1,220
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Potential of Polyvinylidene Fluoride/Carbon Nanotube Composite in Energy, Electronics, and Membrane Technology: An Overview

, , &

References

  • Begum, S.; Kausar, A.; Ullah, H.; Siddiq, M. Exploitation of carbon nanotubes in high performance polyvinylidene flouride matrix composite: A review. Polym. Plast. Technol. Eng. 2016, 55, 199–222.
  • Buruiana, L.I.; Avram, E.; Popa, A.; Ioan, S. Impact of some properties of quaternized polysulfone/poly (vinylidene fluoride) blend on the potential biomedical applications. Polym. Plast. Technol. Eng. 2015, 55, 671–681.
  • Kausar, A. Mechanical, thermal, and electrical properties of epoxy matrix composites reinforced with polyamide-grafted-MWCNT/poly(azo-pyridine benzophenone-imide)/polyaniline nanofibers. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 831–839.
  • Rafique, I.; Kausar, A.; Anwar, Z.; Muhammad, B. Exploration of epoxy resins, hardening systems and epoxy/carbon nanotube composite designed for high performance materials: A review. Polym. Plast. Technol. Eng. 2016, 55, 312–333.
  • Mehwish, N.; Kausar, A.; Siddiq, M. Polyvinylidene fluoride/poly (styrene-butadiene-styrene)/silver nanoparticle-grafted-acid chloride functional MWCNTs-based nanocomposites: Preparation and properties. Polym. Plast. Technol. Eng. 2015, 54, 474–483.
  • Batra, A.K.; Edwards, M.; Guggilla, P.; Aggarwal, M.D.; Lal, R.B. Pyroelectric properties of PVDF:MWCNT nanocomposite film for uncooled infrared detectors and medical applications. Integrat. Ferroelectr. 2014, 58, 98–107.
  • Samanta, S.; Chatterjee, D.P.; Manna, S.; Mandal, A.; Garai, A.; Nandi, A.K. Multifunctional hydrophilic poly(vinylidene fluoride) graft copolymer with supertoughness and supergluing properties. Macromolecules 2009, 42, 3112–3120.
  • Chen, X.; Xu, S.Y.; Yao, N.; Shi, Y. Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010, 10, 2133–2137.
  • Liu, Z.H.; Pan, C.T.; Lind, L.W.; Lai, H.W. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuators A 2013, 193, 13–24.
  • Owens, F.J.; Jayakody, J.R.P.; Greenbaum, S.G. Characterization of single walled carbon nanotube: Polyvinylene difluoride composites. Compos. Sci. Technol. 2006, 66, 1280–1284.
  • Dang, Z.M.; Lin, Y.Q.; Xu, H.P.; Shi, C.Y.; Li, S.T.; Bai, J. Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J. Mater. Chem. 2010, 20, 2441–2447.
  • Huang, X.; Jiang, P.; Kim, C. Electrical properties of polyethylene/aluminum nanocomposites. J. Appl. Phys. 2007, 102, 124103.
  • Zhou, T.; Zha, J.-W.; Hou, Y.; Wang, D.; Zhao, J.; Dang, Z.-M. Surface-functionalized MWNTs with emeraldine base: Preparation and improving dielectric properties of polymer nanocomposites. ACS Appl. Mater. Interfaces 2011, 3, 4557–4560.
  • Ansón-Casaos, A.; González-Domínguez, J.M.; Díez-Pascual, A.M.; Gómez-Fatou, M.A.; Martínez, M.T. Choosing the chemical route for carbon nanotube integration in poly(vinylidene fluoride). J. Phys. Chem. C. 2012, 116, 16217–16225.
  • Tran, M.Q.; Shaffer, M.S.P.; Bismarck, A. Manufacturing carbon nanotube/PVDF. Nanocomposite powders. Macromol. Mater. Eng. 2008, 293, 188–193.
  • Tran, M.Q.; Cabral, J.T.; Shaffer, M.S.P.; Bismarck, A. Direct measurement of the wetting behavior of individual carbon nanotubes by polymer melts: The key to carbon nanotube-polymer composites. Nano Lett. 2008, 8, 2744–2750.
  • Huang, W.; Edenzon, K.; Fernandez, L.; Razmpour, S.; Woodburn, J.; Cebe, P.J. Nanocomposites of poly(vinylidene fluoride) with multi-walled carbon nanotubes. Appl. Polym. Sci. 2010, 115, 3238–3248.
  • Mandal, A.; Nandi, A.K. Physical properties of poly(vinylidene fluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry. J. Mater. Chem. 2011, 21, 15752–15763.
  • Chang, C.M.; Liu, Y.L. Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 2010, 48, 1289–1297.
  • Yeow, M.L.; Liu, Y.T.; Li, K. Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. J. Membr. Sci. 2005, 258, 16–22.
  • Majeed, S.; Fierro, D.; Buhr, K.; Wind, J.; Du, B.; Boschetti-de-Fierro, A.; Abetz, V. Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J. Membr. Sci. 2012, 403, 101–109.
  • Choi, S.; Jiang, Z. A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens. Actuators A Phys. 2006, 128, 317–326.
  • Kang, I.; Heung, Y.; Kim, J.; Lee, J.; Gollapudi, R.; Subramaniam, S.; Narasimhadevara, S.; Hurd, D.; Kirikera, G.; Shanov, V. Introduction to carbon nanotube and nanofiber smart materials. Compos. Part B Eng. 2006, 37, 382–394.
  • Martins, P.; Nunes, J.; Hungerford, G.; Miranda, D.; Ferreira, V.; Lancerosmende, S.S. Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Phys. Lett. A 2009, 373, 177–180.
  • Kroto, H.W.; Heath, J.R.; Brien, S.C.O.; Smalley, R.F.; Smalley, R.E. The discovery that C60 forms spontaneously in a carbon plasma was announced and its soccer ball structure postulated. Nature 1985, 318, 162–163.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56.
  • Merkoci, A. Carbon nanotubes in analytical sciences. Microchim. Acta 2006, 152, 157–174.
  • Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799.
  • Balasubramanian, K.; Buryhard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192.
  • Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chana, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867.
  • Mintmire, J.W.; Dunlop, B.I.; Cortez, C.T. Are fullerene metallic? Phys. Rev. Lett. 1992, 68, 631–634
  • Hamada, N.; Sawada, S.; Shiyama, A.O. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579–1581.
  • Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites. Compos. Part A 2010, 41, 1345–1367.
  • Thostenson, E.T.; Ren, Z.F.; Chou, T.W. Advances in the science and technology of CNTs and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2010, 79, 1172–1174.
  • Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401.
  • Ajayan, P.M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 1994, 265, 1212–1214.
  • Grimes, C.A.; Mungle, C.; Kouzoudis, D.; Fangand, S.; Eklund, P.C. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett. 2000, 319, 460–464.
  • Thess, A.; Lee, R.; Nikulaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Andrew, G.R.; Colbret, D.T.; Scuseria, G.E.; Tomanek, D.; Fischer, J.E.; Smalley, R.E. Crystalline ropes of metallic carbon nanotubes. Sciences 1996, 273, 483.
  • Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1959.
  • Hiura, H.; Ebbsen, T.W.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7, 275–276.
  • Munirasu, S.; Albuerne, J.; Boschetti-de-Fierro, A.; Abetz, V. Functionalization of carbon materials using Diels-Alder reaction. Macromol. Rapid Commun. 2010, 31, 574–576.
  • Liu, J.; Rinzler, A.G.; Dani, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; Rodriguez-Macias, F.; Shon, Y.-S.; Lee, T.R.; Colbret, D.T.; Smalley, R.E. Fullerene pipes. Science 1998, 280, 1253–1256.
  • Islam, M.F.; Rojas, E.; Bergey, D.M.; Johnson, A.T.; Yodh, A.G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003, 3, 269–273.
  • Mountrichas, G.; Tagmatarchis, N.; Pipes, S. Synthesis and solution behavior of carbon nanotubes decorated with amphiphilic block polyelectrolytes. J. Phys. Chem. B 2007, 111, 8369–8372.
  • Zhang, P.; Henthorn, D.B. Fabrication of high-capacity biomolecular carriers from dispersible single-walled carbon nanotube-polymer composites. Langmuir 2009, 25, 12308–12314.
  • Lefrant, S.; Baibarac, M.; Baltog, I. Raman and FTIR spectroscopy as valuable tools for the characterization of polymer and carbon nanotube based composites. J. Mater. Chem. 2009, 19, 5690–5704.
  • Sarkar, N.; Sahoo, G.; Kisku, S.K.; Prusty, G.; Swain, S.K. Effect of carbon nanotubes on electrical properties of polymer nanocomposites. Int. J. Adv. Chem. Sci. Appl. 2013, 1, 42–50.
  • Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Balu, W. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81, 5123–5125.
  • Zhu, J.; Kim, J.; Peng, H.; Margrave, J.L.; Khabashesku, V.N.; Barrera, E.V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 2003, 3, 1107–1113.
  • Liu, T.; Phang, I.Y.; Shen, L.; Chow, S.Y.; Zhang, W.D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon 6 composites. Macromolecules 2004, 37, 7214–7222.
  • Vigolo, B.; Penicaud, A.; Coulon, C.; Sounder, C.; Pailer, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of carbon nanotubes. Science 2000, 290, 1331–1334.
  • Dang, Z.M.; Yuan, J.K.; Zha, J.W.; Zhou, T.Z.; Li, S.T.; Hu, G.H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723.
  • da Silva, A.B.; Wisniewski, C.; Esteves, J.V.A.; Gregorio, Jr. R. Effect of drawing on the dielectric properties and polarization of pressed solution cast b-PVDF films. J. Mater. Sci. 2010, 45, 4206–4215.
  • Sessler, G.M. Piezoelectricity in polyvinylidene fluoride. J. Acoust. Soc. Am. 1981, 70, 1596–1608.
  • Seminara, L. Capurro, M.; Cirillo, P.; Cannata, G.; Valle, M. Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens. Actuators A Phys. 2011, 169, 49–58.
  • Hanna, A.N.; Bhansali, U.S.; Khan, M.A.; Alshareef, H.N. Characterization of current transport in ferroelectric polymer devices. Org. Electr. 2014, 15, 22–28.
  • Daniel, M.E.; Brian, J.L. Phase transformation to β-poly(vinylidene fluoride) by milling. J. Polym. Sci. 2004, 42, 91–97.
  • Potschke, P.; Bhattacharyya, A.R.; Janka, A.; Pegel, S.; Leondart, A.T.C.; Ritschel, M.; Roth, S.; Hornbostel, B.; Cech, J. Melt mixing as method to disperse carbon nanotubes into thermoplastic polymers. Fullerenes Nanotubes Carbon Nanostruct. 2005, 13, 211–224.
  • Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100.
  • Ferrreira, A.; Rocha, J.G.; Ansón-Casaos, A.; Martínez, M.T.; Vaz, F.; Lanceros-Mendez, S. Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sens. Actuators A 2012, 178, 10–16.
  • Simoes, R.; Silva, J.; Vaia, R.; Sencadas, V.; Costa, P.; Gomes, J.; Lanceros-Meńdez, S. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: Dielectric properties, simulations and experiments. Nanotechnology 2009, 20, 035703.
  • David, L.; Winsor, J.I.; Scheinbeim, B.A. Effects of plasticizer on the mechanical and ferroelectric properties of uniaxially oriented β-phase PVF2. J. Polym. Sci. Part B 1996, 34, 2967–2997.
  • Scheinbeim, J.; Nakafuku, C.; Newman, B.A.; Pae, K.D. High pressure crystallization of poly(vinylidene fluoride). J. Appl. Phys. 1979, 50, 4399–4405.
  • Miller, R.L.; Raisoni, J. Single crystals of poly(vinylidene fluoride). J. Polym. Sci. Phys. Ed. 1976, 14, 2325–2326.
  • Lovinger, A.J. Crystallization of the β-phase of poly(vinylidene fluoride) from the melt. Polymer 1981, 22, 412–413.
  • Yu, L.; Cebe, P.; Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 2009, 50, 2133–2138.
  • He, L.; Xu, Q.; Hua, C.; Song, R. Effect of multi-walled carbon nanotubes on crystallization, thermal and mechanical properties of poly(vinylidene flouride). Polym. Compos. 2010, 31, 921–927.
  • Levi, N.; Czerw, R.; Xing, S.Y.; Lyer, P.; Carroll, D.L. Properties of polyvinylidene difluofide-carbon nanotube blends. Nano Lett. 2004, 4, 1267–1271.
  • Manna, S.; Nandi, A.K. Piezoelectric beta polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite films. J. Phys. Chem. C 2007, 111, 14670–14680.
  • Yu, S.; Zheng, W.; Yu, W.; Zhang, Y.; Jiang, Q.; Zhao, Z. Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 2009, 42, 8870–8874.
  • He, L.; Sun, J.; Wang, X.; Yao, L.; Li, J.; Song, R.; Hao, Y.; He, Y.; Huang, W. Enhancement of β-crystalline phase of poly(vinylidene fluoride) in the presence of hyperbranched copolymer wrapped multiwalled carbon nanotubes. J. Colloid Interface Sci. 2011, 363, 122–128.
  • Huang, W.; Li, Z.; Chen, X.; Tian, P.; Lu, J.; Zhou, Z.; Huang, R.D.; He, L.; Zhang, C.; Wang, X. Pressure-controlled growth of piezoelectric low-dimensional structures in ternary fullerene C60/carbon nanotube/poly(vinylidene fluoride) based hybrid composites. Compos. Part B 2014, 62, 126–136.
  • He, L.; Xia, G.; Sun, J.; Zhao, Q.; Song, R.; Ma, Z. Unzipped multiwalled carbon nanotubes-incorporated poly(vinylidene fluoride) nanocomposites with enhanced interface and piezoelectric β phase. J. Colloid Interface Sci. 2013, 393, 97–103.
  • Huang, W.; Li, Z.; Tian, P.; Chen, X.; Lu, J.; Zhou, Z.; Huang, R.; Liu, T.; Zhang, C.; Wan, X.; Agglomerated carbon nanotube-induced growth of piezoelectric 3D nanoarchitectures assembled from hollow 1D nanowires of poly (vinylidene fluoride) at high pressure. Compos. Sci. Technol. 2014, 90, 110–116.
  • Mandal, A.; Nandi, A.K. Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: Formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement. ACS Appl. Mater. Interface 2013, 5, 747–760.
  • Coleman, J.N.; Curran, S.; Dalton, A.B.; Davey, A.P.; McCarthy, B.; Blau, W.; Barklie, R.C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 1998, 58(12), R7492.
  • Choi, E.S.; Brooks, J.S.; Eaton, D.L.; Al-Haik, M.S.; Hussaini, M.Y.; Garmestani, H.; Li, D.; Dahmen, K. Enhancement of thermal and electrical properties of carbon nanotube polymer composites. J. Appl. Phys. 2003, 94, 6034–6039.
  • Kim, I.-H.; Baik, D.H.; Jeong, Y.G. Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromol. Res. 2012, 20, 920–927.
  • Bao, S.P.; Liang, G.D.; Tjong, S.C. Effect of mechanical stretching on electrical conductivity and PTC characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 2011, 49, 1758–1768.
  • Chen, J.; Lu, H.Y.; Yang, J.H.; Wang, Y.; Zheng, X. T; Zhang, C.L.; Yuan, G.P. Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites. Compos. Sci. Technol. 2014, 94, 30–38.
  • Zhao, Z.; Zheng, W.; Yu, W.; Long, B. Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 2009, 47, 2112–2142.
  • da Silva, A.B.; Marini, J.; Gelves, G.; Sundararaj, U.; Gregório, R. Jr.; Bretas, R.E.S. Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. Eur. Polym. J. 2013, 49, 3318–3327.
  • Martins, J.N.; Kersch, M.; Ricardo, V.A.; Oliveira, V.B. Poly(vinylidene fluoride)/polyaniline/carbon nanotubes nanocomposites: Influence of preparation method and oscillatory shear on morphology and electrical conductivity. Polym. Test. 2013, 32, 1511–1521.
  • Cao, J.-P.; Zhao, J.; Zhao, X.; You, F.; Yu, H.; Hu, G.-H.; Dang, Z.-M. High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos. Sci. Technol. 2013, 89, 142–148.
  • Liu, Q.; Tu, J.; Wang, X.; Yu, W.; Zheng, W.; Zhao, Z. Electrical conductivity of carbon nanotube/poly (vinylidene fluoride) composites prepared by high-speed mechanical mixing. Carbon 2012, 50, 321–341.
  • Sun, Y.-C.; Terakita, D.; Tseng, A.C.; Naguib, H.E. Study on the thermoelectric properties of PVDF/MWCNT and PVDF/GNP composite foam. Smart Mater. Struct. 2015, 24, 085034.
  • Rashmi, N.G.K.; Pillai, P.K.C. Dielectric properties of solution-cast poly(vinylidene fluoride) films. J. Mater. Sci. 1986, 22, 2006–2010.
  • Murayama, N.; Oikawa, T. Process for production of polyvinylidene fluorine resin film. United States Patent 1975, 3, 844–878.
  • Huang, X.Y.; Jiang, P.K.; Kim, C.U.; Ke, Q.Q. Polymer nanocomposites dielectrics. Prog. Chem. 2007, 19, 1776–1782.
  • Zhang, Q.M.; Li, H.; Poh, M.; Xia, F.; Cheng, Z.Y.; Xu, H.; Huang, C. An all-organic composite actuators material with a high dielectric constant. Nature 2002, 419, 284–287.
  • Dang, Z.-M.; Wang, L.; Wang, H.Y.; Nan, C.-W.; Xie, D.; Yin, Y.; Tjong, S.C. Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites. Appl. Phys. Lett. 2005, 86, 172905.
  • Dang, Z.M.; Wang, L.; Yin, Y.I.; Zhang, Q.; Lei, Q.Q. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 2007, 19, 852–857.
  • Li, Q.; Xue, Q.; Zheng, Q.; Hao, L.; Gao, X. Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Mater. Lett. 2008, 62, 4229–4231.
  • Lisunova, M.O.; Mamunya, Y.P.; Lebovka, N.I.; Melezhyk, A.V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym. J. 2007, 43, 949–958.
  • Huang, X.; Jiang, P.; Kim, C.; Liu, F.; Yin, Y. Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Eur. Polym. J. 2009, 45, 377–386.
  • Yuan, J.-K.; Yao, S.H.; Sylvestre, A.; Bai, J. Biphasic polymer blends containing carbon nanotubes: Heterogeneous nanotube distribution and its influence on the dielectric properties. J. Phys. Chem. C 2012, 116, 2051–2058.
  • Li, Q.; Xue, Q.Z.; Gao, X.L.; Zheng, Q.B. Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. Exp. Polym. Lett. 2009, 3, 769–777.
  • Batra, A.K.; Edwards, M.E.; Alomari, A.; Elkhaldy, A. Dielectric behavior of P(VDF-TrFE)/PZT nanocomposites films doped with multi-walled carbon nanotubes (MWCNT). Am. J. Mater. Sci. 2015, 5, 55–61.
  • Carabineiro, S.A.C.; Pereira, M.F.R.J.; Nunes-Pereira, J.S.; Caparros, C.; Sencadas, V.; Lanceros- Méndez, S. The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. J. Mater. Sci. 2012, 47, 8103–8111.
  • Tang, C.W.; Li, B.; Sun, L.; Lively, B.; Zhong, W.H. The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur. Polym. J. 2012, 48, 1062–1072.
  • Yao, S.H.; Yuan, J.K.; Zhou, T.; Dang, Z.M.; Bai, J. Stretch-modulated carbon nanotube alignment in ferroelectric polymer composites: Characterization of the orientation state and its influence on the dielectric properties. J. Phys. Chem. C 2011, 115, 20011–20017.
  • Xu, Y.; Zheng, Z.T.; Yu, W.X.; Hua, L.G.; Zhang, Y.J.; Zhao, Z.D. Crystallization behavior and mechanical properties of poly(vinylidene fluoride)/multi-walled carbon nanotube nanocomposites. Chem. Res. Chin. Univ. 2010, 26, 491–495.
  • Mandal, A.; Nandi, A.K. Noncovalent functionalization of multiwalled carbon nanotube by a polythiophene-based compatibilizer: Reinforcement and conductivity improvement in poly(vinylidene fluoride) films. J. Phys. Chem. C 2012, 116, 9360–9371.
  • Li, L.; Zhang, M.; Ruan, W. Studies on synergistic effect of CNT and CB nanoparticles on PVDF. Polym. Compos. 2015, 36, 2248–2254.
  • Tang, X.-G.; Hou, M.; Zou, J.; Truss, R.; Yang, M.; Zhu, Z. Toughening and reinforcement of poly(vinylidene fluoride) nanocomposites with ‘‘bud-branched’’ nanotubes. Compos. Sci. Technol. 2012, 72, 263–268.
  • Eggedi, O.; Valiyaneerilakkal, U.; Darla, M.R.; Varghese, S. Nanoindentation and thermal characterization of poly (vinylidenefluoride)/MWCNT nanocomposites. AIP Adv. 2014, 4, 047102.
  • Liu, Z.H.; Pan, C.T.; Su, C.Y.; Lin, L.W.; Chen, Y.J.; Tsai, J.S. A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an inter digital electrode. Sens. Actuators A 2014, 211, 78–88.
  • Park, J.M.; Gu, G.Y.; Wang, Z.J.; Kwon, D.J.; De Vries, K.L. Interfacial durability and electrical properties of CNT or ITO/PVDFnanocomposites for self-sensor and micro actuator applications. Appl. Surf. Sci. 2013, 287, 75–83.
  • Ferrreira, A.; Rocha, J.G.; Ansón-Casaos, A.; Martínezc, M.T.; Vaz, F.; Lanceros-Mendez, S. Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sens. Actuators A 2012, 178, 10–16.
  • Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, K.; Czanikovac, K.; Kulicek, J.; Omastova, M. Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos. Part B Eng. 2015, 68, 162–169.
  • Ferreira, A.; Martínez, M.T.; Ansón-Casaos, A.; Gómez-Pineda, L.E.; Vaz, F.; Lanceros-Mendez, S. Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. Carbon 2013, 61, 568–576.
  • Chanmal, C.; Deo, M.; Rana, A.; Jog, J.; Ogale, J. Strong electric field modulation of transport in PVDF/MWCNT nanocomposites near the percolation threshold. Solid State Commun. 2011, 51, 1612–1615.
  • Cao, J.P.; Zhao, J.; Zhao, X.; You, F.; Yu, H.; Hu, G.H.; Da, Z.M. High thermal conductivity and high electrical resistivity of poly(vinylidenefluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos. Sci. Technol. 2013, 89, 142–148.
  • Deepak, A.; Abhinay, B.; Yadav, K.V.; Ganesan, B.V.; Shankar, P.I. Multiwalled carbon nanotube polymer based nanocomposite film as electric fan regulator. Int. J. Chem. Technol. Res. 2015, 7, 903–910.
  • Yu, H.; Huang, T.; Lu, M.; Mao, M.; Zhang, Q.; Wang, H. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 2013, 24, 405401.
  • Akhtar, M.N.; Khan, M.A.; Raza, M.R.; Ahmad, M.; Murtazae, G.; Raza, R.; Shaukat, S.F.; Asif, M.H.; Saleem, M.; Nazir, M.S. Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 2014, 40, 5821–15829.
  • Pandey, G.P.; Hashmi, S.A. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition. J. Power Sour. 2013, 243, 211–218.
  • Qin, L.; Cheng, H.; Wang, Q.M. Characterization of polymer nanocomposite thin films using quartz resonator sensor, In International Frequency Control Symposium and Exposition, IEEE, 2006, 328–333.
  • Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.
  • Feng, L.; Li, S.; Li, V.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.
  • Quéré, D. Surface chemistry: Fakir droplets. Nat. Mater. 2002, 1, 14–15.
  • Blossey, R. Self-cleaning surfaces-virtual realities. Nat. Mater. 2003, 2, 301–306.
  • Roach, P.; Shirtcliffe, N.J.; Newton, M.I. Progess in superhydrophobic surface development. Soft Mater. 2008, 4, 224–240.
  • Chakradhar, R.P.S.; Prasad, G.; Bera, P.; Anandan, C. Stable superhydrophobic coatings using PVDF-MWCNT nanocomposites. Appl. Surf. Sci. 2014, 301, 208–215.
  • Wu, T.; Pan, Y.; Li, L. Fabrication of superhydrophobic hybrids from multiwalled carbon nanotubes and poly(vinylidene fluoride). Colloids Surf. A Physicochem. Eng. Aspects 2011, 384, 47–52.
  • Kim, E.S.; Liu, Y.; El-Din, M.G. An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J. Membr. Sci. 2013, 429, 418–427.
  • Ismail, A.F.; Goh, P.S.; Sanip, S.M.; Aziz, M. Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. Purif. Technol. 2009, 70, 12–26.
  • Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposites. J. Membr. Sci. 2011, 375, 284–294.
  • Ma, J.; Zhao, Y.; Xu, Z.; Min, C.; Zhou, B.; Li, Y.; Li, B.; Niu, J. Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 2013, 320, 1–9.
  • Liu, T.Y.; Tong, Y.; Liu, Z.H.; Lin, H.H.; Lin, Y.K.; Van der Bruggen, B.; Wang, X.L. Extracellular polymeric substances removal of dual-layer (PES/PVDF) hollow fiber UF membrane comprising multi-walled carbon nanotubes for preventing RO biofouling. Sep. Purif. Technol. 2015, 148, 57–67.
  • Zhao, Y.; Xu, Z.; Shan, M.; Min, C.; Zhou, B.; Li, B.; La, B.; Liu, L.; Qian, X. Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep. Purif. Technol. 2013, 103, 78–83.
  • Zhang, J.; Xu, Z.; Shan, M.; Zhou, B.; Yinglin, Li.; Baodong, li.; Niu, J.; Qian, X. Synergetic effects of oxidized carbonnanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci. 2013, 448, 81–92.
  • Moslehyani, A.; Ismaila, A.F.; Othmana, M.H.D.; Matsuuraa, T. Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater. Desalination 2015, 363, 99–111.
  • Silva, T.L.; Morales-Torres, S.; Figueiredo, J.L.; Silva, A.M.T. Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation. Desalination 2015, 357, 233–245.
  • Lalia, B.S.; Ahmed, F.E.; Shah, T.; Hilal, N.; Hashaikeh, R. Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling. Desalination 2015, 360, 8–12.
  • Mago, G.; Kalyon, D.M.; Fisher, F.T. Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. J. Nanomater. 2008, 2008, 1–17.
  • Madaeni, S.S.; Zinadini, S.; Vatanpour, V. Convective flow adsorption of nickel ions in PVDF membrane embedded with multi-walled carbon nanotubes and PAA coating. Sep. Purif. Technol. 2011, 80, 155–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.