study

, &

REFERENCES

  • Wang, Z.G.; Wan, L.S.; Liu, Z.M.; Huang, X.J.; Xu, Z.K. Enzyme immobilization on electrospun polymer nanofibers: an overview. J. Mol. Catal. B: Enzym. 2009, 56, 189–195.
  • Polat, T.; Bazin, H.G.; Linhardt, R.J. Enzyme catalyzed regioselective synthesis of sucrose fatty acid ester surfactants. J. Carbohydr. Chem. 1997, 16, 1319–1325.
  • Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzyme Microb. Technol. 2006, 39, 235–251.
  • Choudhary, G.; Wu, S.L.; Shieh, P.; Hancock, W.S. Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J. Proteome Res. 2003, 2, 59–67.
  • Akgöl, S.; Dinçkaya, E. A novel biosensor for specific determination of hydrogen peroxide: catalase enzyme electrode based on dissolved oxygen probe. Talanta 1999, 48, 363–367.
  • Ju, K.S.; Parales, R.E. Nitroaromatic compounds, from synthesis to biodegradation. Appl. Environ. Microbiol. 2006, 72, 1817–1824.
  • Wołosowska, S.; Synowiecki, J. Thermostable β-glucosidase with a broad substrate specifity suitable for processing of lactose-containing products. Food Chem. 2004, 85, 181–187.
  • Adelt, S.; Podeschwa, M.; Dallmann, G.; Altenbach, H.J.; Vogel, G. Stereo-and regiospecificity of yeast phytases–chemical synthesis and enzymatic conversion of the substrate analogues neo-and l-chiro-inositol hexakisphosphate. Bioorg. Chem. 2003, 31, 44–67.
  • Seeger, M.; Zielinski, M.; Timmis, K.N.; Hofer, B. Regiospecificity of dioxygenation of di-to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol. 1999, 65, 3614–3621.
  • Ericksen, S.S.; Szklarz, G.D. Regiospecificity of human cytochrome P450 1A1-mediated oxidations: the role of steric effects. J. Biomol. Struct. Dyn. 2005, 23, 243–256.
  • Ye, P.; Xu, Z.K.; Wu, J.; Innocent, C.; Seta, P. Nanofibrous poly (acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials 2006, 27, 4169–4176.
  • Sam, S.; Touahir, L.; Salvador Andresa, J.; Allongue, P.; Chazalviel, J.N.; Gouget-Laemmel, A.C.; Djebbar, S. Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 2009, 26, 809–814.
  • Wan, L.S.; Ke, B.B.; Wu, J.; Xu, Z.K. Catalase immobilization on electrospun nanofibers: effects of porphyrin pendants and carbon nanotubes. J. Phys. Chem. C 2007, 111, 14091–14097.
  • Fernandes, K.F.; Lima, C.S.; Pinho, H.; Collins, C.H. Immobilization of horseradish peroxidase onto polyaniline polymers. Process Biochem. 2003, 38, 1379–1384.
  • Védrine, C.; Fabiano, S.; Tran-Minh, C. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 2003, 59, 535–544.
  • Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359.
  • Ahuja, T.; Mir, I.A.; Kumar, D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791–805.
  • Chaubey, A.; Pande, K.K.; Singh, V.S.; Malhotra, B.D. Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Anal. Chim. Acta 2000, 407, 97–103.
  • Giray, D.; Balkan, T.; Dietzel, B.; Sezai Sarac, A. Electrochemical impedance study on nanofibers of poly (m-anthranilic acid(/polyacrylonitrile blends. Eur. Polym. J. 2013, 49, 2645–2653.
  • Paul, E.W.; Ricco, A.J.; Wrighton, M.S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic device. J. Phys. Chem. 1985, 89, 1441–1447.
  • Wu, M.S.; Wen, T.C.; Gopalan, A. In situ UV–visible spectroelectrochemical studies on the copolymerization of diphenylamine with anthranilic acid. Mater. Chem. Phys. 2002, 74, 58–65.
  • Nguyen, M.T.; Diaz, A.F. Water-soluble poly (aniline-co-o-anthranilic acid) copolymers. Macromolecules 1995, 28, 3411–3415.
  • Gorji, M.; Jeddi, A.; Gharehaghaji, A.A. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J. Appl. Polym. Sci. 2012, 125, 4135–4141.
  • Sizgek, G.D.; Griffith, C.S.; Sizgek, E.; Luca, V. Mesoporous zirconium titanium oxides. Part 3. Synthesis and adsorption properties of unfunctionalized and phosphonate-functionalized hierarchical polyacrylonitrile-F-127-templated beads. Langmuir 2009, 25, 11874–11882.
  • Lu, Y.; Tighzert, L.; Dole, P.; Erre, D. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 2005, 46, 9863–9870.
  • Wang, Z.G.; Ke, B.B.; Xu, Z.K. Covalent immobilization of redox enzyme on electrospun nonwoven poly (acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol. Bioeng. 2007, 97, 708–720.
  • Ficen, S.Z.; Guler, Z.; Mitina, N.; Finiuk, N.; Stoika, R.; Zaichenko, A.; Ceylan, S.E. Biophysical study of novel oligoelectrolyte based nonviral gene delivery systems for mammalian cells. J. Gene Med. 2013, 15, 193–204.
  • Ge, J.J.; Hou, H.; Li, Q.; Graham, M.J.; Greiner, A.; Reneker, D.H.; Harris, F.W.; Cheng, S.Z.D. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J. Am. Chem. Soc. 2004, 126, 15754–15761.
  • Raghu, A.V.; Jeong, H.M.; Kim, J.H.; Lee, Y.R.; Cho, Y.B.; Sirsalmath, K. Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl) iminomethyl} phenol. Macromol. Res. 2008, 16, 194–199.
  • Ouyang, Q.; Cheng, L.; Wang, H.; Li, K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym. Degrad. and Stab. 2008, 93, 1415–1421.
  • Asefnejad, A.; Khorasani, M.T.; Behnamghader, A.; Farsadzadeh, B.; Bonakdar, S. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int. J. Nanomed. 2011, 6, 2375–2384.
  • Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101.
  • Naidja, A.; Violante, A.; Huang, P.M. Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. Clays Clay Miner. 1995, 43, 647–655.
  • Cai, Y.; Gao, D.; Wei, Q.; Gu, H.; Zhou, S.; Huang, F.; Song, L.; Hu, Y.; Gao, W. Effects of ferric chloride on structure, surface morphology and combustion property of electrospun polyacrylonitrile composite nanofibers. Fibers Polym. 2011, 12, 145–150.
  • Yu, D.G.; Williams, G.R.; Gao, L.D.; Bligh, S.W.A.; Yang, J.H.; Wang, X. Coaxial electrospinning with sodium dodecylbenzene sulfonate solution for high quality polyacrylonitrile nanofibers. Colloids Surf., A 2012, 396, 161–168.
  • Acton, Q.A. Advances in Bionanotechnology Research and Application, Scholarly Editions: Georgia, 2011
  • Hunter, C. Supramolecular chemistry: Bigger and better synthesis. Nature 2011, 469, 39–41.
  • Wang, X.; Chen, L.; Xia, S.; Zhu, Z.; Zhao, J.; Chovelon, J.M.; Renaul, N.J. Tyrosinase biosensor based on interdigitated electrodes for herbicides determination. Int. J. Electrochem. Sci. 2006, 1, 55–61.
  • Gu, H.; Su, X.D.; Loh, K.P. Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. J. Phys. Chem. B 2005, 109, 13611–13618.
  • De Crombrugghe, A.; Yunus, S.; Bertrand, P. Grafting and characterization of protein on polyaniline surface for biosensor applications. Surf. Interface Anal. 2008, 40, 404–407.
  • Zehani, N.; Dzyadevych, S.V.; Kherrat, R.; Jaffrezic-Renault, N.J. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front. Chem. 2014, 2, 1–7.
  • Radecka, M.; Wierzbicka, M.; Rekas, M.; Influence of Cr on photoelectrochemical properties of TiO2 thin films. Phys. B Condens. Matter 2004, 351, 121–128.
  • Park, J.Y.; Park, S.M. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 2009, 9, 9513–9532.
  • Lu, X.; Dou, H.; Yuan, C.; Yang, S.; Hao, L.; Zhang, F.; Zhang, X. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J. Power Sources 2012, 197, 319–324.
  • Panić, V.V.; Dekanski, A.B.; Mišković-Stanković, V.B.; Nikolić, B.Ž. The study of capacitance change during electrolyte penetration through carbon-supported hydrous ruthenium oxide prepared by the sol-gel procedure. Chem. Biochem. Eng. Q. 2009, 23, 23–30.
  • Gormally, M.V.; McKibben, R.K.; Johal, M.S.; Selassie, C.R. Controlling tyrosinase activity on charged polyelectrolyte surfaces: A QCM-D analysis. Langmuir 2009, 25, 10014–10019.
  • Birner, S.; Uhl, C.; Bayer, M.; Vogl, P. Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor. J. Phys. Conf. Ser. 2008, 107, 012002.
  • Kityakarn, S.; Pooarporn, Y.; Songsiriritthigul, P.; Worayingyong, A.; Robl, S.; Braun, A.M.; Wörner, M. (Photo) Electrochemical characterization of nanoporous TiO2 and Ce-doped TiO2 sol–gel film electrodes. Electrochim. Acta 2012, 83, 113–124.
  • Rodríguez-Sevilla, E.; Ramírez-Silva, M.T.; Romero-Romo, M.; Ibarra-Escutia, P.; Palomar-Pardavé, M. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors 2014, 14, 14423–14439.
  • Pauliukaite, R.; Ghica, M.E.; Fatibello-Filho, O.; Brett, C. Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim. Acta 2010, 55, 6239–6247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.