891
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Perspectives of Polystyrene Composite with Fullerene, Carbon Black, Graphene, and Carbon Nanotube: A Review

, &

References

  • Afzal, A.; Kausar, A.; Siddiq, M. Technical relevance of polymer/cement/carbon nanotube composite: Opportunities and challenges. Polym.-Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1163608.
  • Akram, Z.; Kausar, A.; Siddiq, M. A review on polymer/carbon nanotube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: Preparation, properties and significance. Polym.-Plast. Technol. Eng. 2015. doi:10.1080/03602559.2015.1098696.
  • Naz, A.; Kausar, A; Siddiq, M. Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: A review. Polym.-Plast. Technol. Eng. 2015. doi:10.1080/03602559.2015.1098697.
  • Meer, S.; Kausar, A.; Iqbal, T. Attributes of polymer and silica nanoparticle composites: A review. Polym.-Plast. Technol. Eng. 2015. doi:10.1080/03602559.2015.1103267.
  • Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.
  • Cinti, S.; Politi, S.; Moscone, D.; Palleschi, G.; Arduini, F. Stripping analysis of As (III) by means of screen-printed electrodes modified with gold nanoparticles and carbon black nanocomposite. Electroanalysis 2014, 26, 931–939.
  • Arduini, F.; Amine, A.; Majorani, C.; Di Giorgio, F.; De Felicis, D.; Cataldo, F.; Palleschi, G. High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochem. Commun. 2010, 12, 346–350.
  • Dominko, R.; Gaberšček, M.; Drofenik, J.; Bele, M.; Jamnik, J. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim. Acta. 2003, 48, 3709–3716.
  • Pramoda, K.P.; Hussain, H.; Koh, H.M.; Tan, H.R.; He, C.B. Covalent bonded polymer–graphene nanocomposites. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 4262–4267.
  • Wang, L.; Hong, J.; Chen, G. Comparison study of graphite nanosheets and carbon black as fillers for high density polyethylene. Polym. Eng. Sci. 2010, 50, 2176–2181.
  • Gupta, S.; Mantena, P.R.; Al-Ostaz, A. Dynamic mechanical and impact property correlation of nanoclay and graphite platelet reinforced vinyl ester nanocomposites. J. Reinfor. Plast. Compos. 2010, 29, 2037–2047.
  • Hu, H.; Chen, G. Electrochemically modified graphite nanosheets and their nanocomposite films with poly (vinyl alcohol). Polym. Compos. 2010, 31, 1770–1775.
  • Tang, Q.Y.; Chan, Y.C.; Wong, N.B.; Cheung, R. Surfactant-assisted processing of polyimide/multiwall carbon nanotube nanocomposites for microelectronics applications. Polym. Int. 2010, 59, 1240–1245.
  • Peng, H. Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity. J. Am. Chem. Soc. 2008, 130, 42–43.
  • Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites—A review. Mater. Sci. Eng. A. 2005, 393, 1–11.
  • Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
  • Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.
  • Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.
  • Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.
  • Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; Van Der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.
  • Endo, M.; Hayashi, T.; Kim, Y.A.; Terrones, M.; Dresselhaus, M.S. Applications of carbon nanotubes in the twenty-first century. Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 2223–2238.
  • De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
  • Song, K.; Zhang, Y.; Meng, J.; Green, E.C.; Tajaddod, N.; Li, H.; Minus, M.L. Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Materials 2013, 6, 2543–2577.
  • Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical-conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56.
  • Ma, Y.; Cheung, W.; Wei, D.; Bogozi, A.; Chiu, P.L.; Wang, L.; He, H. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer. ACS Nano. 2008, 2, 1197–1204.
  • Nath, S.; Pal, H.; Sapre, A.V.; Mittal, J.P. Solvatochromism, aggregation and photochemical properties of fullerenes, C60 and C70, in solution. J. Photosci. 2003, 10, 105–120.
  • Wang, Y. Photophysical properties of fullerenes and fullerene/N,N-diethylaniline charge-transfer complexes. J. Phys. Chem. 1992, 96, 764–767.
  • Ehrenfreund, P.; Foing, B.H. Fullerenes in space. Adv. Space Res. 1997, 19, 1033–1042.
  • Dang, M.T.; Hirsch, L.; Wantz, G.; Wuest, J.D. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly (3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734–3765.
  • Schwerdtfeger, P.; Wirz, L.N.; Avery, J. The topology of fullerenes. Wiley Interdisciplin. Rev. Comput. Mol. Sci. 2015, 5, 96;–145.
  • Brinkmann, G.; Dress, A.W. PentHex puzzles: A reliable and efficient top-down approach to fullerene-structure enumeration. Adv. Appl. Math. 1998, 21, 473–480.
  • Diederich, F.; Whetten, R.L. Beyond C60: The higher fullerenes. Acc. Chem. Res. 1992, 25, 119–126.
  • Thilgen, C.; Herrmann, A.; Diederich, F. The covalent chemistry of higher fullerenes: C70 and beyond. Angew. Chem. Int. Ed. Eng. 1997, 36, 2268–2280.
  • Avent, A.G.; Dubois, D.; Pénicaud, A.; Taylor, R. The minor isomers and IR spectrum of [84] fullerene. J. Chem. Soc. Perkin. Trans. 1997, 2, 1907–1910.
  • Avent, A. Separation, isolation and characterization of two minor isomers of the [84] fullerene C 84. Chem. Commun. 1999, 11, 1023–1024.
  • Sun, G.; Kertesz, M. Theoretical 13C NMR spectra of IPR isomers of fullerene C 80: A density functional theory study. Chem. Phys. Lett. 2000, 328, 387–395.
  • Sun, G. Theoretical 13C NMR chemical shifts of the stable isomers of fullerene C 90. Chem. Phys. 2003, 289, 371–380.
  • Prato, M. [60] Fullerene chemistry for materials science applications. J. Mater. Chem. 1997, 7, 1097–1109.
  • Ueng, T.H.; Kang, J.J.; Wang, H.W.; Cheng, Y.W.; Chiang, L.Y. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C 60. Toxicol. Lett. 1997, 93, 29–37.
  • Birkett, P.R. Fullerene chemistry. Annu. Rep. Sec. A. Inorgan. Chem. 1997, 93, 611–630.
  • Yin, J.J.; Jin, L.M.; Liu, R.L.; Li, Q.N.; Fan, C.H.; Li, Y.; Chen, Q.Y. Reactions of fullerenes with reactive methylene organophosphorus reagents: Efficient synthesis of organophosphorus group substituted C60 and C70 derivatives. J. Org. Chem. 2006, 71, 2267–2271.
  • Cheng, F.; Yang, X.; Zhu, H.; Song, Y. Synthesis and optical properties of tetraethyl methano [60] fullerenediphosphonate. Tetrahedron Lett. 2000, 41, 3947–3950.
  • Yamago, S.; Yanagawa, M.; Mukai, H.; Nakamura, E.; Tertiary phosphines, P-chiral phosphinites and phosphonic acid esters bearing fullerene substituent. Metal complexes and redox properties. Tetrahedron 1996, 52, 5091–5098.
  • Nakajima, N.; Nishi, C.; Li, F.M.; Ikada, Y. Photo-induced cytotoxicity of water-soluble fullerene. Fullerene Sci. Technol. 1996, 4, 1–19.
  • Shenderova, O.A.; Zhirnov, V.V.; Brenner, D.W. Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27, 227–356.
  • Cheng, F.; Yang, X.; Zhu, H. Hydroxyl radical scavenging and producing activities of water-soluble malonic acid C60. Fullerene Sci. Technol. 2000, 8, 113–124.
  • Hamano, T.; Okuda, K.; Mashino, T.; Hirobe, M.; Arakane, K.; Ryu, A.; Nagano, T. Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core. Chem. Commun. 1997, 1, 21–22.
  • Cheng, F.; Yang, X.; Fan, C.; Zhu, H. Organophosphorus chemistry of fullerene: synthesis and biological effects of organophosphorus compounds of C 60. Tetrahedron 2001, 57, 7331–7335.
  • Paczosa-Bator, B. Effects of type of nanosized carbon black on the performance of an all-solid-state potentiometric electrode for nitrate. Microchim. Acta. 2014, 181, 1093–1099.
  • Deng, P.; Xu, Z.; Feng, Y. Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine. Mater. Sci. Eng. C. 2014, 35, 54–60.
  • Vicentini, F.C.; Ravanini, A.E.; Figueiredo-Filho, L.C.; Iniesta, J.; Banks, C.E.; Fatibello-Filho, O. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim. Acta. 2015, 157, 125–133.
  • Vicentini, F.C.; Raymundo-Pereira, P.A.; Janegitz, B.C.; Machado, S.A.; Fatibello-Filho, O. Nanostructured carbon black for simultaneous sensing in biological fluids. Sens. Actuat. B Chem. 2016, 227, 610–618.
  • Cornea, N. Factors influencing the self–ignition and combustion process of carbon black. Rev. Chim. 2011, 62, 923–925.
  • Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties. 1998, 560.
  • Toupin, M.; Bélanger, D.; Hill, I.R.; Quinn, D. Performance of experimental carbon blacks in aqueous supercapacitors. J. Power Sources 2005, 140, 203–210.
  • Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Electrical conductivity of conductive carbon blacks: Influence of surface chemistry and topology. Appl. Surf. Sci. 2003, 217, 181–193.
  • Chung, D.D.L. Electrical applications of carbon materials. J. Mater. Sci. 2004, 39, 2645–2661.
  • Surovikin, V.F. Current trends in the methods and technology of nanodispersed carbon materials. Russ. J. Chem. 2007, 41, 92–97.
  • Surovikin, Y.V.; Shaitanov, A.G.; Drozdov, V.A.; Rezanov, I.V.; Morozov, A.D. Effect of thermal oxidative treatment on the structure and electrical conductivity of nanodispersed carbon black particles. Solid Fuel Chem. 2014, 48, 392–403.
  • Monteiro, A.O.; Cachim, P.B.; Costa, P.M.F.J. Electrical properties of cement-based composites containing carbon black particles. Mater. Today Proceed. 2015, 2, 193–199.
  • Li, J.; Lin, H.; Zhao, W.; Chen, G. Instant modification of graphite nanosheets by the grafting of a styrene oligomer under microwave radiation. J. Appl. Polym. Sci. 2008, 109, 1377–1380.
  • Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 2007, 45, 1446–1452.
  • Ramanathan, T.; Stankovich, S.; Dikin, D.A.; Liu, H.; Shen, H.; Nguyen, S.T.; Brinson, L.C. Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 2097–2112.
  • Yakovlev, A.V.; Finaenov, A.I.; Zabud’kov, S.L.; Yakovleva, E.V. Thermally expanded graphite: synthesis, properties, and prospects for use. Russ. J. Appl. Chem. 2006, 79, 1741–1751.
  • Nozaki, T.; Okazaki, K. Carbon nanotube synthesis in atmospheric pressure glow discharge: A review. Plasma Process. Polym. 2008, 5, 300–321.
  • Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.
  • Scott, C.D.; Arepalli, S.; Nikolaev, P.; Smalley, R.E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A. 2001, 72, 573–580.
  • See, C.H.; Harris, A.T. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 2007, 46, 997–1012.
  • Novoselov, K.S.A.; Geim, A.K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Firsov, A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.
  • Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530.
  • Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules. 2010, 11, 2345–2351.
  • Yu, C.; Li, B. Preparation and characterization of carboxymethyl polyvinyl alcohol–graphite nanosheet composites. Polym. Compos. 2008, 29, 998–1005.
  • Wei, T.; Song, L.; Zheng, C.; Wang, K.; Yan, J.; Shao, B.; Fan, Z.J. The synergy of a three filler combination in the conductivity of epoxy composites. Mater. Lett. 2010, 64, 2376–2379.
  • Fan, Z.; Zheng, C.; Wei, T.; Zhang, Y.; Luo, G. Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites. Polym. Eng. Sci. 2009, 49, 2041–2045.
  • Li, J.; Wong, P.S.; Kim, J.K. Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater. Sci. Eng. A. 2008, 483, 660–663.
  • Kumar, S.; Sun, L.L.; Caceres, S.; Li, B.; Wood, W.; Perugini, A.; Zhong, W.H. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 2010, 21, 105702.
  • Li, B.; Zhong, W.H. Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 2011, 46, 5595–5614.
  • Qian, M.; Zhou, Y.S.; Gao, Y.; Park, J.B.; Feng, T.; Huang, S.M.; Lu, Y.F. Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl. Phys. Lett. 2011, 98, 173108.
  • Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.
  • Niyogi, S.; Bekyarova, E.; Itkis, M.E.; McWilliams, J.L.; Hamon, M.A.; Haddon, R.C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.
  • Wu, Y.; Wang, B.; Ma, Y.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 2010, 3, 661–669.
  • Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.
  • Chakrabarti, A.; Lu, J.; Skrabutenas, J.C.; Xu, T.; Xiao, Z.; Maguire, J.A.; Hosmane, N.S. Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 2011, 21, 9491–9493.
  • Yin, H.; Chen, P.; Xu, C.; Gao, X.; Zhou, Q.; Zhao, Y.; Qu, L. Shock-wave synthesis of multilayer graphene and nitrogen-doped graphene materials from carbonate. Carbon 2015, 94, 928–935.
  • Li, D.; Mueller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.
  • Wang, L.; Wei, B.; Dong, P.; Miao, Q.; Liu, Z.; Xu, F.; Fei, W. Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells. Mater. Des. 2016, 92, 462–470.
  • Zhao, J.; Zhu, G.; Huang, W.; He, Z.; Feng, X.; Ma, Y.; Lü, Y. Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. J. Mater. Chem. 2012, 22, 19679–19683.
  • Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25.
  • Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuat. B Chem. 2012, 173, 1–21.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.
  • Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a new sorbent in analytical chemistry. TrAC Trend. Anal. Chem. 2013, 51, 33–43.
  • Chen, G.; Weng, W.; Wu, D.; Wu, C.; Lu, J.; Wang, P.; Chen, X. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 2004, 42, 753–759.
  • Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Ruoff, R.S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152.
  • Dimiev, A.; Kosynkin, D.V.; Sinitskii, A.; Slesarev, A.; Sun, Z.; Tour, J.M. Layer-by-layer removal of graphene for device patterning. Science 2011, 331, 1168–1172.
  • Eizenberg, M.; Blakely, J.M. Carbon monolayer phase condensation on Ni (111). Surf. Sci. 1979, 82, 228–236.
  • Shelton, J.C.; Patil, H.R.; Blakely, J.M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surf. Sci. 1974, 43, 493–520.
  • Somani, P.R.; Somani, S.P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.
  • Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.
  • Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008, 9, 30–35.
  • Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25.
  • Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603.
  • Hanaei, H.; Assadi, M.K.; Saidur, R. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review. Renew. Sustain. Ener. Rev. 2016, 59, 620–635.
  • Ebbesen, T.W.; Ajayan, P.M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220–222.
  • Cui, S.; Scharff, P.; Siegmund, C.; Schneider, D.; Risch, K.; Klötzer, S.; Schawohl, J. Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N 2 atmosphere. Carbon 2004, 42, 931–939.
  • Shimotani, K.; Anazawa, K.; Watanabe, H.; Shimizu, M. New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl. Phys. A. 2001, 73, 451–454.
  • Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54.
  • Dai, H. Carbon nanotubes: opportunities and challenges. Surf. Sci. 2002, 500, 218–241.
  • Zhao, Q.; Jiang, T.; Li, C.; Yin, H. Synthesis of multi-wall carbon nanotubes by Ni-substituted (loading) MCM-41 mesoporous molecular sieve catalyzed pyrolysis of ethanol. J. Ind. Eng. Chem. 2011, 17, 218–222.
  • Kim, J.S.; Jang, Y.W.; Im, I.T. Growth of vertical carbon nanotubes according to the Al2O3 buffer layer preparation. J. Ind. Eng. Chem. 2013, 19, 1501–1506.
  • Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552.
  • Mintmire, J.W.; Dunlap, B.I.; White, C.T. Are fullerene tubules metallic? Phys. Rev. Lett. 1992, 68, 631.
  • Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.
  • Ageev, O.A.; Blinov, Y.F.; Il’in, O.I.; Kolomiitsev, A.S.; Konoplev, B.G.; Rubashkina, M.V.; Smirnov, V.A.; Fedotov, A.A. Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy. Technical Physics. 2013, 58(12), 1831–1836.
  • Charlier, J.C.; Issi, J.P. Electrical conductivity of novel forms of carbon. J. Phys. Chem. Solids 1996, 57, 957–965.
  • Berber, S.; Kwon, Y.K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613.
  • Carvalho, H.W.P.; Suzana, A.F.; Santilli, C.V.; Pulcinelli, S.H. Structure and thermal behavior of PMMA–polysilsesquioxane organic–inorganic hybrids. Polym. Degrad. Stab. 2014, 104, 112–119.
  • Manzi-Nshuti, C.; Wang, D.; Hossenlopp, J.M.; Wilkie, C.A. The role of the trivalent metal in an LDH: synthesis, characterization and fire properties of thermally stable PMMA/LDH systems. Polym. Degrad. Stab. 2009, 94, 705–711.
  • Kuljanin-Jakovljević, J.; Marinović-Cincović, M.; Stojanović, Z.; Krklješ, A.; Abazović, N.D.; Čomor, M.I. Thermal degradation kinetics of polystyrene/cadmium sulfide composites. Polym. Degrad. Stab. 2009, 94, 891–897.
  • Xu, Y.; Brittain, W.J.; Xue, C.; Eby, R.K. Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method. Polymer 2004, 45, 3735–3746.
  • Laoutid, F.; Sonnier, R.; Francois, D.; Bonnaud, L.; Cinausero, N.; Cuesta, J.M.L.; Dubois, P. Effect of magnesium dihydroxide nanoparticles on thermal degradation and flame resistance of PMMA nanocomposites. Polym. Adv. Technol. 2012, 22, 1713–1719.
  • Viratyaporn, W.; Lehman, R.L. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J. Therm. Anal. Calorim. 2011, 103, 267–273.
  • Pozdnyakov, A.O.; Handge, U.A.; Konchits, A.; Altstädt, V. Thermal decomposition study of poly (methyl methacrylate)/carbon nanofiller composites. Polym. Adv. Technol. 2011, 22, 84–89.
  • Laachachi, A.; Cochez, M.; Ferriol, M.; Lopez-Cuesta, J.M.; Leroy, E. Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly (methyl methacrylate)(PMMA). Mater. Lett. 2005, 59, 36–39.
  • Džunuzović, E.; Marinović-Cincović, M.; Vuković, J.; Jeremić, K.; Nedeljković, J.M. Thermal properties of PMMA/TiO2 nanocomposites prepared by in-situ bulk polymerization. Polym. Compos. 2009, 30, 737–742.
  • Gaspar, H.; Fernandes, L.; Pereira, P.; Bernardo, G. Enhanced thermal stability of poly (methyl methacrylate) composites with fullerenes. Polym. Bull. 2015, 72 (7), 1775–1786.
  • Troitskii, B.B.; Troitskaya, L.S.; Dmitriev, A.A.; Yakhnov, A.S. Inhibition of thermo-oxidative degradation of poly (methyl methacrylate) and polystyrene by C 60. Eur. Polym. J. 2000, 36, 1073–1084.
  • Kim, J.W.; Kim, K.J.; Park, S.Y.; Jeong, K.U.; Lee, M.H. Preparation and characterizations of C60/polystyrene composite particle containing pristine C60 clusters. Bull. Korean Chem. Soc. 2012, 33, 2966–2970.
  • Liu, H.; Song, P.A.; Fang, Z.; Shen, L.; Peng, M. Thermal degradation and flammability properties of HDPE/EVA/C60 nanocomposites. Thermochim. Acta. 2010, 506, 98–101.
  • Pereira, P.; Fernandes, L.; Gaspar, H.; Bernardo, G. Melt processed polyethylene/fullerene nanocomposites with highly improved thermo-oxidative stability. Polym. Test. 2015, 45, 124–131.
  • Zhao, L.; Guo, Z.; Ran, S.; Cao, Z.; Fang, Z. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J. Therm. Anal. Calorim. 2014, 115, 1235–1244.
  • Pereira, P.; Gaspar, H.; Fernandes, L.; Bernardo, G. Impact of fullerenes on the thermal stability of melt processed polystyrene and poly (methyl methacrylate) composites. Polym. Test. 2015, 47, 130–136.
  • Fernandes, L.; Gaspar, H.; Bernardo, G. Inhibition of thermal degradation of polystyrene by C60 and PCBM: A comparative study. Polym. Test. 2014, 40, 63–69.
  • Yuan, Z.; Favis, B.D. Coarsening of immiscible co-continuous blends during quiescent annealing. AIChE J. 2005, 51, 271–280.
  • Dong, X.M.; Fu, R.W.; Zhang, M.Q.; Zhang, B.; Rong, M.Z. Electrical resistance response of carbon black filled amorphous polymer composite sensors to organic vapors at low vapor concentrations. Carbon 2004, 42, 2551–2559.
  • Tanner, R.I.; Qi, F.; Housiadas, K.D. A differential approach to suspensions with power-law matrices. J. Non-Newton. Fluid Mech. 2010, 165, 1677–1681.
  • Alig, I.; Lellinger, D.; Engel, M.; Skipa, T.; Pötschke, P. Destruction and formation of a conductive carbon nanotube network in polymer melts: in-line experiments. Polymer 2008, 49, 1902–1909.
  • Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265–271.
  • Gubbels, F.; Jérôme, R.; Vanlathem, E.; Deltour, R.; Blacher, S.; Brouers, F. Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem. Mater. 1998, 10, 1227–1235.
  • Scherzer, S.L.; Pavlova, E.; Esper, J.D.; Starý, Z. Phase structure, rheology and electrical conductivity of co-continuous polystyrene/polymethylmethacrylate blends filled with carbon black. Compos. Sci. Technol. 2015, 119, 138–147.
  • Cao, Q.; Song, Y.; Tan, Y.; Zheng, Q. Thermal-induced percolation in high-density polyethylene/carbon black composites. Polymer 2009, 50, 6350–6356.
  • Zaragoza-Contreras, E.A.; Hernández-Escobar, C.A.; Navarrete-Fontes, A.; Flores-Gallardo, S.G. Synthesis of carbon black/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM. Micron 2011, 42, 263–270.
  • Das, A.; Kasaliwal, G.R.; Jurk, R.; Boldt, R.; Fischer, D.; Stöckelhuber, K.W.; Heinrich, G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compos. Sci. Technol. 2012, 72, 1961–1967.
  • Li, J.; Sham, M.L.; Kim, J.K.; Marom, G. Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 2007, 67, 296–305.
  • Wang, W.P.; Pan, C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 2004, 45, 3987–3995.
  • Celzard, A.; McRae, E.; Mareche, J.F.; Furdin, G.; Dufort, M.; Deleuze, C. Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy. J. Phys. Chem. Solids 1996, 57, 715–718.
  • Xiao, M.; Sun, L.; Liu, J.; Li, Y.; Gong, K. Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 2002, 43, 2245–2248.
  • Gonçalves, O.H.; Machado, R.A.; de Araújo, P.H.H.; Asua, J.M. Secondary particle formation in seeded suspension polymerization. Polymer 2009, 50, 375–381.
  • Hashim, S.; Brooks, B.W. Mixing of stabilised drops in suspension polymerisation. Chem. Eng. Sci. 2004, 59, 2321–2331.
  • Fuchigami, K.; Taguchi, Y.; Tanaka, M. Synthesis of calcium carbonate vaterite crystals and their effect on stabilization of suspension polymerization of MMA. Adv. Power Technol. 2009, 20, 74–79.
  • Kritzer, P. Corrosion in high-temperature and supercritical water and aqueous solutions: A review. J. Supercrits. Fluids 2004, 29, 1–29.
  • Bai, Y.; Wang, Z.; Feng, L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water. Mater. Des. 2010, 31, 999–1002.
  • Brunovska, Z.; Ishida, H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines. J. Appl. Polym. Sci. 1999, 73, 2937–2949.
  • Chen, G.; Wu, C.; Weng, W.; Wu, D.; Yan, W. Preparation of polystyrene/graphite nanosheet composite. Polymer 2003, 44, 1781–1784.
  • Warty, S.; Sauer, J.A.; Charlesby, A. Effects of radiation and chain ends on fatigue behaviour of polystyrene. Eur. Polym. J. 1979, 15, 445–452.
  • Kim, H.; Hahn, H.T.; Viculis, L.M.; Gilje, S.; Kaner, R.B. Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon 2007, 45, 1578–1582.
  • Wang, Z.; Li, S.; Wu, Z. The fabrication and properties of a graphite nanosheet/polystyrene composite based on graphite nanosheets treated with supercritical water. Compos. Sci. Technol. 2015, 112, 50–57.
  • Chigome, S.; Torto, N. Electrospun nanofiber-based solid-phase extraction. TrAC Trend. Anal. Chem. 2012, 38, 21–31.
  • Liu, D.S.; Ashcraft, J.N.; Mannarino, M.M.; Silberstein, M.N.; Argun, A.A.; Rutledge, G.C.; Hammond, P.T. Spray layer-by-layer electrospun composite proton exchange membranes. Adv. Funct. Mater. 2013, 23, 3087–3095.
  • McCullen, S.D.; Miller, P.R.; Gittard, S.D.; Gorga, R.E.; Pourdeyhimi, B.; Narayan, R.J.; Loboa, E.G. In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Eng. Part C Methods 2010, 16, 1095–1105.
  • Vargas, E.T.; do Vale Baracho, N.C.; De Brito, J.; De Queiroz, A.A.A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069–1078.
  • He, X.M.; Zhu, G.T.; Yin, J.; Zhao, Q.; Yuan, B.F.; Feng, Y.Q. Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Chromatogr. A. 2014, 1351, 29–36.
  • Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.A.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
  • Sun, N.; Han, Y.; Yan, H.; Song, Y. A self-assembly pipette tip graphene solid-phase extraction coupled with liquid chromatography for the determination of three sulfonamides in environmental water. Anal. Chim. Acta. 2014, 810, 25–31.
  • Zhu, L.; Xu, H. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine. J. Sep. Sci. 2014, 37, 2591–2598.
  • Guo, Z.; Wu, X.; Dong, J.; Su, H.; Cai, R. Electrospun nanofibers prepared using polystyrene (PS) with polymeric additives for the determination of nicotine in cigarette mainstream smoke. Anal. Methods 2014, 6, 5120–5126.
  • Wu, J.; Chen, T.; Luo, X.; Han, D.; Wang, Z.; Wu, J. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Manag. 2014, 34, 676–682.
  • Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W. Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater. 2011, 23, 3959–3963.
  • Huang, J.; Deng, H.; Song, D.; Xu, H. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates. Anal. Chim. Acta. 2015, 878, 102–108.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  • Rajesh, J.J.; Bijwe, J.; Tewari, U.S.; Venkataraman, B. Erosive wear behavior of various polyamides. Wear 2001, 249, 702–714.
  • Harsha, A.P.; Tewari, U.S.; Venkatraman, B. Solid particle erosion behaviour of various polyaryletherketone composites. Wear 2003, 254, 693–712.
  • Yang, Z.; Dong, B.; Huang, Y.; Liu, L.; Yan, F.Y.; Li, H.L. Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes. Mater. Chem. Phys. 2005, 94 (1), 109–113.
  • Treacy, M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.
  • Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.
  • Thostenson, E.T.; Chou, T.W. On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D Appl. Phys. 2003, 36, 573.
  • Li, C.; Chou, T.W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 2003, 63, 1517–1524.
  • Chen, W.X.; Tu, J.P.; Wang, L.Y.; Gan, H.Y.; Xu, Z.D.; Zhang, X.B. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 2003, 41, 215–222.
  • Cai, H.; Yan, F.; Xue, Q. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater. Sci. Eng. A. 2004, 364, 94–100.
  • Chen, W.X.; Li, F.; Han, G.; Xia, J.B., Wang, L.Y., Tu, J.P., Xu, Z.D. Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 2003, 15 (3), 275–278.
  • Chen, W.X.; Tu, J.P.; Xu, Z.D.; Chen, W.L.; Zhang, X.B.; Cheng, D.H. Tribological properties of Ni–P-multi-walled carbon nanotubes electroless composite coating. Mater. Lett. 2003, 57, 1256–1260.
  • Wang, C.; Xue, T.; Dong, B.; Wang, Z.; Li, H.L. Polystyrene–acrylonitrile–CNTs nanocomposites preparations and tribological behavior research. Wear 2008, 265, 1923–1926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.