724
Views
16
CrossRef citations to date
0
Altmetric
Reviews

A Review on Polymer/Cement Composite with Carbon Nanofiller and Inorganic Filler

, &

References

  • Kausar, A.; Iqbal, A.; Hussain, S.T. Novel hybrids derived from poly(thiourea-amide)/epoxy and carbon nanotubes. Polym. Plast. Technol. Eng. 2013, 52, 1169–1174.
  • Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113.
  • Khan, F.; Kausar, A.; Siddiq, M. A Review on properties and fabrication techniques of polymer/carbon nanotube composites and polymer intercalated buckypapers. Polym. Plast. Technol. Eng. 2015, 54, 1524–1539. doi:10.1080/03602559.2015.1021486.
  • Shah, R.; Kausar, A.; Muhammad, B. Characterization and properties of poly(methyl methacrylate)/graphene, poly(methyl methacrylate)/graphene oxide and poly(methyl methacrylate)/p-phenylenediamine-graphene oxide nanocomposites. Polym. Plast. Technol. Eng. 2015, 54, 1334–1342. doi:10.1080/03602559.2015.1010220.
  • Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Ahmed, N.; Kausar, A.; Muhammad, B. Advances in shape memory polyurethanes and composites: A review. Polym. Plast. Technol. Eng. 2015, 54, 1410–1423. doi:10.1080/03602559.2015.1021490.
  • Nasir, A.; Kausar, A. A review on materials derived from polystyrene and different types of nanoparticles. Polym. Plast. Technol. Eng. 2015, 54, 1819–1849. doi:10.1080/03602559.2015.1038838.
  • Bonard, J.M.; Maier, F.; Stöckli, T.; Chatelain, A.; de Heer, W.A.; Salvetat, J.P.; Forro, L. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 1998, 73, 7–15.
  • Al-Rub, R.K.A.; Ashour, A.I.; Tyson, B.M. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Construct. Build. Mater. 2012, 35, 647–655.
  • Yang, B.X.; Shi, J.H.; Pramoda, K.P.; Goh, S.H. Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Compos. Sci. Technol. 2008, 68, 2490–2497.
  • Paiva, M.C.; Zhou, B.; Fernando, K.A.S.; Lin, Y.; Kennedy, J.M.; Sun, Y.P. Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 2004, 42, 2849–2854.
  • Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205.
  • Sanchez, F.; Sobolev, K. Nanotechnology in concrete—a review. Construct. Build. Mater. 2010, 24, 2060–2071.
  • Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245.
  • Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059.
  • Xie, X.L.; Mai, Y.W.; Zhou, X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R Rep. 2005, 49, 89–112.
  • Musso, S.; Tulliani, J.M.; Ferro, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990.
  • Luo, J.; Duan, Z.; Li, H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys. Status Solidi 2009, 206, 2783–2790.
  • Xu, D.; Cheng, X.; Banerjee, S.; Huang, S. Dielectric and electromechanical properties of modified cement/polymer based 1–3 connectivity piezoelectric composites containing inorganic fillers. Compos. Sci. Technol. 2015, 114, 72–78.
  • Chaipanich, A.; Rujijanagul, G.; Tunkasiri, T. Properties of Sr-and Sb-doped PZT–Portland cement composites. Appl. Phys. A. 2009, 94, 329–337.
  • Dong, B.; Li, Z. Cement-based piezoelectric ceramic smart composites. Compos. Sci. Technol. 2005, 65, 1363–1371.
  • Xu, D.; Qin, L.; Huang, S.; Cheng, X. Fabrication and properties of piezoelectric composites designed for process monitoring of cement hydration reaction. Mater. Chem. Phys. 2012, 132, 44–50.
  • Halake, K.; Birajdar, M.; Kim, B.S.; Bae, H.; Lee, C.; Kim, Y.J.; Lee, J. Recent application developments of water-soluble synthetic polymers. J. Ind. Eng. Chem. 2014, 20, 3913–3918.
  • Lee, S.M.; Xing, Z.C.; Shin, Y.S.; Gu, T.H.; Lee, B.H.; Huh, M.W.; Kang, I.K. Synthesis of homing peptide-immobilized magnetite nanoparticles through PEG spacer and their biomedical applications. Polym. Korea 2012, 36, 586–592.
  • Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications. Rev. Anal. Chim. Acta. 2012, 737, 1–21.
  • Jin, F.L.; Rhee, K.Y.; Park, S.J. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization. J. Solid State Chem. 2011, 184, 3253–3256.
  • Chang, Y.W.; Shin, G. Crosslinked poly (ethylene glycol)(PEG)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. J Ind. Eng. Chem. 2011, 17, 730–735.
  • Zheng, G.; Yang, Y.; Cha, J.J.; Hong, S.S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.
  • Jing, L.; Zhou, W.; Tian, G.; Fu, H. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2014, 42, 9509–9549.
  • Kim, K.S. Functionalization of magnetic nanoparticles for biomedical applications. Korean J. Chem. Eng. 2014, 31, 1289–1305.
  • Seidi, F.; Salarabadi, M.B.; Saedi, S.; Modadi, L.; Shamsabadi, A.A.; Nikravesh, B. Introduction of a novel amino-agarose (AAG) derivative as a fixed facilitated transport carrier to prepare newly asymmetric PES/AAG membranes for CO2 removal. Greenhouse Gases Sci. Technol. 2015, 5, 701–713. doi:10.1002/ghg.1514.
  • Amooghin, A.E.; Shehni, P.M.; Ghadimi, A.; Sadrzadeh, M.; Mohammadi, T. Mathematical modeling of mass transfer in multicomponent gas mixture across the synthesized composite polymeric membrane. J. Ind. Eng. Chem. 2013, 19, 870–885.
  • Lee, S.M.; Lee, J.H. Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem. 2012, 18, 16–18.
  • Mannan, H.A.; Mukhtar, H.; Murugesan, T.; Nasir, R.; Mohshim, D.F., Mushtaq, A. Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 2013, 36, 1838–1846.
  • Jyothi, M.S.; Padaki, M.; Geetha Balakrishna, R.; Krishna Pai, R. Synthesis and design of PSf/TiO2 composite membranes for reduction of chromium (VI): Stability and reuse of the product and the process. J. Mater. Res. 2014, 29, 1537–1545.
  • Chae, Y.; Park, J.; Mori, S.; Suzuki, M. Visible-light photocatalytic activity of TiO2-x by heat treatment and plasma-heat treatment. J. Ind. Eng. Chem. 2012, 18, 1237–1241.
  • Chauhan, N.P.S. Structural and thermal characterization of macro-branched functional terpolymer containing 8-hydroxyquinoline moieties with enhancing biocidal properties. J. Ind. Eng. Chem. 2013, 19, 1014–1023.
  • Woo, M.H.; Kim, H.S.; Lee, E.Y. Development and characterization of recombinant whole cells expressing the soluble epoxide hydrolase of Danio rerio and its variant for enantioselective resolution of racemic styrene oxides. J. Ind. Eng. Chem. 2012, 18, 384–391.
  • Liu, S.P. Flame retardant and mechanical properties of polyethylene/magnesium hydroxide/montmorillonite nanocomposites. J. Ind. Eng. Chem. 2014, 20, 2401–2408.
  • Pourhosseini, P.S., Saboury, A.A., Najafi, F., Divsalar, A., Sarbolouki, M.N. PEG-Poly (fumaric-sebacic acids)-PEG. Polym. Korea 2013, 37, 294–301.
  • Han, S.C.; Jin, S.H.; Lee, J.W. Synthesis of dendrimer with PEG core by click chemistry. Polym. Korea 2012, 36, 295–301.
  • Park, S.J.; Park, D.W.; Kim, Y.H.; Kang, S.J.; Lee, S.W.; Lee, C.W.; Lee, K. Duration of dual antiplatelet therapy after implantation of drug-eluting stents. N. Engl. J. Med. 2010, 362, 1374–1382.
  • Teodorescu, M.; Bercea, M. Poly (vinylpyrrolidone)—a versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng. 2014, 54, 923–943.
  • Panthi, G.; Park, M.; Kim, H.Y.; Park, S.J. Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: A review. J. Ind. Eng. Chem. 2015, 24, 1–13.
  • Antonyraj, C.A.; Kim, B.; Kim, Y.; Shin, S.; Lee, K.Y.; Kim, I.; Cho, J.K. Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF. Catal. Commun. 2014, 57, 64–68.
  • Long, S.; Tang, Q.; Wu, Y.; Wang, L.; Zhang, K.; Chen, Y. A method for preparing water soluble cyclic polymers. React. Funct. Polym. 2014, 80, 15–20.
  • Dogan, U.A.; Ozkul, M.H. The effect of cement type on long-term transport properties of self-compacting concretes. Construct. Build. Mater. 2015, 96, 641–647.
  • Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256.
  • Massazza, F. Pozzolana and pozzolanic cements. In: Hewlett, P.C. ed. Lea's Chemistry of Cement and Concrete, Elsevier Butterworth-Heinemann, Oxford, 1998, pp. 471–632.
  • Fan, L.W.; Fang, X.; Wang, X.; Zeng, Y.; Xiao, Y.Q.; Yu, Z.T.; Cen, K.F. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 2013, 110, 163–172.
  • Yu, Z.T.; Fang, X.; Fan, L.W.; Wang, X.; Xiao, Y.Q.; Zeng, Y., Xu, X.; Hu, Y.C.; Cen, K.F. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 2013, 53, 277–285.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  • Muc, A.; Chwał, M. Modele mechaniczne kompozytów z udziałem nanorurek węglowych. Kompozyty 2004, 4, 432–438.
  • De Volder, M.F.; Tawfick, S.H.; Baughman, R.H., Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
  • Yuge, R.; Ichihashi, T.; Shimakawa, Y.; Kubo, Y.; Yudasaka, M., Iijima, S. Preferential deposition of Pt nanoparticles inside single-walled carbon nanohorns. Adv. Mater. 2004, 16, 1420–1423.
  • Treacy, M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.
  • Jiang, X.; Bin, Y.; Matsuo, M. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005, 46, 7418–7424.
  • Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical properties of carbon nanotubes. London: Imperial College Press. 1998, 35, 73–81.
  • Lourie, O.; Wagner, H.D. Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 1998, 13, 2418–2422.
  • Ageev, O.A.; Il'in, O.I.; Rubashkina, M.V.; Smirnov, V.A.; Fedotov, A.A.; Tsukanova, O.G. Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy. Tech. Phys. 2015, 60, 1044–1050.
  • Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552.
  • Yakobson, B.I.; Brabec, C.J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511.
  • Peng, C.; Yan, X.B., Wang, R.T.; Lang, J.W.; Ou, Y.J.; Xue, Q.J. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim. Acta. 2013, 87, 401–408.
  • Zhao, L.; Zhao, F.; Zeng, B. Preparation and application of sunset yellow imprinted ionic liquid polymer–ionic liquid functionalized graphene composite film coated glassy carbon electrodes. Electrochim. Acta. 2014, 115, 247–254.
  • Zhao, L.; Zhao, F.; Zeng, B. Electrochemical determination of methyl parathion using a molecularly imprinted polymer–ionic liquid–graphene composite film coated electrode. Sens. Actuator B Chem. 2013, 176, 818–824.
  • Li, C.; Shi, G. Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochim. Acta. 2011, 56, 10737–10743.
  • Lee, S.; Oh, E.S. Performance enhancement of a lithium ion battery by incorporation of a graphene/polyvinylidene fluoride conductive adhesive layer between the current collector and the active material layer. J. Power Sources 2013, 244, 721–725.
  • Park, H.S.; Lee, M.H.; Hwang, R.Y.; Park, O.K., Jo, K., Lee, T.; Song, H.K. Kinetically enhanced pseudocapacitance of conducting polymer doped with reduced graphene oxide through a miscible electron transfer interface. Nano Energy. 2014, 3, 1–9.
  • Guo, W.; Su, J.; Li, Y.H.; Wan, L.J.; Guo, Y.G. Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries. Electrochim. Acta. 2012, 72, 81–86.
  • Zhao, Y.; Huang, Y.; Wang, Q. Graphene supported poly-pyrrole (PPY)/Li 2 SnO3 ternary composites as anode materials for lithium ion batteries. Ceram. Int. 2013, 39, 6861–6866.
  • Lee, D.C.; Yang, H.N.; Park, S.H.; Kim, W.J. Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J. Membr. Sci. 2014, 452, 20–28.
  • Kundu, D.; Krumeich, F.; Nesper, R. Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J. Power Sour. 2013, 236, 112–117.
  • Liu, Y.; Zhu, L.; Zhang, Y.; Tang, H. Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sens. Actuat. B Chem. 2012, 171, 1151–1158.
  • Yue, G.; Wu, J.; Xiao, Y.; Lin, J.; Huang, M.; Lan, Z.; Fan, L. Functionalized graphene/poly (3,4-ethylenedioxythiophene): Polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy 2013, 54, 315–321.
  • Jeon, Y.J.; Yun, J.M.; Kim, D.Y.; Na, S.I.; Kim, S.S. Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl. Surf. Sci. 2014, 296, 140–146.
  • Pan, Z.; Gu, H.; Wu, M.T.; Li, Y.; Chen, Y. Graphene-based functional materials for organic solar cells [Invited]. Opt. Mater Express 2012, 2, 814–824.
  • Sookhakian, M.; Amin, Y.M.; Baradaran, S.; Tajabadi, M.T.; Golsheikh, A.M., Basirun, W.J. A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells. Thin Solid Films 2014, 552, 204–211.
  • Li, R.; Liu, L.; Yang, F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg (II). Chem. Eng. J. 2013, 229, 460–468.
  • Yang, G.; Su, J.; Gao, J.; Hu, X.; Geng, C.; Fu, Q. Fabrication of well-controlled porous foams of graphene oxide modified poly (propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J. Supercrit. Fluids 2013, 73, 1–9.
  • Depan, D.; Shah, J.; Misra, R.D.K. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C 2011, 31, 1305–1312.
  • Justin, R.; Chen, B. Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohyd. Polym. 2014, 103, 70–80.
  • Kavitha, T.; Kang, I.K.; Park, S.Y. Poly (N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Coll. Surf. B Biointerfaces 2014, 115, 37–45.
  • Tian, H.C.; Liu, J.Q.; Wei, D.X.; Kang, X.Y.; Zhang, C.; Du, J.C.; Yang, C.S. Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 2014, 35, 2120–2129.
  • Tripathi, S.K.; Goyal, R.; Gupta, K.C.; Kumar, P. Functionalized graphene oxide mediated nucleic acid delivery. Carbon 2013, 51, 224–235.
  • Sayyar, S.; Murray, E.; Thompson, B.C.; Gambhir, S.; Officer, D.L.; Wallace, G.G. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 2013, 52, 296–304.
  • Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173, 75–88.
  • Layek, R.K.; Nandi, A.K. A review on synthesis and properties of polymer functionalized graphene. Polymer 2013, 54, 5087–5103.
  • Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S.W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 2015, 367, 37–48.
  • Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25.
  • Yang, R.; Liu, Y.; Wang, K.; Yu, J. Characterization of surface interaction of inorganic fillers with silane coupling agents. J. Analyt. Appl. Pyrolys. 2003, 70, 413–425.
  • Monte, S.J.; Sugerman, G. Processing of composites with titanate coupling agents—A review. Polym. Eng. Sci. 1984, 24, 1369–1382.
  • Dorigato, A.; Pegoretti, A.; Frache, A. Thermal stability of high density polyethylene–fumed silica nanocomposites. J. Therm. Anal. Calorimetr. 2012, 109, 863–873.
  • Liu, Y.; Yang, R.; Yu, J.; Wang, K. Investigation of interfacial structure of coupling agent treated fillers by Fourier transform infrared spectroscopy and attenuated total reflection-FTIR spectroscopy. Polym. Compos. 2002, 23, 28.
  • Lv, W.; Tang, D.M.; He, Y.B.; You, C.H.; Shi, Z.Q.; Chen, X.C.; Yang, Q.H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 2009, 3, 3730–3736.
  • Namitha, L.K.; Chameswary, J.; Ananthakumar, S.; Sebastian, M.T. Effect of micro-and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate. Ceram. Int. 2013, 39, 7077–7087.
  • Ramirez, I.; Jayaram, S.; Cherney, E.; Gauthier, M.; Simon, L. Erosion resistance and mechanical properties of silicone nanocomposite insulation. Dielect. Elect. Insulat. IEEE Trans. 2009, 16, 52–59.
  • Wang, J.; Ji, C.; Yan, Y.; Zhao, D.; Shi, L. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polym. Degrad. Stab. 2015, 121, 149–156.
  • Sanjay, M.R.; Arpitha, G.R.; Yogesha, B. Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: A review. Mater. Today Proceed. 2015, 2 (4), 2959–2967.
  • Lanza, A.; Aversa, R.; Rengo, S.; Apicella, D.; Apicella, A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dental Mater. 2005, 21, 709–715.
  • Książek, M. Use in the building cement composites impregnated with special polymerized sulfur. J. Build. Eng. 2015, 4, 255–267. doi:10.1016/j.jobe.2015.09.007.
  • Won, J.P.; Kang, H.B.; Lee, S.J.; Lee, S.W.; Kang, J.W. Thermal characteristics of high-strength polymer–cement composites with lightweight aggregates and polypropylene fiber. Construct. Build. Mater. 2011, 25, 3810–3819.
  • Khayat, K.H. Viscosity-enhancing admixtures for cement-based materials—An overview. Cem. Concr. Compos. 1998, 20, 171–188.
  • Paiva, H.; Silva, L.M.; Labrincha, J.A.; Ferreira, V.M. Effects of a water-retaining agent on the rheological behaviour of a single-coat render mortar. Cem. Concr. Res. 2006, 36, 1257–1262.
  • Ohama, Y. Handbook of Polymer-modified Concrete and Mortars: Properties and Process Technology, Chapter 2, William Andrew, Noyes Publication: New York, USA, 1995.
  • Xuli, F.; Chung, D.D.L. Effect of methylcellulose admixture on the mechanical properties of cement. Cem. Concr. Res. 1996, 26, 535–538.
  • Fu, X.; Chung, D.D.L. Effect of polymer admixtures to cement on the bond strength and electrical contact resistivity between steel fiber and cement. Cem. Concr. Res. 1996, 26, 189–194.
  • Hayakawa, K.; Soshiroda, T. Effects of cellulose ether on bond between matrix and aggregate in concrete. In: Sasse, H.R. ed. Adhesion between Polymers and Concrete/Adhésion Entre Polymères et Béton, Spring: New York, 1986, pp. 22–31.
  • Fu, X.; Lu, W.; Chung, D.D.L. Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix. Cem. Concr. Res. 1996, 26, 1007–1012.
  • Kim, J.H.; Robertson, R.E. Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone. Adv. Cem. Mater. 1998, 8, 66–76.
  • Müller, I. Influence of Cellulose Ethers on the Kinetics of Early Portland Cement Hydration. University of Verlag Karlsruhe: Karlsruhe, 2006.
  • Knapen, E.; Cizer, Ö.; Van Balen, K.; Van Gemert, D. Comparison of solvent exchange and vacuum drying techniques to remove free water from early age cement-based materials. In Proceedings of 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering, Quebec, Canada, September 11–13 (pp. CD-rom). Rilem Publications SARL. 2006, January.
  • Jenni, A. Microstructural evolution and physical properties of polymer-modified mortars (Doctoral dissertation, Institut für Geologie der Universität Bern), 2003.
  • Ozkahraman, H.T.; Işık, E.C. The effect of chemical and mineralogical composition of aggregates on tensile adhesion strength of tiles. Construct. Build. Mater. 2005, 19, 251–255.
  • Knapen, E.; Van Gemert, D. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem. Concr. Res. 2009, 39, 6–13.
  • Pourchez, J., Grosseau, P., Ruot, B. Changes in C 3 S hydration in the presence of cellulose ethers. Cem. Concr. Res. 2010, 40, 179–188.
  • Beeldens, A. Influence of polymer modification on the behaviour of concrete under severe conditions. Structural Concrete. 2003, 4, London: Thomas Telford.
  • Jenni, A.; Holzer, L.; Zurbriggen, R.; Herwegh, M. Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cem. Concr. Res. 2005, 35, 35–50.
  • Beeldens, A.; Van Gemert, D.; Schorn, H.; Ohama, Y.; Czarnecki, L. From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Mater. Struct. 2005, 38, 601–607.
  • Afridi, M.U.K.; Ohama, Y.; Iqbal, M.Z.; Demura, K. Morphology of Ca(OH)2 in polymer-modified mortars and effect of freezing and thawing action on its stability. Cem. Concr. Compos. 1990, 12, 163–173.
  • Knapen, E.; Van Gemert, D. Polymer film formation in cement mortars modified with water-soluble polymers. Cem. Concr. Compos. 2015, 58, 23–28.
  • Huang, S.; Chang, J.; Lu, L.; Liu, F.; Ye, Z.; Cheng, X. Preparation and polarization of 0–3 cement based piezoelectric composites. Mater. Res. Bull. 2006, 41, 291–297.
  • Li, Z.; Zhang, D.; Wu, K. Cement-based 0–3 piezoelectric composites. J. Am. Ceram. Soc. 2002, 85, 305–313.
  • Fang, J.; Niu, H.; Lin, T.; Wang, X. Applications of electrospun nanofibers. Chinese Sci. Bull. 2008, 53, 2265–2286.
  • Izyumskaya, N.; Alivov, Y.I.; Cho, S.J.; Morkoc, H.; Lee, H.; Kang, Y.S. Processing, structure, properties, and applications of PZT thin films. Critic. Rev. Solid State Mater. Sci. 2007, 32, 111–202.
  • Gong, H.; Li, Z.; Zhang, Y.; Fan, R. Piezoelectric and dielectric behavior of 0–3 cement-based composites mixed with carbon black. J. Eur. Ceram. Soc. 2009, 29, 2013–2019.
  • Kim, K.H.; Jo, W.H. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 2009, 47, 1126–1134.
  • Kim, S.J.; Yang, K.H.; Moon, G.D. Hydration characteristics of low-heat cement substituted by fly ash and limestone powder. Materials 2015, 8, 5847–5861.
  • Xu, D.; Cheng, X.; Huang, S.; Jiang, M. Effect of cement matrix and composite thickness on properties of 2–2 type cement-based piezoelectric composites. J. Compos. Mater. 2011, 45, 2083–2089.
  • Rujijanagul, G.; Jompruan, S.; Chaipanich, A. Influence of graphite particle size on electrical properties of modified PZT–polymer composites. Curr. Appl. Phys. 2008, 8, 359–362.
  • Mamunya, Y.; Boudenne, A.; Lebovka, N.; Ibos, L.; Candau, Y.; Lisunova, M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol. 2008, 68, 1981.
  • Yin, Q.; Sun, K.N.; Li, A.J.; Shao, L.; Liu, S.M.; Sun, C. Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate. J. Power Source 2008, 175, 861–865.
  • Mollah, M.Y.A.; Lu, F.; Cocke, D.L. An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V. Sci. Total Environ. 1998, 22, 57–68.
  • Tyson, B.M.; Abu Al-Rub, R.K.; Yazdanbakhsh, A.; Grasley, Z. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J. Mater. Civil Eng. 2011, 23, 1028–1035.
  • Ylmén, R.; Jäglid, U.; Steenari, B.M.; Panas, I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concrete Res. 2009, 39, 433–439.
  • Ghosh, S.N. Infrared spectroscopic study of cement and raw material. Cem. Concr. Sci. Technol. 1(Part II) 1992, 1, 222–252.
  • Mazen, S.A.; Metawe, F.; Mansour, S.F. IR absorption and dielectric properties of Li-Ti ferrite. J. Phys. D Appl. Phys. 1997, 30, 1799.
  • Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.
  • Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401.
  • Valentino, O.; Sarno, M.; Rainone, N.G.; Nobile, M.R.; Ciambelli, P.; Neitzert, H.C.; Simon, G.P. Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys. E Low Dimens. Syst. Nanostruct. 2008, 40, 2440–2445.
  • Kodgire, P.V.; Bhattacharyya, A.R.; Bose, S.; Gupta, N.; Kulkarni, A.R.; Misra, A. Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: An assessment through electrical conductivity. Chem. Phys. Lett. 2006, 432, 480–485.
  • Mazinani, S.; Ajji, A.; Dubois, C. Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 2009, 50, 3329–3342.
  • Nan, C.W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 1993, 37, 1–116.
  • Pegel, S.; Pötschke, P.; Petzold, G.; Alig, I.; Dudkin, S.M.; Lellinger, D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49, 974–984.
  • Sakamoto, W.K.; Marin-Franch, P.; Das-Gupta, D.K. Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sens. Actuat. A Phys. 2002, 100, 165–174.
  • Gong, H.; Zhang, Y.; Quan, J.; Che, S. Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr. Appl. Phys. 2011, 11, 653–656.
  • Tawie, R.; Lee, H.K. Piezoelectric-based non-destructive monitoring of hydration of reinforced concrete as an indicator of bond development at the steel–concrete interface. Cem. Concr. Res. 2010, 40, 1697–1703.
  • Chaipanich, A.; Jaitanong, N.; Yimnirun, R. Ferroelectric hysteresis behavior in 0–3 PZT-Cement composites: Effects of frequency and electric field. Ferroelectric Lett. 2009, 36, 59–66.
  • Ihn, J.B.; Chang, F.K. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 2004, 13, 609.
  • Diamanti, K.; Soutis, C.; Hodgkinson, J.M. Piezoelectric transducer arrangement for the inspection of large composite structures. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1121–1130.
  • Kar-Gupta, R.; Venkatesh, T.A. Electromechanical response of (2–2) layered piezoelectric composites. Smart Mater. Struct. 2013, 22, 025035.
  • Li, K.; Zeng, D.W.; Yung, K.C.; Chan, H.L.W.; Choy, C.L. Study on ceramic/polymer composite fabricated by laser cutting. Mater. Chem. Phys. 2002, 75, 147–150.
  • Cao, W.; Zhang, Q.M.; Cross, L.E. Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2–2 connectivity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1993, 40, 103–109.
  • Sanchez, S.; Espinosa, D.; Montero, F.R. Modeling (2–2) piezocomposites partially sliced in the polymer phase. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 287–296.
  • Dongyu, X.; Xin, C.; Shifeng, H. Investigation of inorganic fillers on properties of 2–2 connectivity cement/polymer based piezoelectric composites. Construct. Build. Mater. 2015, 94, 678–683.
  • Oakley, C.G. Geometric effects on the stopband structure of 2–2 piezoelectric composite plates. In Ultrasonics Symposium, Proceedings., IEEE. Orlando, FL, 9 December, 1991, pp. 657–660.
  • Chung, D.D.L. Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon 2001, 39, 1119–1125.
  • Yakovlev, G.; Kerienė, J.; Gailius, A.; Girnienė, I. Cement based foam concrete reinforced by carbon nanotubes. Mater. Sci. [Medžiagotyra] 2006, 12, 147–151.
  • Choi, E.S.; Brooks, J.S.; Eaton, D.L.; Al-Haik, M.S.; Hussaini, M.Y.; Garmestani, H.; Dahmen, K. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 2003, 94, 6034–6039.
  • Fakhru'l-Razi, A.; Atieh, M.A.; Girun, N.; Chuah, T.G.; El-Sadig, M.; Biak, D.R.A. Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Compos. Struct. 2006, 75, 496–500.
  • Laurenzi, S.; Pastore, R.; Giannini, G.; Marchetti, M. Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy. Compos. Struct. 2013, 99, 62–68.
  • Walters, D.A.; Ericson, L.M.; Casavant, M.J.; Liu, J.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803–3805.
  • Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18, 055010.
  • Khalili, S.M.R.; Haghbin, A. Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads. Compos. Struct. 2013, 98, 253–260.
  • Bi, S.; Su, X.; Hou, G.; Liu, C.; Song, W.L.; Cao, M.S. Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram. Int. 2013, 39, 5979–5983.
  • Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115.
  • Uddin, S.M.; Mahmud, T.; Wolf, C.; Glanz, C.; Kolaric, I.; Volkmer, C.; Fecht, H.J. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 2010, 70, 2253–2257.
  • Musso, S.; Tulliani, J.M.; Ferro, G., Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990.
  • Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32 (2), 110–115.
  • Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382.
  • Han, B.; Yu, X.; Kwon, E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 2009, 20, 445501.
  • Saez de Ibarra, Y.; Gaitero, J.J.; Erkizia, E.; Campillo, I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys. Status Solidi A 2006, 203, 1076–1081.
  • Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73.
  • Wansom, S.; Kidner, N.J.; Woo, L.Y.; Mason, T.O. AC-impedance response of multi-walled carbon nanotube/cement composites. Cem. Concr. Compos. 2006, 28, 509–519.
  • Chaipanich, A.; Nochaiya, T.; Wongkeo, W.; Torkittikul, P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater. Sci. Eng. A. 2010, 527, 1063–1067.
  • Makar, J.M.; Beaudoin, J.J. Carbon nanotubes and their application in the construction industry. Spec. Publ.-R. Soc. Chem. 2004, 292, 331–342.
  • Sanchez, F.; Ince, C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009, 69, 1310–1318.
  • Shah, S.P.; Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Mondal, P. Nanoscale modification of cementitious materials. In: Nanotechnology in Construction 3, Springer: Berlin, Heidelberg, New York, 2009, pp. 125–130.
  • Gay, C.; Sanchez, F. Performance of carbon nanofiber-cement composites with a high-range water reducer. J. Transp. Res. Board 2010, 2142, 109–113.
  • Nam, I.W.; Lee, H.K.; Sim, J.B.; Choi, S.M. Electromagnetic characteristics of cement matrix materials with carbon nanotubes. ACI Mater. J. 2012, 109, 363–370.
  • Nam, I.W., Kim, H.K.; Lee, H.K. Investigation of high-strength and electromagnetic wave shielding properties of a mortar incorporating carbon nanotube (CNT). In: IV European Conference on Computational Mechanics (ECCM IV). Paris, France: ID 1413 (in CD-ROM); May 16–21, 2010.
  • Nam, I.W.; Kim, H.K.; Lee, H.K. Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites. Construct. Build. Mater. 2012, 30, 480–487.
  • Kim, H.K.; Nam, I.W.; Lee, H.K. Microstructure and mechanical/EMI shielding characteristics of CNT/cement composites with various silica fume contents. In: UKC 2012 on Science, Technology, and Entrepreneurship, California, USA; August 8–11, 2012.
  • Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 2014, 107, 60–69.
  • Duffo, G.S.; Morris, W.; Raspini, I.; Saragovi, C. A study of steel rebars embedded in concrete during 65 years. Corrosion Sci. 2004, 46, 2143–2157.
  • Song, H.W.; Lee, C.H.; Ann, K.Y. Factors influencing chloride transport in concrete structures exposed to marine environments. Cem. Concr. Compos. 2008, 30, 113–121.
  • Kim, H.K.; Park, I.S.; Lee, H.K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Compos. Struct. 2014, 116, 713–719.
  • Basheer, L.; Kropp, J.; Cleland, D.J. Assessment of the durability of concrete from its permeation properties: A review. Construct. Build. Mater. 2001, 15, 93–103.
  • Andrade, C.; Alonso, C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 2004, 37, 623–643.
  • Lemoine, L.; Wenger, F.; Galland, J. Study of the corrosion of concrete reinforcement by electrochemical impedance measurement. Corrosion Rates of Steel in Concrete, ASTM STP. 1990, 1065, 118–133.
  • Kim, H.K. Chloride penetration monitoring in reinforced concrete structure using carbon nanotube/cement composite. Construct. Build. Mater. 2015, 96, 29–36.
  • Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures-A. Int. J. Electrochem. Sci. 2007, 2, 1–28.
  • Quiroga, A.; Marzocchi, V.; Rintoul, I. Influence of wood treatments on mechanical properties of wood–cement composites and of Populus euroamericana wood fibers. Compos. Part B Eng. 2016, 84, 25–32.
  • Sikora, P.; Łukowski, P.; Cendrowski, K.; Horszczaruk, E.; Mijowska, E. The effect of nanosilica on the mechanical properties of polymer-cement composites (PCC). Procedia Eng. 2015, 108, 139–145.
  • Cheng, X.; Xu, D.; Lu, L.; Huang, S.; Jiang, M. Performance investigation of 1–3 piezoelectric ceramic–cement composite. Mater. Chem. Phys. 2010, 121, 63–69.
  • Dongyu, X.; Xin, C.; Xiaojing, G.; Shifeng, H. Design, fabrication and property investigation of cement/polymer based 1–3 connectivity piezo-damping composites. Construct. Build. Mater. 2015, 84, 219–223.
  • Peng, H.S.; Chen, H.J.; Tang, C.W.; Chen, Y.P. Fire performance and thermal insulation of reinforced lightweight aggregate concrete. Adv. Mater. Res. 2011, 287, 1065–1069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.