699
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Crystallization, Morphological, and Mechanical Response of Poly(Lactic Acid)/Lignin-Based Biodegradable Composites

, &

References

  • Avérous, L.; Digabel, F. Properties of biocomposites based on lignocellulosic fillers. Carbohydr. Polym. 2006, 66, 480–493.
  • Sewda, K.; Maiti, S.N. Mechanical properties of HDPE/bark flour composites. J. Appl. Polym. Sci. 2007, 105, 2598–2604.
  • Zhang, S.; Feng, X.; Zhu, S.; Huan, Q.; Han, K.; Ma, Y.; Yu, M. Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing. Mater. Lett. 2013, 98, 238–241.
  • Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602.
  • Ouyang, W.; Huang, Y.; Luo, H.; Wang, D. Poly(lactic acid) blended with cellulolytic enzyme lignin: Mechanical and thermal properties and morphology evaluation. J. Polym. Environ. 2011, 20, 1–9.
  • Li, J.; He, Y.; Inoue, Y. Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin. Polym. Int. 2003, 52, 949–955.
  • Koenig, M.F.; Huang, S.J. Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 1995, 36, 1877–1882.
  • Kumar, M.; Mohanty, S.; Nayak, S.K.; Parvaiz, M. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour. Technol. 2010, 101, 8406–8415.
  • Yew, G.H.; Yusof, A.M.; Ishak, Z.A.; Ishiaku, U.S. Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polym. Degrad. Stab. 2005, 90, 488–500.
  • Ouyang, W.Z.; Huang, Y.; Luo, H.J.; Wang, D.S. Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends. Chin. Chem. Lett. 2012, 23, 351–364.
  • Kim, K.W.; Lee, B.H.; Kim, H.J.; Sriroth, K.; Dorgan, J. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J. Therm. Anal. Calorim. 2011, 108, 1131–1139.
  • Gandhi, A.; Asija, N.; Chauhan, H.; Bhatnagar, N. Ultrasound-induced nucleation in microcellular polymers. J. Appl. Polym. Sci. 2014, 131, 1–5.
  • Calabria, L.; Vieceli, N.; Bianchi, O.; Oliveira, R.V.; Filho, I., Schmidt, V. Soy protein isolate/poly(lactic acid) injection-molded biodegradable blends for slow release of fertilizers. Ind. Crops Prod. 2012, 36, 41–46.
  • Jia, W.; Gong, R.H.; Hogg, P.J. Poly (lactic acid) fibre reinforced biodegradable composites. Composites, Part B 2014, 62, 104–112.
  • Oksman, K.; Skrifvars, M.; Selin, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003, 63, 1317–1324.
  • Kim, D.H.; Kang, H.J.; Song, Y.S. Rheological and thermal characteristics of three-phase eco-composites. Carbohydr. Polym. 2012, 92, 1006–1011.
  • Mousavioun, P.; Doherty, W.O.S.; George, G. Thermal stability and miscibility of poly (hydroxybutyrate) and soda lignin blends. Ind. Crops Prod. 2010, 32, 656–661.
  • Barzegari, M.; Alemdar, A.; Zhang, Y.; Rodrigue, D. Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym. Compos. 2012, 33, 353–361.
  • Canetti, M.; Bertini, F. Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos. Sci. Technol. 2007, 67, 3151–3157.
  • Nitz, H.; Semke, H.; Landers, R.; Mülhaupt, R. Reactive extrusion of polycaprolactone compounds containing wood flour and lignin. J. Appl. Polym. Sci. 2001, 81, 1972–1984.
  • Li, Y.; Liu, L.; Shi, Y.; Xiang, F.; Huang, T.; Wang, Y.; Zhou, Z. Morphology, rheological, crystallization behavior, and mechanical properties of poly(L-lactide)/ethylene-co-vinyl acetate blends with different VA contents. J. Appl. Polym. Sci. 2010, 121, 2688–2698.
  • Suryanegara, L.; Nakagaito, A.N.; Yano, H. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos. Sci. Technol. 2009, 69, 1187–1192.
  • Wang, J.; Manley, R.S.J.; Feldman, D. Synthetic polymer-lignin copolymers and blends. Prog. Polym. Sci. 1992, 17, 611–646.
  • Liu, R.; Peng, Y.; Cao, J.; Chen, Y. Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Compos. Sci. Technol. 2014, 103, 1–7.
  • Gordobil, O.; Egüés, I.; Llano-Ponte, R.; Labidi, J. Physicochemical properties of PLA lignin blends. Polym. Degrad. Stab. 2014, 108, 330–338.
  • Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.
  • Liu, X.; Zou, Y.; Cao, G.; Luo, D. The preparation and properties of biodegradable polyesteramide composites reinforced with nano-CaCO3 and nano-SiO2. Mater. Lett. 2007, 61, 4216–4221.
  • Mathew, A.P.; Oksman, K.; Sain, M. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J. Appl. Polym. Sci. 2006, 101, 300–310.
  • Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2009, 44, 353–363.
  • Gordobil, O.; Egues, I.; Ponte, R.; Labidi, J. Physicochemical properties of PLA lignin blends. Polym. Degrad. Stab. 2014, 108, 330–338.
  • Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez, J.M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331.
  • Sharma, R.; Maiti, S.N. Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym. Plast. Technol. Eng. 2014, 53, 229–238.
  • Jaggi, H.S.; Kumar, Y.; Satapathy, B.K.; Ray, A.R.; Patnaik, A. Analytical interpretations of structural and mechanical response of high density polyethylene/hydroxyapatite bio-composites. Mater. Des. 2011, 36, 757–766.
  • Sharma, R.; Maiti, S.N. Modification of tensile and impact properties of poly(butylene terephthlate) by incorporation of styrene-ethylene-butylene-styrene and maleic anhydride-grafted-SEBS (SEBS-g-MA) terpolymer. Polym. Eng. Sci. 2013, 53, 2242–2253.
  • Nielsen, L.E. Mechanical properties of particulate-filled systems. J. Compos. Mater. 1967, 1, 100–119.
  • Luo, F.; Ning, N.; Chen, L.; Su, R.; Cao, J.; Zhang, Q. Effects of compatibilizers on the mechanical properties of low density polyethylene/lignin blends. Chin. J. Polym. Sci. 2009, 27, 833–842.
  • Tomar, N.; Maiti, S.N. Mechanical properties of mica-filled PBT/ABAS composites. J. Appl. Polym. Sci. 2007, 117, 672–681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.