90
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Novel Proton-Conducting Polymer Electrolytes Based on Poly(Vinylidene fluoride-co-hexafluoropropylene)–Ammonium Thiocyanate

, , &

References

  • Maccallum, J.R.; Vincent, C.A. Polymer Electrolyte Reviews II, Elsevier Applied Science Publishers Ltd: New York, NY, 1987; pp. 21–23.
  • Scrosati, B. Application of Electro Active Polymers, Chapman and Hall: London, 1993; pp. 29–30.
  • Uma, T.; Yin, F. High proton conductivity of poly(methyl methacrylate)-based hybrid membrane for PEMFCs. Chem. Phys. Lett. 2011, 512, 104–107.
  • Gray, F.M. Polymer Electrolytes: Fundamentals and Technological Applications, VCH: New York, NY, 1991; p. 7.
  • Bhavani, P.; Sangeetha, D. SPSEBS/H3PO4 composite electrolyte membranes for application in PEMFC and DMFC. Int. J. Plast. Technol. 2011, 15, 97–11.
  • Helen Flora, X.; Ulaganathan, M.; Rajendran, S. Role of different plasticizers in Li-ion conducting poly(acrylonitrile)-poly(methyl methacrylate) hybrid polymer electrolytes. Int. J. Polym. Biomater. 2013, 63, 737–742.
  • Awadhia, A.; Agrawal, S.L. Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes. Solid State Ionics 2007, 178, 951–958.
  • Chen, C.; Wang, L.; Huang, Y. Electro spun phase change fibers based on polyethylene glycol/cellulose acetate blends. J. Appl. Energy 2011, 88, 3133–3139.
  • Chandra, S.; Agrawal, R.C.; Mahipal, Y.K. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes. J. Phys D Appl. Phys. 2009, 42, 135107.
  • Herington, T.M.; Staveley, L.A.K. A comparative study of the electrical conductivity of ammonium chloride and other ammonium salts. J. Phys. Chem. Solids 1964, 25, 921–930.
  • Majid, S.R.; Arof, A.K. Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Phys. B Condens. Matter 2005, 355, 78–82.
  • Selvasekarapandian, S.; Hema, M. Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Phys. B 2005, 357, 412–419.
  • Polomska, M.; Wolak, J.; Hilczer, B. NIR–Raman studies of poly(ethylene oxide) + (NH4)4H2(Seo4)3 polymer electrolyte. Solid State Ionics 1999, 118, 261–264.
  • Hashmi, S.A.; Kumar, A.; Maurya, K.K.; Chandra, S. Proton-conducting polymer electrolyte. I. The polyethylene oxide + NH4ClO4 system. J. Phys. D Appl. Phys. 1990, 23, 1307–1314.
  • Rajendran, S.; Kesavan, K.; Nithya, R.; Ulaganathan, M. Transport, structural and thermal studies on nano composite polymer blend polymer blend electrolytes for Li-ion battery application. J. Curr. Appl. Phys. 2012, 12, 789–793.
  • Gnana Kumar, G.; Kim, A.R.; Nahm, K.S.; Yoo, D.J.; Elizabeth, R. High ion and lower molecular transportation of the polyvinylidene fluoride-hexafluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications. J. Power Sources. 2010, 195, 5922–5928.
  • Raghavan, P.; Zhao, X.; Kim, J.K.; Manuel, J. Ionic conductivity and electrochemical properties of nano composite polymer electrolyte based on electro spun poly(vinylidene fluoride-co-hexafluoro propylene) with nanosized ceramic filler. Electrochim Acta 2012, 54, 228–234.
  • Hodge, R.M.; Edward, G.H.; Simon, G.P. Water absorption and states of water in semi crystalline poly(vinyl alcohol) films. Polymer 1996, 37, 1371–1376.
  • Manuel Stephan, A.; Nahm, K.S.; Premkumar, T. Nano filler incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVdF-co-HFP) composite electrolytes for lithium batteries. J. Power Sources 2006, 159, 1316–1321.
  • Wander Mass, J.H. Basic Infrared Spectroscopy, Heyden & Son Ltd: New York, NY, 2000; p. 10–11.
  • Gnanakumar, G.; Kim, A.R.; Nahm, K.S. High proton conductivity and low fuel crossover of polyvinylidene fluoride-co-hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells. Curr. Appl. Phys. 2011, 11, 896–902.
  • Nakanishi, K.; Solomon, P.H. Infrared Spectra of Complex Molecules, San Francisco, 1977; p. 30–35, Springer link.
  • Ramya, C.S.; Selvasekarapandian, S.; Hirankumar, G. Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte. J. Non-Cryst. Solids 2008, 354, 1494–1502.
  • Bellamy, L.J. The Infrared Spectra of Complex Molecules, vol. 2, 2nd ed., Chapman & Hall: London, 1975; pp. 377–384.
  • Macdonald, J.R. Impedance Spectroscopy, John Wiley & Sons: New York, NY, 1987; pp. 12–23.
  • Selvasekarapandian, S.; Hema, M.; Kawamura, J.; Kamishima, O.; Baskaran, R. Characterization of PVA–NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J. Phys. Soc. Jpn. 2010, A79, 163–168.
  • Ramesh, S.; Arof, A.K. Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater. Sci. Eng. 2001, B85, 11–15.
  • Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M.A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 2001, 46, 2457–2461.
  • Macrum, N.G.; Read, B.E.; Williams, G. Elastic and Dielectric Effects in Polymeric Solids, 1991; Dover Publications.
  • Dutta, P.; Biswas, S. Dielectric relaxation in poly aniline-polyvinyl alcohol composites. J. Mater. Res. Bull. 2000, 37, 193–200.
  • Radha, K.P.; Selvasekarapandian, S.; Karthikeyan, S.; Hema, M.; Sanjeeviraja, C. Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 2013, 19, 1437–1447. doi:10.1007/s11581-013-0866-5
  • Lugscheider, E.; Bobzin, K. Wettability of PVD compound material by lubricants. J. Surf. Coat. Technol. 2003, 165, 51–56.
  • Sethupathy, M.; Ravichandran, S.; Manisankar, P. Preparation of PVdF-PAN-V2O5 hybrid composite membrane by electro spinning and fabrication of dye-sensitized solar cells. Int. J. Electrochem. Sci. 2014, 9, 3166–3180.
  • Neelakandan, S.; Rana, D.; Matsuura, Muthu meenal, A; Kanaga raj, P; Nagendran, A; Fabrication and electrochemical properties of surface modified sulfonated poly(vinylidenefluoride-co-hexafluoropropylene) membranes for DMFC application. Solid State Ionics 2014, 268, 35–41.
  • Wells, A.F. Structural in Organic Chemistry, 5th ed. Oxford University Press: Oxford, UK, 1984; p. 50.
  • Kirankumar, K.; Ravi, M.; Pavani, Y. Investigation on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 2014, 454, 200–211.
  • Neelakandan, S.; Kanagaraj, P.; Nagendran, A.; Rana, D.; Matsuura, T.; Muthumeenal, A. Enhancing proton conduction of sulphonated poly(phenylene ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuelcells. Renew. Energy 2015, 718, 306–313.
  • Yang, C.-C. Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte. J. Power Sources 2002, 109, 22–31.
  • Kim, C. Performance of gel-type polymer electrolytes according to the affinity between polymer matrix and plasticizing solvent molecules. Electrochim. Acta 2001, 46, 1323–1331.
  • Ulaganathan, M.; Rajendran, S. Studies of MWCNT-incorporated composite polymer electrolytes for electrochemical applications. Soft Mater. 2010, 8, 358–369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.