1,240
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Progress in Applications of Polymer-Based Membranes in Gas Separation Technology

, &

References

  • Adatoz, E.; Avci, A.K.; Keskin, S. Opportunities and challenges of MOF-based membranes in gas separation. Sep. Purif. Technol. 2015, 152, 207–237.
  • Mehwish, N.; Kausar, A.; Siddiq, M. Polyvinylidenefluoride/Poly(styrene-butadiene-styrene)/silver nanoparticle-grafted-acid chloride functional MWCNTs-based nanocomposites: preparation and properties. Polym. Plast. Technol. Eng. 2015, 54, 474–483.
  • Ullah, M.; Kausar, A.; Siddiq, M.; Subhan, M.; Zia, M.A. Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review. Polym. Plast. Technol. Eng. 2015, 54, 861–879.
  • Park, J.; Oh, H.; Ha, T.; Lee, Y.I.; Min, K.A. Review of gas diffusion layer in proton exchange membrane fuel cells: durability and degradation. Appl. Energy. 2015, 155, 866–880.
  • Khalilpour, R.; Mumford, K.; Zhai, H.; Abbas, A.; Stevens, G.; Rubin, E.S. Membrane-based carbon capture from flue gas: a review. J. Clean Prod. 2015, 103, 286–300.
  • Jue, M.L.; Lively, R.P. Targeted gas separations through polymer membrane functionalization. React. Funct. Polym. 2015, 86, 88–110.
  • Li, H.; Hass-Santo, K.; Schygulla, U.; Dittmeyer, R. Inorganic microporous membranes for H2 and CO2 separations: review of experimental and modelling progress. Chem. Eng. Sci. 2015, 127, 401–417.
  • Junaidi, M.U.M.; Leo, C.P.; Ahmad, A.L.; Ahmad, N.A. Fluorocarbon functionalized SAPO-34 zeolite incorporated in asymmetric mixed matrix membrane for carbon dioxide separation in wet gases. Microporous Mesoporous Mater. 2015, 206, 23–33.
  • Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P. Current challenges in membrane separation of CO2 from natural gas: a review. Int. J. Greenhouse Gas Control. 2013, 17, 46–65.
  • Akberov, R.R.; Fazlyev, A.R.; Klinov, A.V.; Malygin, A.V.; Farakhov, M.I.; Maryakhina, V.A. Prevaporation technology for regeneration of diethylene glycol at russian complex gas treatment plants with the use of ceramic membrane HybSi. J. Nat. Gas Sci. Eng. 2015, 26, 670–682.
  • Cserjesi, P.; Nemestothy, N.; Belafi-Bako, K. Gas separation properties of supported liquid membrane prepared with unconventional ionic liquids. J. Member. Sci. 2010, 349, 6–11.
  • Reijerkerk, S.; Knoef, M.; Nijmeijer, K.; Wessling, M. Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. J. Member. Sci. 2010, 352, 126–135.
  • Lin, H.; Freeman, B.D. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 2005, 739 (1–3), 57–74.
  • Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J. Member. Sci. 2010, 359, 115–125.
  • Abedeni, R.; Nezhadmoghadam, A. Application of membrane in gas separation process: its suitability and mechanism. Pet. Coal. 2010, 52, 69–80.
  • Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M. Performance studies of mixed matrix membranes for gas separation. Sep. Purif. Technol. 2010, 75, 229–242.
  • Bae, T.; Lee, J.S.; Qiu, W.; Koros, W.J.; Jones, C.W.; Nair, S. High performance gas separation membrane containing sub micrometer-sized metal organic framework crystals. Angew. Chem. Int. Ed. 2010, 49, 9863–9866.
  • Baker, R. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411.
  • Scholes, C.; Smith, K.; Kentish, S.; Stevens, G. CO2 capture from pre-combustion processes-strategies for membrane gas separation. Int. J. Greenhouse Gas Control. 2010, 4, 739–755.
  • Park, H.; Han, S.; Jung, C.; Lee, Y.; Hill, A. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Member. Sci. 2010, 359, 11–24.
  • Merkel, T.; Lin, H.; Wei, X.; Baker, R. Power plant post combustion carbon dioxide capture: an opportunity for membranes. J. Member. Sci. 2010, 359, 126–139.
  • Hosseini, S.S.; Peng, N.; Chung, T.S. Gas separation membranes developed through integration of polymer blending and dual layer hollow fiber spinning process for hydrogen and natural gas enrichments. J. Member. Sci. 2010, 349, 156–166.
  • Julian, H.; Wenten, I.G. Polysulfone membranes for CO2/CH4 separation: state of the art. J. Eng. 2012, 2, 484–495.
  • Kiadehi, A.D.; Jahanshahi, M.; Rahimpour, A.; Ghoreyshi, S.A.A. The effect of functionalized carbon nanofiber (CNF) on gas separation performance of polysulfone (PSF) membranes. Chem. Eng. Process. 2015, 90, 41–48.
  • Pesek, S.C.; Koros, W.J. Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation. J. Member. Sci. 1993, 81, 71–88.
  • Pesek, S.C.; Koros, W.J. Aqueous quenched asymmetric polysulfone hollow fibers prepared by dry/wet phase separation. J. Member. Sci. 1994, 88, 1–19.
  • Pinnau, I.; Koros, W.J. Influence of quenche medium on the structures and gas permeation properties of polysulfone membranes made by wet and dry/wet phase inversion. J. Member. Sci. 1992, 71, 81–96.
  • Lee, W.J.; Kim, D.S.; Kim, J.H. Preparation and gas separation properties of assymetric polysulfone membranes by dual bath method. Korean J. Chem. Eng. 2000, 17 (2), 143–148.
  • Kim, S.R.; Lee, K.H.; Jhon, M.S. The effect of ZnCl2 on the formation of polysulfone membrane. J. Member. Sci. 1996, 119, 59–64.
  • Pinnau, I.; Wind, J.; Peinemann, K.V. Ultrathin multi component poly(ether sulfone) membranes for gas separation made by dry/wet phase inversion. Ind. Eng. Chem. Res. 1990, 29, 2028–2032.
  • Georgiou, Y.; Dimos, K.; Beltsios, K.; Karakassides, M.A.; Deligiannakis, Y. Hybrid [polysulfone zero-valent iron] membranes: synthesis, characterization and application for AsIII remediation. Chem. Eng. J. 2015, 281, 651–660.
  • Chen, S.H.; Liou, R.M.; Lin, Y.Y.; Lai, C.L.; Lai, J.Y. Preparation and characterization of asymmetric sulfonated polysulfone membranes by wet phase inversion method. Eur. Polym. J. 2009, 45, 1293–1301.
  • Kiadehi, A.D.; Rahimpour, A.; Jahanshahi, M.; Ghoreyshi, A.A. Novel carbon nanofiber (CNF)/polysulfone (PSF) mixed matrix membranes for gas separation. J. Ind. Eng. Chem. 2015, 22, 199–207.
  • Ismail, A.F.; Lai, P.Y. Effect of phase inversion and rheological factors on formation of defect free and ultra-thin skinned asymmetric polysulfone membranes for gas separation. Sep. Purif. Technol. 2003, 33, 127–143.
  • Rockel, A.; Hertel, J.; Fiegel, P.; Abdelhamid, S.; Panitz, N.; Walb, D. Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 1986, 30, 429–432.
  • Han, J.; Lee, W.; Choi, J.M.; Patel, R.; Min, B. Characterization of polyether sulfone/polyimide blend membranes prepared by dry/wet phase inversion: precipitation kinetics, morphology and gas separation. J. Member. Sci. 2010, 351, 141–148.
  • Lee, S.; Lee, J.S.; Lee, M.; Choi, J.W.; Kim, S.; Lee, S. Separation of sulphur hexafluoride (SF6) from ternary gas mixtures using commercial polysulfone (PSF) hollow fiber membranes. J. Member. Sci. 2014, 452, 311–318.
  • Joly, C.; Goizet, S.; Schrotter, J.C.; Sanchez, J.; Escoubes, M. Sol-gel polyimide-silica composite membrane: gas transport properties. J. Member. Sci. 1997, 130, 63–74.
  • Coleman, M.R.; Koros, W.J. Isomeric polyimides based on fluorinated dianhydrides and diammines for gas separation applications. J. Member. Sci. 1990, 50, 285–297.
  • Hu, Q.; Marand, E.; Dhingra, S.; Fritsch, D.; Wen, J.; Wilkes, G. Poly(amide-imide)/TiO2 nanocomposite gas separation membranes: fabrication and characterization. J. Member. Sci. 1997, 135, 65–79.
  • Lee, C.; Sundar, S.; Kwon, J.; Han, H. Structure-property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3612–3620.
  • Vankelecom, I.F.J.; Broeck, S.V.D.; Merckx, E.; Geerts, H.; Grobet, P.; Uytterhoeven, J.B. Silylation to improve incorporation of zeolites in polyimides films. J. Phys. Chem. 1996, 100, 3753–3758.
  • Bakhtiari, O.; Mosleh, S.; Khosravi, T.; Mohammadi, T. Preparation characterization and gas permeation of polyimide mixed matrix membranes. J. Member. Sci. Technol. 2011, 1, 1–8.
  • Tanaka, K.; Kita, H.; Okamoto, K.; Nakamura, A.; Kusuki, Y. Effect of morphology on gas permeability and permselectivity in polyimide based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 4,4′-oxydianiline. Polym. J. 1989, 21, 127–135.
  • Hatori, H.; Kobayashi, T.; Hanzawa, Y.; Yamada, Y.; Ilmura, Y.; Kimura, T.; Shiraishi, M. Mesoporous carbon membranes from polyimide blended with poly(ethylene glycol). J. Appl. Polym. Sci. 2001, 79, 836–841.
  • Tong, H.; Hu, C.; Yang, S.; Ma, Y.; Guo, H.; Fan, L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer. 2015, 69, 138–147.
  • Bos, A.; Punt, I.G.M.; Wessling, M.; Strathmann, H. Plasticization-resistant glassy polyimide membranes for CO2/CO4 separation. Sep. Purif. Technol. 1998, 14, 27–39.
  • Robeson, L.M.; Burgoyne, W.F.; Langsam, M.; Savoca, A.C.; Tien, C.F. High performance polymers for membrane separation. Polymer. 1994, 35, 23.
  • Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Membrane gas separation applications in natural gas processing. Fuel. 2012, 96, 15–28.
  • Xu, Z.; Xiao, L.; Wang, J.; Springer, J. Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles. J. Member. Sci. 2002, 202, 27–34.
  • Eguchi, H.; Kim, D.J.; Koros, W.J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymer. 2015, 58, 121–129.
  • Albo, J.; Wang, J.; Tsuru, T. Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures. J. Member. Sci. 2014, 449, 109–118.
  • Vaughn, J.; Koros, W.; Jhonson, J.R.; Karvan, O. Effect of thermal annealing on a novel polyamide-imide polymer membrane for aggressive acid gas separations. J. Member. Sci. 2012, 401–402, 163–174.
  • Oh, N.; Jegal, J.; Lee, K. Preparation and characterization of nanofilteration composite membrane using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes. J. Appl. Polym. Sci. 2001, 80, 2729–2736.
  • Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D. Chen, J.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges, approaches. Water Res. 2015, 80, 306–324.
  • Ariza, M.J.; Benavente, J.; Castellon, E.; Palacio, L. Effect of hydration of polyamide membranes on the surface electrokinetic parameters : surface characterization by X-ray photoelectron spectroscopy and atomic force microscopy. J. Colloid Interface Sci. 2002, 247, 149–158.
  • Kim, J.H.; Lee, Y.M. Gas permeation properties of poly(amide-6-b-ethyleneoxide)-silica hybrid membranes. J. Member. Sci. 2001, 193, 209–225.
  • Beeskow, T.C.; Kusharyoto, W.; Anspach, F.B.; Kroner, K.H.; Deckwer, W.D. Surface modification of microporous polyamide membrane with hydroxyethyl cellulose and their application as affinity membranes. J. Chromatogr. A. 1995, 715, 49–65.
  • Kim, J.H.; Ha, S.Y.; Lee, Y.M. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J. Member. Sci. 2001, 190, 179–193.
  • Sridhar, S.; Smitha, B.; Mayor, S.; Prathab, B.; Aminabhavi, T.M. Gas permeation properties of polyamide membranes prepared by interfacial polymerization. J. Mater. Sci. 2007, 42, 9392–9401.
  • Rabiee, H.; Alsadat, S.M.; Soltanieh, M.; Mousavi, S.A.; Ghadimi, A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(PEBA × 1074)/SAPO 34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. J. Ind. Eng. Chem. 2015, 27, 223–239.
  • Mohammadi, A.; Matsuura, T.; Sourirajan, S. Gas separation by silicone-coated dry asymmetric aromatic polyamide membranes. Gas Sep. Purif. 1995, 9 (3), 181–187.
  • Singh, A.; Ghosal, K.; Freeman, B.D.; Lozano, A.E.; Campa, J.G. Gas separation properties of pendent phenyl substituted aromatic polyamides containing sulfone and hexafluoroisopropylidene groups. Polymer. 1999, 40, 5715–5722.
  • Ghosh, A.; Hoek, E.V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Member. Sci. 2009, 336, 140–148.
  • Hellums, M.W.; Koros, W.J.; Schmidhauser, J.C. Gas separation properties of spirobiindane polycarbonate. J. Member. Sci. 1992, 67, 75–81.
  • Chen, S.; Lai, J.; Ruaan, R.; Wang, A. Gas sorption and transport properties of membrane from polycarbonate/CoIII acetylacetonate blend. J. Member. Sci. 1997, 123, 197–205.
  • Chen, S.; Ruaan, R.; Lai, J. Sorption and transport mechanism of gases in polycarbonate membranes. J. Member. Sci. 1997, 134, 143–150.
  • Lo, C.; Hung, W.; Guzman, M.D.; Huang, S.; Li, C.; Hu, C.; Jean, Y.; Lee, K.; Lai, J. Investigation on CO2-induced plasticization in polycarbonate membrane using positron annihilation lifetime spectroscopy. J. Member. Sci. 2010, 363, 302–308.
  • Cokeliler, D. Enhancement of polycarbonate membrane permeability due to plasma polymerization precursors. Appl. Surf. Sci. 2013, 268, 28–36.
  • Iqbal, M.; Man, Z.; Mukhtar, H.; Dutta, B. Solvent effect on morphology and CO2/CH4 separation performance of asymmetric polycarbonate membranes. J. Member. Sci. 2008, 318, 167–175.
  • Hacarlioglu, P.; Toppare, L.; Yilmaz, L. Polycarbonate-polypyrrole mixed matrix gas separation membrane. J. Member. Sci. 2003, 225, 51–62.
  • Sen, D.; Kalipcilar, H.; Yilmaz, L. Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes. J. Member. Sci. 2007, 303, 194–203.
  • Patel, R.; Kim, S.J.; Roh, D.K.; Kim, J.H. Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes. Chem. Eng. J. 2014, 254, 46–53.
  • Sen, D.; Kalipcilar, H.; Yilmaz, L. Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination. 2006, 200, 222–224.
  • Chen, S.; Chuang, W.; Wang, A.; Ruaan, R.; Lai, J. Oxygen/nitrogen separation by plasma chlorinated polybutadiene/polycarbonate composite membrane. J. Member. Sci. 1997, 124, 273–281.
  • Ruaan, R.; Chen, S.; Lai, J. Oxygen/nitrogen separation by polycarbonate/Co(SalPr) complex membrane. J. Member. Sci. 1997, 135, 9–18.
  • Momeni, S.M.; Pakizeh, M. Preparation, Characterization and gas permeation study of PSF/MgO nanocomposite membrane. Braz. J. Chem. Eng. 2013, 30 (3), 589–597.
  • Chen, S.; Huang, S.; Yu, K.; Lai, J.; Liang, M. Effect of CO2 Treated polycarbonate membranes on gas transport and sorption properties. J. Member. Sci. 2000, 172, 105–112.
  • Kim, M.S.; Lee, S.J. Characteristics of Porous polycarbonate membrane with polyethylene glycol in supercritical CO2 and effect of its porosity on tearing stress. J. Supercrit. Fluids. 2004, 31, 217–225.
  • Lopez-Gonzalez, M.; Saiz, E.; Riande, E.; Guzman, J. Transport of helium in polycarbonate membranes. Polymer. 2002, 43, 409–413.
  • Caro, J.; Noack, M.; Kolsch, P.; Schaefer, R. Zeolite membrane-state of their development and perspective. Microporous Mesoporous Mater. 2000, 38, 3–24.
  • Chung, T.S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–587.
  • Cong, H.; Radosz, M.; Towler, B.F.; Shen, Y. Polymer inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291.
  • Freeman, B.D. Basis of permeability/selectivity trade off relations in polymeric gas separation membranes. Macromolecules. 1999, 32, 375–380.
  • Fuertes, A.B. Effect of air oxidation on gas separation properties of adsorption selective carbon membranes. Carbon. 2001, 39, 697–706.
  • Smith, Z.P.; Tiwari, R.R.; Murphy, T.M.; Sanders, D.F.; Gleason, K.L.; Paul, D.R.; Freeman, B.D. Hydrogen Sorption in Polymers for Membrane Application. Polymer. 2013, 54, 3026–3037.
  • Zornoza, B.; Tellez, C.; Coronas, J. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. J. Member. Sci. 2011, 368, 100–109.
  • Chen, Y.; Zhao, L.; Wang, B.; Dutta, P.; Winston, W.S. Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation. J. Member. Sci. 2016, 497, 21–28.
  • Kim, S.; Lee, Y.M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 2015, 43, 1–32.
  • Makhloufi, C.; Roizard, D.; Favre, E. Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation. J. Member. Sci. 2013, 441, 63–72.
  • Ryzhikh, V.; Tsarev, D.; Alentiev, A.; Yampolskii, Y. A novel method for predictions of gas permeation parameters of polymers on the basis of their chemical structure. J. Member. Sci. 2015, 487, 189–198.
  • Comesana-Gandara, B.; Hernandez, A.; Campa, J.; Abajo, J.; Lozano, A.; Lee, Y.M. Thermally rearranged polybenzoxazoles and poly(benzoxazole-co-imide)s from ortho-hydroxyamine monomers for high performance gas separation membranes. J. Member. Sci. 2015, 493, 329–339.
  • Cersosimo, M.; Brunetti, A.; Drioli, E.; Fiorino, F.; Dong, G.; Woo, K.T.; Lee, J.; Lee, Y.M.; Barbieri, G. Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. J. Member. Sci. 2015, 492, 257–262.
  • Smith, Z.P.; Hernandez, G.; Gleason, K.L.; Anand, A.; Doherty, C.M.; Konstas, K.; Alvarez, C.; Hill, A.J.; Lozano, A.E.; Paul, D.R.; Freeman, B.D. Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers. J. Member. Sci. 2015, 493, 766–781.
  • Wang, M.; Wang, Z.; Lee, N.; Liao, J.; Zhao, S.; Wang, J.; Wang, S. Relationship between polymer–filler interfaces in separation layers and gas transport properties of mixed matrix composite membranes. J. Member. Sci. 2015, 495, 252–298.
  • Minelli, M.; Sarti, G.C. Gas permeability in glassy polymers: a thermodynamic approach. Fluid Phase Equilib. 2016, 424, 44–51.
  • Choi, Y.; Kim, Y.R.; Kang, Y.S.; Kang, S.W. Enhanced CO2 separation performance of polymer composite membranes through the synergistic effect of 1,3,5-benzenetricarboxylic acid. Chem. Eng. J. 2015, 279, 273–276.
  • Ismail, A.F.; Lorna, W. Penetrant induced plasticization phenomena in glassy polymers for gas separation phenomena. Sep. Purif. Technol. 2002, 27, 173–194.
  • Koros, W.J.; Fleming, G.K. Membrane based gas separation. J. Member. Sci. 1993, 83, 1–80.
  • Mahajan, R.; Koros, W.J. Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 2000, 39, 2692–2696.
  • Park, H.B.; Kim, Y.K.; Lee, J.M.; Lee, S.Y.; Lee, Y.M. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. J. Member. Sci. 2004, 229, 117–127.
  • Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Member. Sci. 1991, 62, 165–185.
  • Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Member. Sci. 2006, 279, 1–49.
  • Zhong, S.; Li, C.; Xiao, X. Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr–mullite supports. J. Member. Sci. 2002, 199, 53–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.