952
Views
23
CrossRef citations to date
0
Altmetric
Reviews

A Review on Properties and Fabrication Techniques of Polymer/Carbon Nanotube Composites and Polymer Intercalated Buckypapers

, &

REFERENCES

  • Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: A review. Asian J. Pharm. Clin. Res. 2009, 2, 17–27.
  • Popov, V.N. Carbon nanotubes: properties and application. Mater. Sci. Eng. R 2004, 43, 61–102.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; Colbert, D.T.; Scuseria, G.E.; Tomanek, D.; Fischer, J.E.; Smalley, R.E. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.
  • Overney, G.; Zhong, W.; Tomanek, D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z. Phys. D: At., Mol. Clusters 1993, 27, 93–96.
  • Lasjaunias, J.C.; Biljakoviæ, K.; Benes, Z.; Fischer, J.E.; Monceau, P. Low-temperature specific heat of single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 113409-1–113409-4.
  • Rao, A.M.; Jorio, A.; Pimenta, M.A.; Dantas, M.S.S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.
  • Coleman, J.N.; Blau, W.J.; Dalton, A.B.; Munoz, E.; Collins, S.; Kim, B.G.; Razal, J.; Selvidge, M.; Vieiro, G.; Baughman, R.H. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl. Phys. Lett. 2003, 82, 1682–1684.
  • Frizzell, C.J.; Panhuis, M.I.H.; Countinho, D.H.; Balkus, K.J., Jr.; Minett, A.I.; Blau, W.J.; Coleman, J.N. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 245420.
  • Coleman, J.N.; Khan, U.; Gunko, Y.K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 2006, 18, 689–706.
  • Boge, J.; Sweetman, L.J.; Panhuis, M.i.h.; Ralph, S.F. The effect of preparation conditions and biopolymer dispersants on the properties of SWCNT buckypapers. J. Mater. Chem. 2009, 19, 9131–9140.
  • Smajda, R.; Kukovecz, A.; Konya, Z.; Kiricsi, I. Structure and gas permeability of multi-wall carbon nanotube buckypapers. Carbon 2007, 45, 1176–1184.
  • Kim, B.Y.A.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M.S. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem. Vap. Deposition 2006, 12, 327–330.
  • Zaeri, M.M.; Ziaei-Rad, S.; Vahedi, A.; Karimzadeh, F. Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon 2010, 48, 3916–3930.
  • Lau, A.K.T.; Hui, D. The revolutionary creation of new advanced materials—Carbon nanotube composites. Compos. Part B: Eng. 2002, 33, 263–277.
  • Treacy, M.M.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.
  • Wang, N.; Tang, Z.K.; Li, G.D.; Chen, J.S. Single-walled 4 Å carbon nanotube arrays. Nature 2000, 408, 50–51.
  • Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54.
  • Barber, A.; Andrews, R.; Schadler, L.; Wagner, H. On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 2005, 87, 1–3.
  • Zhang, X.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.; Hauge, R.; Smalley, R.E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288.
  • Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859.
  • Ebbesen, T.W.; Ajayan, P.M.; Hiura, H.; Tanigaki, K. Purification of nanotubes. Nature 1994, 367, 519–1519.
  • Hiura, H.; Ebbesen, T.W.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7, 275–276.
  • Kuznetsova, A.; Mawhinney, D.B.; Naumenko, V.; Yates, J.T.; Liu, J.; Smalley, R.E. Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports. Chem. Phys. Lett. 2000, 321, 292–296.
  • Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J. Fullerene pipes. Science 1998, 280, 1253–1256.
  • Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M.A.; Itkis, M.E.; Haddon, R.C. Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration. Chem. Phys. Lett. 2001, 345, 25–28.
  • Hemon, M.A.; Chen, J.; Hu, H.; Chen, Y.; Itkis, M.E.; Rao, A.M. Dissolution of single-walled carbon nanotubes. Adv. Mater. 1999, 11, 834–840.
  • Chen, J.; Hamon, M.A.; Hu, H.; Chen, Y.; Rao, A.M.; Eklund, P.C. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95–98.
  • Xie, X.L.; Mai, Y.W.; Ping, X. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. Rep. 2005, 49, 89–112.
  • Bandow, S.; Rao, A.M.; Williams, K.A.; Thess, A.; Smalley, R.E.; Eklund, P.C. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 1997, 101, 8839–8842.
  • Niyogi, S.; Hamon, M.A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res., 2002, 35, 1105–1113.
  • Park, H.; Zhao, J.; Lu, J.P. Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett. 2006, 6, 916–919.
  • Zhang, X.; Sreekumar, T.V.; Liu, T.; Kumar, S. Properties and structure of nitric acid oxidized single wall carbon nanotube films. J. Phys. Chem. B 2004, 108, 16435–16440.
  • Cho, J.W.; Kim, J.W.; Jung, Y.C.; Goo, N.S. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol. Rapid Commun. 2005, 26, 412–416.
  • Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D.M.; Holzingger, M.; Hirsch, A. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 760–761.
  • Zhang, Y.; Shi, Z.; Gu, Z.; Iijima, S. Structure modification of single-wall carbon nanotubes. Carbon 2000, 38, 2055–2059.
  • Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840.
  • Sahooa, N.G.; Ranab, S.; Chob, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867.
  • Barber, A.H.; Cohen, S.R.; Wagner, H.D. Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 2003, 82, 4140–4142.
  • McNallya, T.; Potschkeb, P.; Halleyc, P.; Murphyc, M.; Martinc, D.; Belld, S.E.J.; Brennane, G.P.; Beinf, D.; Lemoineg, P.; Quinng, J.P. Polyethylene multiwalled carbon nanotube composites. Polymer 2005, 46, 8222–8232.
  • Dufresne, A.; Paillet, M.; Putaux, J.L.; Canet, R.; Carmona, F.; Delhaes, P.; Cui, S. Processing and characterization of carbon nanotube/poly (styrene-co-butyl acrylate) nanocomposites. J. Mater. Sci. 2002, 37, 3915–3923.
  • Kilbride, B.E.; Coleman, J.N.; Fraysse, J.; Fournet, P.; Cadek, M.; Drury, A.; Hutzler, S.; Roth, S.; Blau, W.J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 2002, 92, 4024–4030.
  • McCarthy, B.; Coleman, J.N.; Czerw, R.; Dalton, A.B.; Panhuis, M.I.H.; Maiti, A.; Drury, A.; Bernier, P.; Nagy, J.B.; Lahr, B.; Byrne, H.J.; Carroll, D.L.; Blau, W.J. A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J. Phys. Chem. B 2002, 106, 2210–2216.
  • Byrne, M.T.; Gunko, Y.K. Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 2010, 22, 1672–1688.
  • Sandler, J.K.W.; Pegel, S.; Cadek, M.; Gojny, F.; VanEs, M.; Lohmar, J.; Blau, W.J.; Schulte, K.; Windle, A.H.; Shaffer, M.S.P. A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 2004, 45, 2001–2015.
  • Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645.
  • Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403.
  • Zhang, Q.; Rastogi, S.; Chen, D.; Lippits, D.; Lemstra, P.J. Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 2006, 44, 778–785.
  • Grossiord, N.; Loos, J.; Regev, O.; Koning, C.E. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 2006, 18, 1089–1099.
  • Bauers, F.M.; Mecking, S. Aqueous homo- and copolymerization of ethylene by neutral nickel(II) complexes. Macromolecules 2001, 34, 1165–1171.
  • Grunlan, J.C.; Mehrabi, A.R.; Bannon, M.V.; Bahr, J.L. Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 2004, 16, 150–153.
  • Yu, J.; Lu, K.; Sourty, E.; Grossiord, N.; Koning, C.E.; Loos, J. Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 2007, 45, 2897–2903.
  • Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.H.; Yang, G.L.; Li, C.Y.; Willis, P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 2003, 15, 1161–1165.
  • Mamedov, A.A.; Kotov, N.A.; Prato, M.; Guldi, D.M.; Wicksted, J.P.; Hirsch, A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 2002, 1, 190–194.
  • Olek, M.; Ostrander, J.; Jurga, S.; Mohwald, H.; Kotov, N.; Kempa, K.; Giersig, M. Layer-by-layer assembled composites from multi wall carbon nanotubes with different morphologies. Nano Lett. 2004, 4, 1889–1896.
  • Kang, T.J.; Cha, M.; Jang, E.Y.; Shin, J.; Im, H.U.; Kim, Y.; Lee, J.; Kim, Y.H. Ultra-thin and conductive nanomembrane arrays for nanomechanical transducers. Adv. Mater. 2008, 20, 3131–3137.
  • Shim, B.S.; Podsiadlo, P.; Lilly, D.G.; Agarwal, A.; Leet, J.; Tang, Z.; Ho, S.; Ingle, P.; Paterson, D.; Lu, W.; Kotov, N.A. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett. 2007, 7, 3266–3273.
  • Srivastava, S.; Kotov, N.A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res. 2008, 41, 1831–1841.
  • Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205.
  • Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.
  • Spitalskya, Z.; Tasisb, D.; Papagelisb, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401.
  • Wang, Z.; Liang, Z.; Wang, B.; Zhang, C.; Kramer, L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites, Part A 2004, 35, 1225–1232.
  • Blake, R.; Gun’ko, Y.K.; Coleman, J.; Cadek, M.; Fonseca, A.; Nagy, J.B.; Blau, W.J. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 2004, 126, 10226–10227.
  • Blake, R.; Coleman, J.N.; Byrne, M.T.; McCarthy, J.E.; Perova, T.S.; Blau, W.J.; Fonseca, A.; Nagy, J.B.; Gun’ko, Y.K. Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J. Mater. Chem. 2006, 16, 4206–4213.
  • Xie, L.; Xu, F.; Qiu, F.; Lu, H.; Yang, Y. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 2007, 40, 3296–3305.
  • Kakade, B.; Mehta, R.; Durge, A.; Kulkarni, S.; Pillai, V. Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano Lett. 2008, 8, 2693–2696.
  • Sreekumar, T.V.; Liu, T.; Kumar, S.; Ericson, L.M.; Hauge, R.H.; Smalley, R.E. Single-wall carbon nanotube films. Chem. Mater. 2003, 15, 175–178.
  • Ishigami, N.; Ago, H.; Motoyama, Y.; Takasaki, M.; Shinagawa, M.; Takahashi, K.; Ikuta, T.; Tsuji, M. microreactor utilizing a vertically-aligned carbon nanotube array grown inside the channel. Chem. Commun. 2007, 16, 1626–1628.
  • Janowska, I.; Winé, G.; Ledoux, M.J.; Pham-Huu, C. Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction. J. Mol. Catal. A: Chem. 2007, 267, 92–97.
  • Deneuvea, A.; Wanga, K.; Janowskaa, I.; Chizaria, K.; Edouarda, D.; Ersenb, O.; Ledouxa, M.J.; Pham-Huua, C. Bucky paper with improved mechanical stability made from vertically aligned carbon nanotubes for desulfurization process. Appl. Catal., A 2011, 400, 230–237.
  • Lu, S.; Xu, W.; Xuhai, X.; Ma, K.; Wang, X. Preparation, magnetism and microwave absorption performance of ultra-thin Fe3O4/carbon nanotube sandwich buckypaper. J. Alloys Compd. 2014, 606, 171–176.
  • Zheng, C.; Qian, W.; Yu, Y.; Wei, F. Ionic liquid coated single-walled carbon nanotube buckypaper as supercapacitor electrode. Particuology 2013, 11, 409–414.
  • Lu, J.P. Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 1995, 74, 1123–1126.
  • Wang, L.; Davids, P.S.; Saxena, A.; Bishop, A.R. Correlation effects and electronic properties of fullerenes and carbon nanotubes. J. Phys. Chem. Solids 1993, 54, 1493–1496.
  • Lin, M.F.; Shung, K.W.-K. Magnetization of graphene tubules. Phys. Rev. B 1995, 52, 8423–8438.
  • Vennerberg, D.; Kessler, M.R. Anisotropic buckypaper through shear-induced mechanical alignment of carbon nanotubes in water. Carbon 2014, 80, 433–439.
  • Andereck, C.D.; Liu, S.S.; Swinney, H.L. Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 1986, 164, 155–183.
  • Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Shimamoto, D.; Kim, Y.J.; Tantrakarn, K.; Endo, M.; Terrones, M.; Dresselhaus, M.S. Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem. Phys. Lett. 2005, 414, 444–448.
  • Li, Z.; Xuc, J.; O’Byrne, J.P.; Chen, L.; Wang, K.; Morris, M.A.; Holmes, J.D. Freestanding bucky paper with high strength from multi-wall carbon nanotubes. Mater. Chem. Phys. 2012, 135, 921–927.
  • Wang, K.; Wei, M.; Morris, M.A.; Zhou, H.; Holmes, J.D. Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Adv. Mater. 2007, 19, 3016–3020.
  • Wang, D.; Song, P.; Liu, C.; Wu, W.; Fan, S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 7, 075609.
  • Gou, J.; Liang, Z.; Wang, B. Experimental design and optimization of dispersion process for single-walled carbon nanotube bucky paper. Int. J. Nanosci. 2004, 3, 293–307.
  • Lopes, P.E.; Hattum, F.V.; Pereira, C.M. C.; Nóvoa, P.J.R.O.; Forero, S.; Hepp, F.; Pambaguian, L. High CNT content composites with CNT Buckypaper and epoxy resin matrix: Impregnation behaviour composite production and characterization. Compos. Struct., 2010, 92, 1291–1298.
  • Chapartegui, M.; Barcena, J.; Irastorza, X.; Elizetxea, C.; Fernandez, M.; Santamaria, A. Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite. Compos. Sci. Technol. 2012, 72, 489–497.
  • Díez-Pascual, A.M.; Guan, J.; Simard, B.; Gómez-Fatou, M.A. Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: I – Structure, thermal stability and crystallization behavior. Composites, Part A 2012, 43, 997–1006.
  • Fu, X.; Zhang, C.; Liu, T.; Liang, R.; Wang, B. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites. Nanotechnology 2010, 21, 235701.
  • Han, J.H.; Zhang, H.; Chen, M.-J.; Wang, G.-R.; Zhang, Z. CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Compos. Sci. Technol. 2014, 103, 63–71.
  • Rein, M.D.; Breuer, O.; Wagner, H.D. Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices. Compos. Sci. Technol. 2011, 71, 373–381.
  • Ounnunkad, S.; Minett, A.I.; Imisides, M.D.; Duffy, N.W.; Fleming, B.D.; Lee, C.Y.; Bond, A.M.; Wallace, G.G. Comparison of the electrochemical behaviour of buckypaper and polymer-intercalated buckypaper electrodes. J. Electroanal. Chem. 2011, 652, 52–59.
  • Wu, Q.; Zhu, W.; Zhang, C.; Liang, Z.; Wang, B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 2010, 48, 1799–1806.
  • Li, Y.; Kroger, M. A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon 2012, 50, 1793–1806.
  • Rigueur, J.L.; Hasan, S.A.; Mahajana, S.V.; Dickerson, J.H. Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes. Carbon 2010, 48, 4090–4099.
  • Park, J.G.; Cheng, Q.; Lu, J.; Bao, J.; Li, S.; Tian, Y.; Liang, Z.; Zhang, C.; Wang, B. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 2012, 50, 2083–2090.
  • Cheng, Q.; Wang, B.; Zhang, C.; Liang, Z. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: Mechanical and electrical performance beyond carbon-fiber composites. Small 2010, 6, 763–767.
  • Cheng, Q.F.; Wang, J.P.; Wen, J.J.; Liu, C.H.; Jiang, K.L.; Li, Q.Q.; Fan, S.S. Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 2010, 48, 260–266.
  • Wang, S.; Haldane, D.; Liang, R.; Smithyman, J.; Zhang, C.; Wang, B. Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers. Nanotechnology 2013, 24, 015704.
  • Dumée, L.; Campbell, J.L.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Gray, S. The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation. Desalination 2011, 283, 64–67.
  • Gou, J. Single-walled nanotube bucky paper and nanocomposite. Polym. Int. 2006, 55, 1283–1288.
  • Pötschke, P.; Zschoerper, N.P.; Moller, B.P.; Vohrer, U. Plasma functionalization of multiwalled carbon nanotube bucky papers and the effect on properties of melt-mixed composites with polycarbonate. Macromol. Rapid Commun. 2009, 30, 1828–1833.
  • Dumée, L.; Germain, V.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Cerneaux, S.; Cornu, D.; Gray, S. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Membr. Sci. 2011, 376, 241–246.
  • Wang, X.; Yong, Z.Z.; Li, Q.W.; Bradford, P.D.; Liu, W.; Tucker, D.S.; Cai, W.; Wang, H.; Yuan, F.G.; Zhu, Y.T. Ultrastrong, stiff and multifunctional carbon nanotube composites. Mater. Res. Lett., 2013, 1, 19–25.
  • Chapartegui, M.; Barcena, J.; Irastorza, X.; Elizetxea, C.; Fernandez, M.; Santamaria, A. Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite. Compos. Sci. Technol. 2012, 72, 489–497.
  • Agrawal, S.; Raghuveer, M.S.; Li, H.; Ramanath, G. Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 193104–193113.
  • Zhang, D.; Ryu, K.; Liu, K.; Polikarpov, E.; Ly, J.; Tompson, M.E.; Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.
  • Reddy, A.; Mohana, L.; Ramaprabhu, S. Hydrogen adsorption properties of single-walled carbon nanotube—Nanocrystalline platinum composites. Int. J. Hydrogen Energ. 2008, 33, 1028–1034.
  • Dumee, L.F.; Sears, K.; Schutz, J.; Finn, N.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Characterization and evaluation of carbon nanotube bucky-paper membranes for direct contact membrane distillation. J. Membr. Sci. 2010, 351, 36–43.
  • Sears, K.; Dumee, L.; Schütz, J.M.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Recent developments in carbon nanotube membranes for water purification and gas separation. Materials 2009, 3, 127–149.
  • Dumee, L.; Velleman, L.; Sears, K.; Hill, M.; Schutz, J.; Finn, N.; Duke, M.; Gray, S. Control of porosity and pore size of metal reinforced carbon nanotube membranes. Membranes 2011, 1, 25–36.
  • Cong, H.; Zhang, J.; Radosz, M.; Shen, Y. Carbon nanotube composite membranes of brominated poly (2,6-diphenyl-1,4-phenylene oxide) for gas separation. J. Membr. Sci. 2007, 294, 178–185.
  • Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758.
  • Huynh, C.P.; Hawkins, S.C. Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 2010, 48, 1105–1115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.