175
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

High-Temperature Resistive Free Radically Synthesized Chloro-Substituted Phenyl Maleimide Antimicrobial Polymers

, , &

References

  • Diab, M.A.; El-Sonbati, A.Z.; El-Bindary, A.A.; El-Ghany, H.M. Thermal stability and degradation of poly (N-phenyl propionamide) homopolymer and copolymer of N-phenyl propanamide with methyl methacylate. Arab. J. Chem. 2014, XXX, XXX–XXX
  • Al-Sagheer, F.A.; Ali, A.M.; Rayiad, M.; Elsabeé, M.Z. Polymerization behavior of a new vinyl monomer bearing a heterocyclic group. Polym. Int. 1997, 44, 88–94.
  • Watanabe, S.; Igrashi, Y.; Yagami, K.; Imai, R. Antimicrobial activity of some N-(fluoro phenyl) maleimides. Pestic. Sci. 1991, 31(1), 45–51.
  • Salewska, N.; Boros-Majewska, J., Lacka, I.; Chylinska, K.; Sabisz, M.; Milewski, S.; Milewska, M.J. Chemical reactivity and antimicrobial activity of N-substituted maleimides. J. Enzyme Inhib. Med. Chem. 2012, 27(1), 117–124.
  • Gaina, G.; Gaina, V.; Stoleriu, A.; Chiriac, C.; Cozan, V.; Sava, M. New poly (4-chloro) maleimides. I. Synthesis and characterization of poly [ether-ester- (4-chloro) maleimides]. J. Macromol. Sci. A: Pure Appl. Chem. 1996, 33(11), 1755–1768.
  • Gaina, C.; Gaina, V.; Stoleriu, A.; Sava, M.; Chiriac, C. New poly (4-Chloro) maleimides – II. Synthesis and characterization of poly [amido-amino- (4-chloro)-maleimides] and poly (amido-asportimides). Des. Monomers Polym. 1998, 1(3), 315–325.
  • Oishi, T.; Sase, K.; Tsutsumi, H. Syntheses and thermostabilities of N-[4-(N* substituted aminocarbonyl) phenyl] maleimide polymers. J. Macromol. Sci. A: Pure Appl. Chem. 1998, 36, 2001–2012.
  • Patel, C.B.; Malek, N.I.; Oswal, S.L. Synthesis and radical polymerization of N‐[4‐N′‐(phenylamino‐carbonyl) phenyl] maleimide and its copolymerization with methyl methacrylate. J. Macromol. Sci. Pure Appl. Chem. 2006, 43, 289.
  • Hiran, B.L.; Boriwal, R.; Bapna, S.; Paliwal, S.N. Synthesis and characterization of polymers of substituted maleimide derivatives. J. Univ. Chem. Technol. Metall. 2010, 45(2), 127–132.
  • Kenawy, E.; Worley, S.D.; Broughton, R. The chemistry and application of antimicrobial polymers: A state-of-the-art review. Biomolecules 2007, 8(5), 1359–1384.
  • Erceg, A.; Vukovic, R.; Bogdanic, G.; Pilizota, V.; Fles, D. Synthesis and polymerization of N‐acryl-dicyclohexyurea and N-methaacryl-dicyclohexylurea and copolymerization with A-methylstyrene. J. Macromol. Sci. Pure Appl. Chem. 2000, 37(11), 1363–1375.
  • Elsabeé, M.Z.; Sabaa, M.S.; Naguib, H.F.; Furuhata, K. Copolymerization of methyl methacrylatte with N-arylmaleimides in different solvents. J. Macromol. Sci. Chem. A 1987, 24(190), 1207.
  • Elsabee, M.Z.; Sabaa, M.S.; Mokhtar S.M. Copolymerization of N-arylmaleimides with vinyl acetate I. Polym. J. 1983, 15, 6.
  • Elsabee, M.Z.; Sabaa, M.S.; Mokhtar, S.M. Copolymerization of N-arylmaleimides with vinyl acetate II. Polym. J. 1985, 17(6), 737.
  • Aziz, A.; Jebrael, F.; Elsabee, M.Z. Copolymerization of N-arylmaleimides with styrene. Macromolecules 1986, 19, 32.
  • Awadi, A.; Nouria, A.; Elsabeé, M.Z. Pyrolysis of some acrylamido derivatives bearing a heterocyclic group. Polym. Degrad. Stab. 1998, 60, 71–78.
  • Oswal, S.L.; Sarkar, N.S.; Bhandari, V.K.; Oza, H.B.; Patel, C.B. Synthesis, characterization and thermal properties of copoly(maleimide-methylmethacrylate), terpoly(maleimide-methylmethacrylate-acrylic acid), and terpoly(maleimide-methylmethacrylatemethylacrylic acid). Iran Polym. J. 2004, 13(4), 297–305.
  • Scroog, C.E. Polyimides. J. Polym. Sci. 1976, 2(1), 161–208.
  • Hiran, B.L.; Paliwal, S.N. Synthesis and free radical copolymerization of N-[4-N′-(benzyl aminocarbonyl) phenyl] maleimide with methyl methacrylate. Malays. Polym. J. 2008, 3(2), 1–12.
  • Hiran, B.L.; Chaudhary, J.; Paliwal, S.N.; Meena, S.; Chaudhary, P.R. Synthesis and characterization of some new thermal stable polymers polymerization of N-(4-N-(benzylamino-carbonyl)phenyl)maleimide. Eur. J. Chem. 2007, 4(2), 222.
  • Sabaa, M.S.; Mikhael, M.G.; Elsabeé, M.Z. Effect of ZnCl2 on the copolymerization of acrylonitrile with N-phenylmaleimide. Polym. Bull. 1987, 18, 9.
  • Elsabee, M.Z.; Mokhtar, S.M. Polymerization of N-arylmaleimides. Eur. Polym. J. 1983, 3, 21.
  • Naguib, H.F.; Saad, G.R.; Elsabee, M.Z. Copolymerization of N-bromophenyl maleimide with ethyl and butyl methacrylate. Polym. Int. 2003, 52, 1217–1221.
  • Salman, I.A.; Al-Sagheer, F.A.; Elsabeé, M.Z. Polymerization and copolymerization of maleimide containing heterocyclic group. J. Macromol. Sci. A Pure Appl. Chem. 1997, 34(7), 1207–1220.
  • Morariu, S.; Hulubei, C. Radical copolymerization of functional N-substituted maleimides with N-vinyl-2-pyrrolidone. High Perform. Polym. 2006, 18(2), 185–198.
  • Sang, T.O.; Chang, S.H.; Won, J.C. Synthesis and antimicrobial activity of polymer containing chloro substituted diphenyl ether. Pollimo. 1994, 18, 309–315.
  • Chauhan, N.P.S. Isoconversional curing and degradation kinetics study of self-assembled thermo-responsive resign system, bearing oxime and iminium groups. J. Macromol. Sci. A Pure Appl. Chem. 2012, 49, 706–719.
  • Hulubei, C.; Morariu, S. Synthesis and radical polymerization of N-(3-acetyl-4-carboxy-phenyl)-maleimide. High Perform. Polym. 2000, 12(4), 525–553.
  • Barton, J.M.; Hamerton, I.; Wamer, D.; Rose, J.B. The synthesis, characterization and polymerization kinetic study of a series of related addition polyimides. High Perform. Polym. 1994, 6(1), 21–23.
  • Burescu, A.I.; Sava, I.; Bruma, M.; Lisa, G. Study of the thermal decomposition of some azopolyimides. High Perform. Polym. 2014, 26(1), 81–88.
  • Shukla, S.; Mishra, A.P. Non isothermal degradation-based solid state kinetics study of copper (II) Schiff base complex, at different heating rates. J. Therm. Anal. Calorim. 2012, 107, 111–117.
  • Nie, S.; Zhou, C.; Peng, C.; Liu, L.; Zhang, C.; Dong, X.; Wang, D. Thermal oxidative degradation kinetics of novel intumescent flame-retardant polypropylene composites. J. Therm. Anal. Calorim. 2015, 120(2), 1183–1191.
  • Manoochehr, F.; Hassan, B. Comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al. J. Therm. Anal. Calorim. 2015, 120(2), 1483–1492.
  • Zhao, L.; Zhenghong, G.; Ran, S.; Cao, Z.; Fang, Z. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J. Therm. Anal. Calorim. 2014, 115, 1235–1244.
  • Sumar-Ristovic, M.T.; Minic, D.M.; Poleti, D.; Miodragovic, Z.; Miodragovic, D.; Andelkonic, K.K. Thermal stability and degradation of Co(II), Cd (II) and Zn (II) complexes with N-benzyloxy carbonylglycinato ligand. J. Therm. Anal. Calorim. 2010, 102, 83–90.
  • Chauhan, N.P.S. Structural and thermal characterization of macro-branched functional terpolymer containing 8-hydroxyquinoline moieties with enhancing biocidal properties. J. Ind. Eng. Chem. 2013, 19, 1014–1023.
  • Howard, E.I.; Sanishvili, R.; Cachau, R.E.; Mitschler, A.; Chevirer, B.; Barth, P.; Lamour, V.; Van Zandt, M.; Sildey, E.; Bon, C. Ultrahigh resolution drug design I: Details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins: Struct. Funct. Bioinf. 2004, 55, 792–804.
  • Sang, T.O.; Chang, S.H.; Won, J.C. Synthesis and bioactivities of polymers. J. Appl. Polym. Sci. 1944, 54, 859–866.
  • Chauhan, N.P.S. Terpolymerization of p-acetylpyridine oxime, p-methylacetophenone and formaldehyde and its thermal studies. J. Therm. Anal. Calorim. 2012, 110, 1377–1388.
  • Chauhan, N.P.S. Preparation and characterization of bio based terpolymer derived from vanillin oxime, formaldehyde and P-hydroxyacetophenone. Des. Monomers Polym. 2014, 17, 176–185.
  • Tehrani, K.; Zadeh, M.; Mashayekhi, V.; Hashemni, M.; Kobarfard, F.; Gharebaghi, F.; Mohebbi, S. Synthesis, antiplatelet activity and cytotoxicity assessment of indole-based hydrazone derivatives. Iran. J. Pharm. Res. 2015, 14(4), 1077–1086.
  • Patel, M.V.; Patel, R.M.; Patel, P.M. Synthesis, characterization and thermal properties of polyetherketones prepared from M-chloroanisole and evaluating their microbial activity. Iran. Polym. J. 2004, 13(5), 405–413.
  • Mohamed, N.A.; Abdel-ghany, N.A.; Fahmy, M.M.; Ahmed, M.H. Thermal stable antimicrobial PVC/maleimido phenyl thiourea composites. Adv. Polym. Tech. 2015, 35(2), 136–145.
  • Brahmeshwari, G.; Surekha, M.; Saini, K.J. Antibacterial activity of nepthathiazoles derived from lawsone. J. Pharm. Biomed. Sci. 2012, 14(17), 14.
  • Narain, Y.; Jhaumeer-Laulloo, S.; Bhowon, M.G. Structure-activity relationship of schiff base derivatives of bis(aminophenyl)disulfide and p-vanillin as antimicrobial agents. Int. J. Biol. Chem. Sci. 2010, 4, 69.
  • Mkpenic, V.N.; Mkpenie, I.V.; Essien, E.E. Biological activities of (E)-N-(CH3-substituted-phenyl)-1-phenylmethanimine: Evaluation of ortho-, meta- and para-substitution effects. Der Pharma Chemica 2015, 7(6), 330–334.
  • Shi, L.; Ge, H.M.; Tan, S.H.; Li, H.C; Song, Y.C.; Zhu, H.L.; Tan, R.X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 2007, 42, 558.
  • Carteau, D.; Soum-Southera, E.; Fay, F.; Dufau, C.; Cerantola, S.; Vallee-Rehel, K.; Monohalogenated maleimides as potential agents for the inhibition of pseudomonas aeruginosa bioflim. Biofouling J. Bioadhes. Bioflim Res. 2010, 26(3), 379–385.
  • Kaya, I.; Yildirim, M.; Kamac, M. Synthesis and characterization of new polyphenols derived from o-dianisidine: The effect of substituent on solubility, thermal stability, and electrical conductivity, optical and electrochemical properties. Eur. Polym. J. 2009, 45, 1586–1598.
  • Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by standardized single disc method. Am. J. Clin. Pathol. 1996, 44, 493–496.
  • Gupta, V.; Singh, S.; Gupta, Y.K. Synthesis and antimicrobial activity of some salicylaldehyde schiff bases of 2-aminopyridine. Res. J. Chem. Sci. 2013, 3, 26.
  • Mohamed, N.A.; Sabaal, M.W.; El-Ghandour, A.H.; Abel-Aziz, M.M.; Abdel-Gawad, O.F. Preparation, characterization and antimicrobial activity of carboxymethyl chitosan Schiff Bases with different benzaldehyde derivatives. J. Am. Sci. 2013, 9, 247.
  • Chauhan, N.P.S.; Moszafari, M.; Ameta, R.; Punjabi, P.B.; Ameta, S.C. Spectral and thermal characterization of halogen – Bonded novel crystalline oligo (p-bromoacetophenone formaldehyde). J. Phys. Chem. B. 2015, 119, 3223–3230.
  • Hassel, O. Structural aspects of interatomic charge-transfer bonding. Science 1970, 170, 497–502.
  • Laurence, C.; Queignec-Cabanetos, M.; Dzimbowska, T.J.; Queignec, R.; Wojtkowiak, B. 1-Iodoacetylenes. 1. Spectroscopic evidence of their complexes with Lewis bases. A spectroscopic scale of soft basicity. J. Am. Chem. Soc. 1981, 103, 2567–2573.
  • Colythup, N.B.; Wiberley, S.E. Introduction to Infrared Spectroscopy, Academic: New York, 1990, p. 110.
  • Bellmay, L.J. Advances in Infrared Group Frequencies, Methuen: London, 1968, vol. 43, pp. 25–27.
  • William, D.H.; Fleming, I. Spectroscopic Methods in Organic Chemistry, 4th ed., Tata Mchraw Hill: New Delhi, 1988, p. 56.
  • Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.D.; Jiang, H.; Zhu, W. Halogen bonding-A novel interaction for rational drug design. J. Med. Chem. 2009, 52, 2854–2862.
  • Ikeda, T.; Hirayama, H.; Yamaguchi, H.; Tazuke, S.; Watanabe, M. Polycationic biocides with pendant active groups: Molecular weight dependence of anti bacterial activity. Antimicrob. Agents Chemother. 1986, 30, 132–136.
  • Ikeda, T.; Hirayama, H.; Tazuke, S. Biocidal polycations. Polym. Prer. (Am. Chem. Soc. Div. Polym. Chem.) 1985, 26, 226–227.
  • Kanazawa, A.; Ikeda, T.; Endo, T. Polymerica phosphonium salt as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J. Polym. Sci. A: Polym. Chem. 1993, 31, 1441–1447.
  • Wang, S.; Huang, Z.; JianhaiWang, J.; Li, Y.; Tan, Z. Thermal stability of several polyaniline/rare earth oxide composites (I): Polyaniline/CeO2 composites. J. Therm. Anal. Calorim. 2012, 107, 1199–1203.
  • Browna, M.E.; Maciejewskib, M.; Vyazovkinc, S.; Nomend, R.; Sempered, J.; Burnhame, A.; Opfermannf, J.; Streyg, R.; Andersong, H.L.; Kemmlerg, A.; Keuleersh, R.; Janssensh, J.; Desseynh, H.O.; Li, C.R.; Tangi, T.B.; Roduitj, B.; Malekk, J.; Mitsuhashi, T. Computational aspects of kinetic analysis part A: The ICTAC kinetics project-data, methods and results. Thermochim. Acta. 2000, 355, 125–143.
  • Chauhan, N.P.S. Thermal curing and degradation kinetics of terpolymer resins derived from vanillin oxime, formaldehyde and p-chloro-/p-methylacetophenone. Korean J. Chem. Eng. 2015, 32, 552–562.
  • Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706.
  • Baran, N.Y.; Demir, H.; Kosetekci, S.; Sacak, M. Poly-2-[(4-methyl benzylidene] amino] phenol: Investigation of thermal degradation and antimicrobial properties. J. Appl. Polym. Sci. 2015, 132(14), 41758, 3–8.
  • Abd-El-Aziz, A.S.; Agatemor, C.; Etkin, N.; Overy, D.P.; Lanteigne, M.; Mcquillan, K.; Kerr, R.G. Antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant bacteria. Biomacromolecules 2015, 16(11), 3694–3703.
  • Metrangolo, P.; Resnati, G. Halogen Bonding: Fundamentals and Applications, Springer: New York, 2008, vol. 126, pp. 1–16.
  • Ejiah, F.N.; Fasinal, T.M.; Familonil, O.B.; Ogunsola, F.T. Substituent effect on spectral and antimicrobial activity of Schiff bases derived from aminobenzoic acids. Adv. Biol. Chem. 2013, 3, 475.
  • Boonaert, C.J.P.; Dufrene, Y.F.; Derclaye, S.R.; Rouxhet, P.G. Adhesion of lactococcus lactis to model substrata: Direct study of the interface. Colloids Surf. B. 2001, 22(3), 171–182.
  • Park, K.D.; Kim, Y.S.; Han, D.K.; Kim, Y.H.; Lee, E.H.B.; Suh, H.; Choi, K.S. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 1998, 19(7–9), 851–859.
  • Shimotoyodome, A.; Koudate, T.; Kobayashi, H.; Nakamura, J.; Tokimitsu, I.; Hase, T.; Inoue, T.; Matsukubo, T.; Takaesu, Y. Reduction of streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol. Antimicrob. Agents Chemother. 2007, 51(10), 3634–3641.
  • Kobayashi, M.; Takahara, A. Tribological properties of hydrophilic polymer brushes under wet conditions. Chem. Rec. 2010, 10(4), 208–216.
  • Zou, Y.; Rossi, N.A.A.; Kizhakkedathu, J.N.; Brooks, D.E. Barrier capacity of hydrophilic polymer brushes to prevent hydrophobic interactions: Effect of graft density and hydrophilicity. Macromolecules 2009, 42(13), 4817–4828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.