864
Views
13
CrossRef citations to date
0
Altmetric
Reviews

MEMS-Based Controlled Drug Delivery Systems: A Short Review

, , &

References

  • Grayson, A.C.R.; Shawgo, R.S.; Johnson, A.M.; Flynn, N.T.; Li, Y.; Cima, M.J.; Langer, R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE. 2004, 92, 6–21.
  • Staples, M.; Daniel, K.; Cima, M.J.; Langer, R. Application of micro-and nano-electromechanical devices to drug delivery. Pharmaceut. Res. 2006, 23, 847–63.
  • LaVan, D.A.; Lynn, D.M.; Langer, R. Moving smaller in drug discovery and delivery. Nat. Rev. Drug Discovery 2002, 1, 77–84.
  • Giouroudi, I.; Kosel, J.; Scheffer, C. BioMEMS in diagnostics: A review and recent developments. Recent Pat. Eng. 2008, 2, 114–21.
  • Nisar, A.; Afzulpurkar, N.; Mahaisavariya, B.; Tuantranont, A. MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators, B 2008, 130, 917–42.
  • Crommelin, D.J. Formulation of biotech products, including biopharmaceutical considerations. Pharm. Biotechnol. 2013, 69–99. Springer.
  • Allen, L.; Popovich, N. G.; Ansel, H. C. Pharmaceutical Dosage Forms and Drug Delivery Systems, Lippincott Williams & Wilkins: Philadelphia, 2004.
  • Katzung, B.G. Basic & Clinical Pharmacology, McGraw-Hill Publishing Co.: New York, 2004.
  • Vander Heiden, M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discovery 2011, 10, 671–84.
  • Park, K.; Mrsny, R.J. Controlled Drug Delivery: Designing Technologies for the Future, American Chemical Society: Washington, DC, 2000.
  • Edlund, U.; Albertsson, A.-C. Degradable polymer microspheres for controlled drug delivery. In: Edlund, U.; Albertsson, A.C., eds. Degradable Aliphatic Polyesters, Springer, 2002, pp. 67–112.
  • Tsai, N.-C.; Sue, C.-Y. Review of MEMS-based drug delivery and dosing systems. Sens. Actuators, A 2007, 134, 555–64.
  • Arora, A.; Prausnitz, M.R.; Mitragotri, S. Micro-scale devices for transdermal drug delivery. Int. J. Pharm. 2008, 364, 227–36.
  • Drinan, D.; Edman, C.F.; Merz, D. Gateway Platform for Biological Monitoring and Delivery of Therapeutic Compounds, Google Patents, 2006.
  • Amirouche, F.; Zhou, Y.; Johnson, T. Current micropump technologies and their biomedical applications. Microsyst. Technol. 2009, 15, 647–66.
  • Li, Y. Shawgo, R.S.; Tyler, B.; Henderson, P.T.; Vogel, J.S.; Rosenberg, A.; Storm, P.B.; Langer, R.; Brem, H.; Cima, M.J. In vivo release from a drug delivery MEMS device. J. Controlled Release 2004, 100, 211–19.
  • Song, P.; Hu, R.; Tng, D.J.H.; Yong, K.-T. Moving towards individualized medicine with microfluidics technology. RSC Adv. 2014, 4, 11499–511.
  • Li, Y. Ho Duc, H.L.; Tyler, B.; Williams, T.; Tupper, M.; Langer, R.; Brem, H.; Cima, M.J. In vivo delivery of BCNU from a MEMS device to a tumor model. J. Controlled Release 2005, 106, 138–45.
  • Amer, S.; Badawy, W. An integrated platform for bio-analysis and drug delivery. Curr. Pharm. Biotechnol. 2005, 6, 57–64.
  • Laser, D.J.; Santiago, J.G. A review of micropumps. J. Micromech. Microeng. 2004, 14, R35–R64.
  • Nguyen, N.-T.; Huang, X.; Chuan, T.K. MEMS-micropumps: A review. J. Fluids Eng. 2002, 124, 384–92.
  • Woias, P. Micropumps: Summarizing the first two decades. Micromach., Microfabr. 2001, 4560, 39–52.
  • Böhm, S.; Timmer, B.; Olthuis, W.; Bergveld, P. A closed-loop controlled electrochemically actuated micro-dosing system. J. Micromech. Microeng. 2000, 10, 498–504.
  • van den Berg, A.; Lammerink, T.S.J. Micro total analysis systems: Microfluidic aspects, integration concept and applications. In: Manz, A.; Becker, H., eds. Microsystem Technology in Chemistry and Life Science, Springer: Berlin Heidelberg, 1998, pp. 21–49.
  • Tzou, H.; Fukuda, T. Precision Sensors, Actuators and Systems, Vol. 17. Springer Science & Business Media: Furo-cho, Chikusa-ku, Nagoya, Japan, 2012.
  • Horsley, D.; Wongkomet, N.; Horowitz, R.; Pisano, A.P. Precision positioning using a microfabricated electrostatic actuator. IEEE Trans. Magn. 1999, 35, 993–99.
  • van der Wijngaart, W.; Ask, H.; Enoksson, P.; Stemme, G. A high-stroke, high-pressure electrostatic actuator for valve applications. Sens. Actuators, A 2002, 100, 264–71.
  • Byun, J.-K.; Park, I.-H.; Hahn, S.-Y. Topology optimization of electrostatic actuator using design sensitivity. IEEE Trans. Magn. 2002, 38, 1053–56.
  • Janocha, H. Actuators: Basics and Applications, Springer Science & Business Media: New York, 2013.
  • Robinson, S. Driving piezoelectric actuators. Power Electronics Technol. 2006, 32, 40.
  • Uchino, K. Piezoelectric Actuators and Ultrasonic Motors, Vol. 1, Springer Science & Business Media: New York, 1997.
  • Juuti, J.; Kordás, K.; Lonnakko, R.; Moilanen, V.-P.; Leppävuori, S. Mechanically amplified large displacement piezoelectric actuators. Sens. Actuators, A 2005, 120, 225–31.
  • Wang, X.Y.; Ma, Y.T.; Yan, G.Y.; Huang, D.; Feng, Z.H. High flow-rate piezoelectric micropump with two fixed ends polydimethylsiloxane valves and compressible spaces. Sens. Actuators, A 2014, 218, 94–104.
  • Isermann, R. Mechatronic Systems: Fundamentals, Springer Science & Business Media: New York, 2007.
  • Bellouard, Y. Shape memory alloys for microsystems: A review from a material research perspective. Mater. Sci. Eng. A 2008, 481, 582–89.
  • Machado, L.; Savi, M. Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 2003, 36, 683–91.
  • Thompson, S. An overview of nickel–titanium alloys used in dentistry. Int. Endod. J. 2000, 33, 297–310.
  • Shoji, S. Fluids for sensor systems. In: Manz, A.; Becker, H., eds. Microsystem Technology in Chemistry and Life Science, Springer: Berlin Heidelberg, Germany, 1998, pp. 163–188.
  • Tay, F.E. Microfluidics and BioMEMS Applications, Springer, 2002.
  • Lemoff, A.V.; Lee, A.P. An AC magnetohydrodynamic micropump. Sens. Actuators, B 2000, 63, 178–85.
  • Seyed-Yagoobi, J. Electrohydrodynamic pumping of dielectric liquids. J. Electrost. 2005, 63, 861–69.
  • Chen, C.-H.; Santiago, J.G. A planar electroosmotic micropump. J. Microelectromech. Syst. 2002, 11, 672–83.
  • Zeng, S.; Chen, C.-H.; Mikkelsen, M.C.; Santiago, J.G. Fabrication and characterization of electroosmotic micropumps. Sens. Actuators, B 2001, 79, 107–14.
  • Xu, Z.-R.; Yang, C.-G.; Liu, C.-H.; Zhou, Z.; Fang, J.; Wang, J.-H. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture. Talanta 2010, 80, 1088–93.
  • Colgate, E.; Matsumoto, H. An investigation of electrowetting‐based microactuation. J. Vac. Sci. Technol., A 1990, 8, 3625–33.
  • Yokoyama, Y.; Takeda, M.; Umemoto, T.; Ogushi, T. Thermal micro pumps for a loop-type micro channel. Sens. Actuators, A 2004, 111, 123–28.
  • Razzacki, S.Z.; Thwar, P.K.; Yang, M.; Ugaz, V.M.; Burns, M.A. Integrated microsystems for controlled drug delivery. Adv. Drug Delivery Rev. 2004, 56, 185–98.
  • Ashraf, M.W.; Tayyaba, S.; Afzulpurkar, N. Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int. J. Mol. Sci. 2011, 12, 3648–704.
  • Judy, J.W. Biomedical applications of MEMS. In: Measurement and Science Technology Conference, Anaheim, CA, 2000, pp. 403–414.
  • Gurman, P.; Miranda, O.R.; Clayton, K.; Rosen, Y.; Elman, N.M. Clinical applications of biomedical microdevices for controlled drug delivery. Mayo Clin. Proc. 2015, 90, 93–108.
  • Ausiello, D.; Santini, Jr., J.T.; Herman, S.J.; Prescott, J.H.; Uhland, S.A.; Maloney, J.M.; Polito, B.F. Method and Device for the Controlled Delivery of Parathyroid Hormone, Google Patents, 2009.
  • Ho Duc, H.L. Emergency Delivery of Vasopressin from an Implantable Mems Rapid Drug Delivery Device. Massachusetts Institute of Technology: Cambridge, MA, 2009.
  • Chiao, M.; Jackson, J.K.; Pirmoradi, F.N.; Ou, K. Remotely Controlled Drug Delivery Systems, Google Patents, 2011.
  • Gensler, H.; Sheybani, R.; Li, P.-Y.; Mann, R.L.; Meng, E. An implantable MEMS micropump system for drug delivery in small animals. Biomed. Microdevices 2012, 14, 483–96.
  • Lo, R.; Li, P.-Y.; Saati, S.; Agrawal, R.N.; Humayun, M.S.; Meng, E. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed. Microdevices 2009, 11, 959–70.
  • Liu, G.; Shen, C.; Yang, Z.; Cai, X.; Zhang, H. A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system. Sens. Actuators, A 2010, 163, 291–96.
  • van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J. Controlled Release 2012, 161, 645–55.
  • Grayson, A.C.R.; Shawgo, R.S.; Li, Y.; Cima, M.J. Electronic MEMS for triggered delivery. Adv. Drug Delivery Rev. 2004, 56, 173–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.