239
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Toughening of Semicrystalline and Amorphous Polylactide with Atactic Polyhydroxybutyrate

&

References

  • Anderson, K.; Schreck, K.; Hillmyer, M. Toughening Polylactide. Polym Rev. 2008, 48, 85–108.
  • Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid) modifications. Prog Polym Sci. 2010, 35(3), 338–356.
  • Liu, H.; Zhang, J. Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B: Polym Phys. 2011, 49(15), 1051–1083.
  • Odent, J.; Raquez, J-M.; Dubois, P. Highly Toughened Polylactide-Based Materials through Melt-Blending Techniques. In: Fakirov, S. ed., Biodegradable Polyesters, Wiley-VCH: Weinheim, Germany, 2015, Chapter 10; pp. 235–274.
  • Pluta, M.; Piorkowska, E. Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. PolymTest. 2015, 41, 209–218.
  • Odent, J.; Raquez, J-M.; Leclère, P.; Lauro, F.; Dubois, P. Crystallization-induced toughness of rubber-modified polylactide: combined effects of biodegradable impact modifier and effective nucleating agent. Polym Adv Technol. 2015, 26(7), 814–822.
  • Xie, L.; Xu, H.; Niu, B.; Ji, X.; Chen, J.; Li, ZM.; Hsiao, B.S.; Zhong, G.J. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging. Biomacromolecules. 2014, 15, 4054–4064.
  • Liu, Z.; Luo, Y.; Bai, H.; Zhang, Q.; Fu, Q. Remarkably Enhanced Impact Toughness and Heat Resistance of poly(l-Lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. ACS Sustainable Chem Eng. 2016, 4(1), 111–120.
  • Bartczak, Z.; Galeski, A.; Kowalczuk, M.; Sobota, M.; Malinowski, R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. Eur Polym J. 2013, 49(11), 3630–3641.
  • Jiang, L.; Wolcott, M.P.; Zhang, J. Study of Biodegradable Polylactide/ Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules. 2006, 7, 199–207.
  • Li, Y.; Shimizu H. Toughening of Polylactide by Melt Blending with a Biodegradable Poly(ether)urethane Elastomer. Macromol Biosci. 2007, 7, 921–928.
  • Feng, Y.; Hu, Y.; Yin, J.; Zhao, G.; Jiang, W. High impact poly(lactic acid)/poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci. 2013, 53(2), 389–396.
  • Anderson, K.S.; Lim, S.H.; Hillmyer, M.A. Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci. 2003, 89(14), 3757–3768.
  • Oyama, H.I. Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer. Polymer. 2009, 50(3), 747–751.
  • Feng, F.; Ye, L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci. 2011, 119(5), 2778–2783.
  • Shi, Y-y.; Zhang, W-b.; Yang, J-h.; Huang, T.; Zhang, N.; Wang, Y.; Yuang, G-p.; Zhang, Ch-l. Super toughening of the poly(l-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Adv. 2013, 3(48), 26271–26282.
  • Li, Y.; Shimizu, H. Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties. Eur Polym J. 2009, 45, 738–746.
  • Hashima, K.; Nishitsuji, S.; Inoue, T. Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer. 2010, 51, 3934–3939.
  • Liu, H.Z.; Chen, F.; Liu, B.; Estep, G.; Zhang, J.W. Super Toughened Poly(lactic acid) Ternary Blends by Simultaneous Dynamic Vulcanization and Interfacial Compatibilization. Macromolecules. 2010, 43(14), 6058–6066.
  • Liu, H.; Guo, L.; Guo, X.; Zhang, J. Effects of reactive blending temperature on impact toughness of poly(lactic acid) ternary blends. Polymer. 2012, 53(2), 272–276.
  • Bai, H.; Bai, D.; Xiu, H.; Liu, H.; Zhang, Q.; Wang, K.; Deng, H.; Chen, F.; Fu, Q.; Chiu, F-Ch. Towards high-performance poly(l-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Adv. 2014, 4(90), 49374–49385.
  • Nascimento, L.; Gamez-Perez, J.; Santana, O.O.; Velasco, J.I.; Maspoch, M.L.; Franco-Urquiza, E. Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid). J Polym Environ. 2010, 18(4), 654–660.
  • Park, S.D.; Todo, M.; Arakawa, K.; Koganemaru, M. Effect of crystallinity and loading-rate on mode I fracture behavior of poly(lactic acid). Polymer. 2006, 47(4), 1357–1363.
  • Yu, L.; Liu, H.; Xie, F.; Chen, L.; Li, X. Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid. Polym Eng Sci. 2008, 48(4), 634–641.
  • Nagarajan, V.; Zhang, K.; Misra, M.; Mohanty, A.K. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS Appl Mater Interfaces. 2015, 7(21), 11203–11214.
  • Park, S-D.; Todo, M.; Arakawa, K. Effect of annealing on the fracture toughness of poly(lactic acid). J Mater Sci. 2004, 39(3), 1113–1116.
  • Bai, H.; Huang, C.; Xiu, H.; Gao, Y.; Zhang, Q.; Fu, Q. Toughening of poly(l-lactide) with poly(ε-caprolactone): Combined effects of matrix crystallization and impact modifier particle size. Polymer. 2013, 54(19), 5257–5266.
  • Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Fu, Q. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer. 2014, 55(26), 6924–6934.
  • Bai, H.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M.; Fu, Q. Tailoring Impact Toughness of Poly(l-lactide)/Poly(ε-caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Appl Mater Interfaces. 2012, 4(2), 897–905.
  • Koyama, N.; Doi, Y. Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polymer. 1997, 38(7), 1589–1593.
  • Gazzano, M.; Focarete, M.L.; Riekel, C.; Scandola, M. Structural Study of Poly(l-lactic acid) Spherulites. Biomacromolecules. 2004, 5(2), 553–558.
  • Focarete, M.L.; Ceccorulli, G.; Scandola, M.; Kowalczuk, M. Further Evidence of Crystallinity-Induced Biodegradation of Synthetic Atactic Poly(3-hydroxybutyrate) by PHB-Depolymerase A from Pseudomonas lemoignei. Blends of Atactic Poly(3-hydroxybutyrate) with Crystalline Polyesters. Macromolecules. 1998, 31(24), 8485–8492.
  • Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.; Noda, I.; Ochiai, S.; Ozaki, Y.. Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy. Polymer. 2007, 48(6), 1749–1755.
  • Gerard, T.; Budtova, T. Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal. 2012, 48(6), 1110–1117.
  • Focarete, M.L.; Scandola, M.; Jendrossek, D.; Adamus, G.; Sikorska, W.; Kowalczuk, M. Bioassimilation of Atactic Poly[(R,S)-3-hydroxybutyrate] Oligomers by Selected Bacterial Strains. Macromolecules. 1999, 32(15), 4814–4818.
  • Rutkowska, M.; Krasowska, K.; Hejmowska, A.; Kowalczuk, M. Biodegradation of poly[(R,S)-3-hydroxybutanoic acid] in natural environments. In: Chiellini, E.; Gil, H.; Braunegg, H.; Buchert, J.; Gatenholm, P.; van der Zee, M. eds., Biorelated Polymers Sustainable Polymer: Science and Technology; Kluwer Academic/Plenum Publishers, New York, 2001, Chapter 27; pp. 313–330.
  • Seebach, D.; Brunner, A.; Bachmann, B.M.; Hoffmann, T.; Kuhnle, F.N.M.; Lengweiler, U.D. Biopolymers and -oligomers of (R)-3-Hydroxyalkanoic Acids-Contributions of Synthetic Organic Chemists. Ernst Schering Research Foundation: Berlin, 1995.
  • Sikorska, W.; Musiol, M.; Nowak, B.; Pajak, J.; Labuzek, S.; Kowalczuk, M.; adamus, G. Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. Int Biodeterior Biodegrad. 2015, 101, 32–41.
  • Fischer, E.W.; Sterzel, H.J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Coll Polym Sci. 1973, 251, 980–990.
  • Ohkoshi, I.; Abe, H.; Doi, Y. Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer. 2000, 41(15), 5985–5992.
  • Bates, F.S.; Cohen, R.E.; Argon, A.S. Dynamic Mechanical Properties of Polystyrene Containing Microspherical Inclusions of Polybutadiene: Influence of Domain Boundaries and Rubber Molecular Weight. Macromolecules. 1983, 16, 1108–1114.
  • Inoue, T.; Ogata, S.; Kakimoto, M.; Imai, Y. Depression of glass transition temperature in aramid-polybutadiene multiblock copolymers. Macromolecules. 1984, 17(7), 1417–1419.
  • Mäder, D.; Bruch, M.; Maier, R-D.; Stricker, F.; Mülhaupt, R. Glass Transition Temperature Depression of Elastomers Blended with Poly(propene)s of Different Stereoregularities. Macromolecules. 1999, 32(4), 1252–1259.
  • Nguyen, T.L.; Bédoui, F.; Mazeran, P-E.; Guigon, M. Mechanical investigation of confined amorphous phase in semicrystalline polymers: Case of PET and PLA. Polym Eng Sci. 2015, 55(2), 397–405.
  • Bartczak, Z.; Galeski, A. Homogeneous nucleation in plypropylene and its blends by small-angle light scattering. Polymer. 1990, 31, 2027–2038.
  • Bartczak, Z.; Galeski, A.; Pracella, M. Spherulite nucleation in blends of isotactic polypropylene with high-density polyethylene. Polymer. 1986, 27(4), 537–543.
  • Bucknall, C.B. Rubber Toughening. In: Haward, R.N.; Young, R.J. eds., The Physics of Glassy Polymers, 2nd ed., Chapman and Hall, London, 1997, Chapter 8, pp. 363–412.
  • Muratoglu, O.K.; Argon, A.S.; Cohen, R.E.; Weinberg, M. Toughening Mechanism of Rubber-Modified Polyamides. Polymer. 1995, 36(5), 921–930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.