1,815
Views
101
CrossRef citations to date
0
Altmetric
Reviews

Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review

, , &

References

  • Taheri, S.; Nakhlband, E.; Nazockdast, H. Microstructure and multiwall carbon nanotube partitioning in polycarbonate/acrylonitrile-butadiene-styrene/multiwall carbon nanotube nanocomposites. Polym. Plast. Technol. Eng. 2013, 52, 300–309.
  • Kausar, A.; Iqbal, A.; Hussain, S.T. Novel hybrids derived from poly(thiourea-amide)/epoxy and carbon nanotubes. Polym. Plast. Technol. Eng. 2013, 52, 1169–1174.
  • Ghorbani, M.; Eisazadeh, H. Polypyrrole/carbon nanotube and polyaniline/carbon nanotube nanocomposites: Synthesis and characterization. Polym. Plast. Technol. Eng. 2012, 51, 1367–1371.
  • Frank, S.; Poncharal, P.; Wang, Z.L.; de Heer, W.A. Carbon nanotube quantum resistors. Science 1998, 280, 1744–1746.
  • Tsukagoshi, K.; Alphenaar, B.W.; Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 1999, 401, 572–542.
  • Allaoui, A.; Baia, S.; Cheng, J.B.; Baia, H.M. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 2002, 62, 1993–1998.
  • Kim, M.T.; Rhee, K.Y.; Lee, J.H.; Hui, D.; Lau, A.K. T.Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Composites, B. 2011, 42, 1257–1261.
  • Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B.; Schulte, K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative. Compos. Sci. Technol. 2005, 65, 2300–2313.
  • Zhou, Y.; Pervin, F.; Biswas, M.A.; Rangari, V.K.; Jeelani, S. Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Mater. Lett. 2006, 60, 869–873.
  • Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes Synthesis, Structure, Properties and Applications. S-Verlag Berlin: Heidelberg and New York, 2001, 12–25.
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  • Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192.
  • Eklund, P.; Holden, J. M.; Jishi, R. A. Vibrational modes of carbon nanotubes spectroscopy and theory. Carbon 1995, 33, 959–972.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; Colbert, D.T.; Scuseria, G.E.; Tomanek, D.; Fischer, J.E.; Smalley, R. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.
  • Baughman, R.; Zakhidov, A.; Heer W. Carbon nanotubes – The route toward applications. Science 2002, 297, 787–792.
  • Dong, S.R.; Tu, J.P.; Zhang, X.B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater. Sci. Eng. A. 2001, 313, 83–87.
  • Hone, J.; Llaguno, M.C.; Biercuk, M.J.; Johnson, A.T.; Batlogg, B.; Benes, Z.; Fischer, J.E. Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A: Mater. Sci. Process. 2002, 74, 339–343.
  • Ando, Y.; Zhao, X.; Shimoyama, H.; Sakai, G.; Kaneto, K. Physical properties of multiwalled carbon nanotubes. Int. J. Inorg. Mater. 1999, 1, 77–82.
  • Chen, J.; Hamon, M.A.; Hu, H.; Chen, Y.; Rao, A.M.; Eklund, P.C.; Haddon, R.C. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95–98.
  • Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Du, Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B. 2003, 107, 3712–3718.
  • Katz, E.; Willner, I. Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics. Chem. Phys. Chem. 2004, 5, 1085–1091.
  • Bahr, J.L.; Tour, J.M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.
  • Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes. Chem-A. Eur. J. 2003, 9, 4000–4008.
  • Khabashesku, V.N.; Billups, W.E.; Margrave, J.L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem. Res. 2002, 35, 1087–1095.
  • Jin, F.-L.; Lee, S.-Y.; Park, S.-J. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett. 2013, 14, 76–88.
  • Jin, F.-L.; Park, S.-J. Thermal properties and toughness performance of hyperbranched-polyimide-modified epoxy resins. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3348–3356.
  • Jin, F.-L.; Ma, C.-J.; Park, S.-J. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater. Sci. Eng. A 2011, 528, 8517–8522.
  • Yang, C.; Yang, Z.-G. Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink-jet printing. J. Appl. Polym. Sci. 2013, 129, 187–192.
  • Czub P. Synthesis of high-molecular-weight epoxy resins from modified natural oils and Bisphenol A or BisphenolA‐based epoxy resins. Polym. Adv. Technol. 2009, 20, 194–208.
  • Yoo, M.J.; Kim, S.H.; Park, S.D.; Lee, W.S.; Sun, J.-W.; Choi, J.-H.; Nahm, S. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur. Polym. J. 2010, 46, 1158–1162.
  • Tao, Z.; Yang, S.; Chen, J.; Fan, L. Synthesis and properties of novel fluorinated epoxy resins based on 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane. Eur. Polym. J. 2007, 43, 550–560.
  • Park, S.J.; Kim, T.J.; Lee, J.R. Cure behavior of diglycidylether of bisphenol A/trimethylolpropane triglycidylether epoxy blends initiated by thermal latent catalyst. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2114–2123.
  • Kwak, G.-H.; Park, S.-J.; Lee, J.-R. Thermal stability and mechanical behavior of cycloaliphatic–DGEBA epoxy blend system initiated by cationic latent catalyst. J. Appl. Polym. Sci. 2000, 78, 290–297.
  • Park, S.-J.; Jin, F.-L.; Lee, J.-R. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater. Sci. Eng., A 2004, 37 4, 109–114.
  • Aouf, C.; Nouailhas, H.; Fache, M.; Caillol, S.; Boutevin, B.; Fulcrand, H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur. Polym. J. 2013, 49, 1185–1195.
  • Lee, M.-C.; Ho, T.-H.; Wang, C.-S. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. J. Appl. Polym. Sci. 1996, 62, 217–225.
  • Lin, C.H.; Wang, C.-S. Novel phosphorus-containing epoxy resins Part I. Synthesis and properties. Polymer 2001, 42, 1869–1878.
  • Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Habas, J.-P.; Robin, J.-J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2434–2444.
  • Park, S.-J.; Jin, F.-L.; Lee, J.-R. Synthesis and thermal properties of epoxidized vegetable oil. Macromol. Rapid Commun. 2004, 25, 724–727.
  • Thulasiraman, V.; Rakesh, S.; Sarojadevi, M. Synthesis and characterization of chlorinated soy oil based epoxy resin/glass fiber composites. Polym. Compos. 2009, 30, 49–58.
  • Bascom, W.; Cottington, R.; Jones, R.; Peyser, P. The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives. J. Appl. Polym. Sci. 1975, 19, 2545–2562.
  • Bonnet, A.; Pascault, J.P.; Sautereau, H.; Taha, M.; Camberlin, Y. Epoxy-diamine thermoset/thermoplastic blends. 1. Rates of reactions before and after phase separation. Macromolecules 1999, 32, 8517–8523.
  • Ferdosian, F.; Ebrahimi, M.; Jannesari, A. Curing kinetics of solid epoxy/DDM/nanoclay: Isoconversional models versus fitting model. Thermochim. Acta 2013, 568, 67–73.
  • Frank, K.; Childers, C.; Dutta, D.; Gidley, D.; Jackson, M.; Ward, S.; Wiggins, J. Fluid uptake behavior of multifunctional epoxy blends. Polymer 2013, 54, 403–410.
  • Hsu, Y.-G.; Lin, K.-H.; Lin, T.-Y.; Fang, Y.-L.; Chen, S.-C.; Sung, Y.-C. Properties of epoxy-amine networks containing nanostructured ether-crosslinked domains. Mater. Chem. Phys. 2012, 132, 688–702.
  • Parıldar, R.A.; Ibik, A.A.B. Characterization of tertiary amine and epoxy functional all-acrylic coating system. Prog. Org. Coat. 2013, 76, 955–958.
  • Fan, M.; Liu, J.; Li, X.; Cheng, J.; Zhang, J. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system. Thermochim. Acta 2013, 554, 39–47.
  • Park, S.-J.; Jin, F.-L. Synthesis and characterization of UV-curable acrylic resin containing fluorine groups. Polym. Int. 2005, 54, 705–709.
  • Jin, F.-L.; Park, S.-J. Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites. Mater. Sci. Eng., A 2008, 475, 190–193.
  • Ahmad, Z.; Ansell, M.P.; Smedley, D. Effect of nano-and micro-particle additions on moisture absorption in thixotropic room temperature cure epoxy-based adhesives for bonded-in timber connections. Int. J. Adhes. Adhes. 2010, 30, 448–455.
  • Lapique, F.; Redford, K. Curing effects on viscosity and mechanical properties of a commercial epoxy resin adhesive. Int. J. Adhes. Adhes. 2002, 22, 337–346.
  • Jin, H.; Yang, B.; Jin, F.-L.; Park, S.-J. Fracture toughness and surface morphology of polysulfone-modified epoxy resin. J. Ind. Eng. Chem. 2015, 25, 9–11. doi:10.1016/j.jiec.2014.10.032 (Article in press).
  • Jiang, W.; Jin, F.-L.; Park, S.-J. Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al 2O3 particles. J. Ind. Eng. Chem. 2012, 18, 594–596.
  • Morselli, D.; Bondioli, F.; Fiorini, M.; Messori, M. Poly(methyl methacrylate)–TiO2nanocomposites obtained by non-hydrolytic sol–gel synthesis: The innovative tert-butyl alcohol route. J. Mater. Sci. 2012, 47, 7003–7012.
  • Ali, K.M.I.; Khan, M.A.; Rahman, M. Ultraviolet curing of epoxy coating on wood surface. J. Appl. Polym. Sci. 1997, 66, 1997–2004.
  • Sangermano, M.; Allia, P.; Tiberto, P.; Barrera, G.; Bondioli, F.; Florini, N.; Messori, M. Photo-cured epoxy networks functionalized with fe3o4 generated by non-hydrolytic sol–gel process. Macromol. Chem. Phys. 2013, 214, 508–516.
  • Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 2010, 9, 2793–2810.
  • Cooper, C.A.; Cohen, S.R.; Barber, A.H.; Wagner, H.D. Detachment of carbon nanotubes from a polymer matrix. Appl. Phys. Lett. 2002, 81, 3873–3875.
  • Barber, A.H.; Cohen, S.R.; Wagner, H.D. Measurement of carbon nanotube–polymer interfacial strength. App. Phys. Lett. 2003, 2, 4140–4182.
  • Frankland, S.J.V.; Caglar, A.; Brenner, D.W.; Griebel, M. Molecularsimulation of the influence of chemical cross-links on the shearstrength of carbon nanotube-polymer interfaces. J. Phys. Chem., B 2002, 8, 106–3046.
  • Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; Rodriguez-Macias, F.; Shon, Y.S.; Lee, T.R.; Colbert, D.T.; Smalley, R.E. Fullerene pipes. Science 1998, 280, 1253–1256.
  • Ajayan, P.M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin – Nanotubecomposite. Science 1994, 265, 1212–1214.
  • Kim, M.; Park, Y.; Okenwa, O.; Chuck, Z. Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 2009, 69, 335–342.
  • Tseng, C.-H.; Wang, C.-C.; Cheng, C.-Y. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem. Mater. 2007, 19, 308–315.
  • Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Composites,Part A 2007, 38, 1331–1336.
  • Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science andtechnology of carbon nanotube and their composites a review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Li, C.; Chou, T.W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 2003, 63, 1517–1524.
  • Gojny, F.H.; Nastalczyk, J.; Roslaniec, Z.; Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 2003, 370, 820–824.
  • Breton, Y.; Désarmot, G.; Salvetat, J.P.; Delpeux, S.; Sinturel, C.; Béguin, F.; Bonnamy, S. Mechanical properties of multiwall carbon nanotubes/epoxy composites: Influence of network morphology. Carbon 2004, 42, 1027–1030.
  • Gojny, F.H.; Schulte, K. Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos. Sci. Technol. 2004, 64, 2303–2308.
  • Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B.; Kinloch, I.A.; Bauhofer, W.; Windle, A.H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036–2045.
  • Chen, X.; Wang, J.; Lin, M.; Zhong, W.; Feng, T.; Chen, X.; Chen, J.; Xue, F. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater. Sci. Eng., A. 2008, 492, 236–242.
  • Ogasawara, T.; Moon, S.-Y.; Inoue, Y.; Shimamura, Y. Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos. Sci. Technol. 2011, 71, 1826–1833.
  • Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolationin carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.
  • Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205.
  • Kim, H.M.; Kim, K.; Lee, S.J.; Joo, J.; Yoon, H.S.; Cho, S.J.;Lyu, S.C.; Lee, C.J. Charge transport properties of composites of multiwalled carbon nanotube withmetal catalyst and polymer: Application to electromagnetic interference shielding. Curr. Appl. Phys. 2004, 4, 577–580.
  • Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967–5971.
  • Kim, Y.J.; Shin, T.S.; Choi, H.D.; Kwon, J.H.; Chung, Y.-C.; Yoon, H.G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 2005, 43, 23–30.
  • Guadagno, L.; De Vivo, B.; Di Bartolomeo, A.; Lamberti, P.; Sorrentino, A.; Tucci, V.; Vertuccio, L.; Vittoria, V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 2005, 49, 1919–1930.
  • Martin, C.A.; Sandler, J.K.W.; Shaffer, M.S.P.; Schwarz, M.K.; Bauhofer, W.; Schulte, K.; Windle, A.H. Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol. 2004, 64, 2309–2316.
  • Gardea, F.; Lagoudas, D.C. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites, B 2014, 56, 611–620.
  • Vahedi, F.; Shahverdi, H.R.; Shokrieh, M.M.; Esmkhani, M. Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites. Carbon 2015, 85, 419–425. doi:10.1016/j.carbon.2014.12.073.
  • Yu, C.; Shi, L.; Yao, Z.; Li, D.; Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano lett. 2005, 5, 1842–1846.
  • Song, Y.S.; Yuon, J.R. Influence of the dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385.
  • Wichmann, M.H.; Sumfleth, J.; Gojny, F.H.; Quaresimin, M.; Fiedler, B.; Schulte, K. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—Benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mechan. 2006, 73, 2346–2359.
  • Ghosh, P.K.; Kumar, K.; Chaudhary, N. Influence of ultrasonic dual mixing on thermal and tensile properties of MWCNTs-epoxy composite. Composites, B 2015, 77, 139–144.
  • Evseeva, L.E.; Tanaeva, S.A. Influence of the concentration of carbon nanotubes (CNT) on the thermophysical properties of epoxy/CNT nanocomposites at low temperatures. Mech. Compos. Mater. 2008, 44, 487–494.
  • Zhoua, T.; Wang, X.; Liu, X.; Xiong, D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon 2010, 48, 1171–1176.
  • Kuan, C.-F.; Chen, W.-J.; Li, Y.-L.; Chen, C.-H.; Kuan, H.-C.; Chiang, C.-L. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J. Phys. Chem. Sol. 2010, 71, 539–543.
  • Guthy, C.; Du, F.; Brand, S.; Winey, K.I.; Fischer, J.E. Thermal conductivity of single-walled carbon nanotube/PMMA. J. Heat Trans. Compos. 2007, 129, 1096–1099.
  • Shenogin, S.; Xue, L.P.; Ozisik, R.; Keblinski, P.; Cahill, D.G. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Appl. Phys. 2004, 95, 8136–8144.
  • Gojny, F.H.; Wichmann, M.H.G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon nanotube Reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 2004, 64, 2363–2371.
  • Moisala, A.; Li, Q.; Kinloch, I.A.; Windle, A.H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 2006, 66, 1285–1288.
  • Martin, C.A.; Sandler, J.; Windle, A.H.; Schwarz, M.; Bauhofer, W.; Schulte, K.; Shaffer. M.S.P. Electric field-induced aligned multi-wall carbon nanotubenetworks in epoxy composites. Polymer 2005, 46, 877–886.
  • Gojny, F.H.; Wichmann, M.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon nanotube–reinforced epoxy composites: Enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 2004, 64, 2363–2371.
  • Grossiord, N.; Loos, J.; Regev, O.; Koning, C.E. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 2006, 18, 1089–1099.
  • Du, J.-H.; Bai, J.; Cheng, H.M. The present status and key problems of carbon nanotube based polymer composites. Express Polym. Lett. 2007, 1, 253–273.
  • Wang, S.; Liang, Z.; Pham, G.; Park, Y.-B.; Wang, B.; Zhang, C.; Kramer, L.; Funchess, P. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology 2007, 18, 095–708.
  • Liu, Y.L.; Chen, W.H.; Chang, Y.H. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs. Carbohydr. Polym. 2009, 76, 232–238.
  • Hill, D.E.; Lin, Y.; Rao, A.M.; Allard, L.F.; Sun, Y.-P. Functionalization of carbon nanotubes with polystyrene. Macromolecules 2002, 35, 9466–9471.
  • Li, Y.B.; Wei, B.Q.; Liang, J.; Yu, Q.; Wu, D.H. Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 1999, 37, 493–497.
  • Haggenmueller, R.; Gommans, H.H.; Rinzler, A.G.; Fischer, J.E.; Winey, I. Aligned single-wall carbon nanotubes in compositesby melt processing methods. Chem. Phys. Lett. 2000, 330, 219–225.
  • López-Manchado, M.A.; Valentini, L.; Biagiotti, J.; Kenny, J.M. Thermal and mechanical properties of single-walled carbon nanotubes—Polypropylene composites prepared by melt processing. Carbon 2005, 43, 1499–1505.
  • Zhang, H.; Zhang, Z. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. Eur. Polym. J. 2007, 43, 3197–3207.
  • Bellucci, S.; Micciulla, F.; Pugno, N.M. Properties of nanocomposites based on resin and carbon nanotubes. Nanomater. Italy 2007, 197–210.
  • Di Giampaolo, L.; Antonucci, A. Sviluppo della medicina del lavoro nella società in rapido cambiamento montesilvano. G. Ital. Med. Lav. Erg. 2006, 28, 239–430.
  • Gohardani, O.; Elola, M.C.; Elizetxea, C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 2014, 70, 42–68.
  • Agarwal, S.; Mahto, S.; Agarwal, R.C. Strengthening the growth of Indian defence by harnessing nanotechnology—Aprospective. Defence Sci. J. 2013, 63, 46–52.
  • Ansari, R.; Ashrafi, M.A.; Pourashraf, T.; Sahmani, S. Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory. Acta Astronaut. 2015, 109, 42–51.
  • Gohardani, A.; Doulgeris, G.; Singh, R. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog. Aerosp. Sci. 2011, 47, 369–391.
  • Li, H.; Xiao, H.G.; Yuan, J.; Ou, J. Microstructure of cement mortar with nano-particles. Composites, B 2004, 35, 185–189.
  • Bellucci, S.; Balasubramanian, C.; De Bellis, G.; Micciulla, F.; Rinaldi, G. Screening electromagnetic interference effect using nanocomposites. Macromol. Sympos. 2008, 263, 21–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.