146
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Hemocompatibility of Sulfuric Acid-Treated Metallocene Polyethylene and its Application in Reducing the Quantity of Medical Plastic Waste

, , , , , , , , , & show all

References

  • Piyavit, P.; Piyasan, P. Comparison of activity of ziegler-natta catalysts prepared by recrystallization and chemical reaction methods towards polymerization of ethylene. Eng. J. 2009, 13, 57–63.
  • Global Polyolefin Industry Development. http://blogs.eci99.com/global-polyolefin-industry-development/). Retrieved from December 27 2015 (accessed January 2016).
  • Razavi, N.M.; Hay, J.N. Thermal and dynamic mechanical properties of metallocene polyethylene polymer. J. Mater. Sci. 2001, 42, 8621–8627.
  • Ahmad, S.M.; Chakrabart, H.; Shah, J.M.; Walter, K.; Purushothaman, V.A.; Wageeh, A.Y. The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure properties and processing ability materials. Materials 2014, 7, 5069–5108.
  • The free Library. Comparison of Ziegler-Natta and metallocene ethylene elastomer-products. http://www.thefreelibrary.com/Comparison+of+Ziegler-Natta+and+metallocene+ethylene+elastomer...-a0118356600) (accessed January 2016).
  • Albert, J.V. Recent advances in metallocene catalyzed polymerization of olefins and other monomers. The 2nd Annual UNESCO Training, Rosebank, Johannesburg, Mar 29–31, 1999.
  • Kaewarsa, P. Polymerization of ethylene over the supported Ziegler-Natta and metallocene catalysts on magnesium hydroxide and magnesiuum hydroxychloriede. Ph.D. Thesis. Khonkaen University, Thailand, 2005.
  • Nittaa, K.H.; Tanaka, A. Dynamic mechanical properties of metallocene catalysed linear polyethylenes. Polymer 2001, 42, 1219–1226.
  • Sunny, M.C.; George, K.E. Studies on metallocene polyolefin and polyvinyl chloride for blood and blood component storage applications. Ph.D. Thesis. Cochin University of Science and Technology, Cochin, 2006. http://dyuthi.cusat.ac.in/purl/2194
  • Anderson, J.M. Biological responses to materials. Annu. Rev. Mater. Res. 2001, 318, 1–110.
  • Chang, H.I., Wang, Y. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds, Intech Publications: Rijeka, 2011, pp 1–21.
  • Xiaoli, L.; Lin, Y.; Dan, L.; Zengchao, T.; Yanwei, W.; Gaojian, C.; Hong, C.; John, L.B. Blood compatible materials: State of the art. J. Mater. Chem. B 2014, 2, 5718.
  • Stevens, K.N.J. Blood-Contacting Biomaterials for Critical Clinical Applications, Maastricht University: Maastricht, 2011.
  • Jaganathan, S.K.; Mohandas, H.; Sivakumar, G.; Kasi, P.; Sudheer, T.; Avineri Veetil, S.; Murugesan, S.; Supriyanto, E. Enhanced blood compatibility of metallocene polyethylene subjected to hydrochloric acid treatment for cardiovascular implants. BioMed Res. Int. 2014, 2014, 1–7.
  • Vellayappan, M.V.; Jaganathan, S.K.; Muhamad, I.I. Unravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices. PeerJ 2014, 4, e1388, 1–24.
  • John, A.A.; Jaganathan, S.K.; Supriyanto, E.; Khudzari, A.Z.M.; Muhamad, I.I. Novel green surface modification of metallocene polyethylene by steam to enhance its hemocompatible properties. J. Appl. Polym. Sci. 2016, 133. doi:10.1002/app.43395.
  • Balaji, A.; Jaganathan, S.K.; Supriyanto, E.; Muhamad, I.I.; Khudzari, A.Z.M. Microwave assisted fibrous decoration of mPE surface utilizing aloe vera extract for tissue engineering applications. Int. J. Nanomed. 2015, 10, 1–15.
  • Fonseca, C.; PereiIa, J.M.; Fatou, J.G.; Bello, A. Sulphuric acid etching of polyethylene surfaces. J. Mater. Sci. 1985, 20, 3283–3288.
  • Cepeda-Jimenez, C.M.; Pastor-Blas, M.; Ferrandiz-Gomez, T.P.; Martin-Martinez, J.M. Surface characterization of vulcanized rubber treated with sulfuric acid and its adhesion to polyurethane. J. Adhes. Sci. Technol. 2000, 73, 135–160.
  • Zhang, B.; Luo, Y.; Pearlstein, A.J.; Aplin, J.; Liu, Y.; Bauchan, G.R.; Payne, G.F.; Wang, Q.; Xiangwu, N.; Millner, P.D. Fabrication of biomimetically patterned surfaces and their application to probing plant–bacteria interactions. ACS Appl. Mater. Interfaces 2014, 6, 467–478.
  • Lu, X.; Li, D.; Yan, H.; Yiyun, Z. Application of a modified Coomassie brilliant blue protein assay in the study of protein adsorption on carbon thin films. Surf. Coat. Tech. 2007, 201, 6843–6846.
  • Nwokem, N.C.; Nwokem, C.O.; Ella, E.E.; Osunlaja, A.A.; Usman, Y.O.; Ocholi, O.J. Adsorption of protein on titanium dioxide and titanium dioxide coated surface. J. Microbiol. Biotech. Res. 2012, 2(6), 836–840.
  • Amarnath, L.P.; Srinivas, A.; Ramamurthi, A. In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials 2006, 27, 1416–1424.
  • Delara, M.; Jian, Y.; Karen, Y.L.; Antonio, R.W.; Guillermo, A.A. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 2006, 27, 4315–4324.
  • Joseph, C.S. Concise Polymeric Materials Encyclopedia, 1st ed., CRC Press: Boca Raton, FL, 1998, pp. 1–1760.
  • Tetsuzo, A.; Hitoshi, K. Heart Replacement: Artificial Heart - 5, Springer: Tokyo, 1996, pp. 1–424.
  • Dadbin, S. Surface modification of LDPE film by CO2 pulsed laser irradiation. Eur. Polym. J. 2002, 38, 2489–2495.
  • Gomathi, N.; Sudarsan, N. Investigation on argon–oxygen plasma induced blood compatibility of polycarbonate and polypropylene. J. Adhes. Sci. Technol. 2009, 23, 1811–1826.
  • Geetha, R.; Torikai, A.; Nagaya, S.; Fueki, K. Photo-oxidative degradation of polyethylene: Effect of polymer characteristics on chemical changes and mechanical properties. Part 1 quenched polyethylene. Polym. Degrad. Stab. 1987, 19, 279–292.
  • Pacifici, E.; Bossu, M.; Giovannetti, A.; La Torre, G.; Guerra, F.; Polimeni, A. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment. Annali di Stomatologia 2013, 4, 250–258.
  • Wei, J.; Igarashi, T.; Okumori, N.; Maetani, T.; Liu, B.S.; Yoshinari, M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 2009, 4, 40.
  • Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725.
  • LC, X. Effect of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007, 28, 3273–3283.
  • Jaganathan, S.K.; Balaji, A.; Vellayappan, M.V.; Subramanian, A.P.; John, A.A.; Asokan, M.K.; Supriyanto, E. Review: Radiation-induced surface modification of polymers for biomaterial application. J. Mater. Sci. 2014, 50, 2007–2018.
  • Agaska, B.; Bacakova, L.; Filova, E.; Balík, K. Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol Res. 2010, 59, 309–322.
  • Kim, M.H.; Kino-Oka, M.; Kawase, M.; Yagi, K.; Taya, M. Response of human epithelial cells to culture surfaces with varied roughnesses prepared by immobilizing dendrimers with/without D-glucose display. J. Biosci. Bioeng. 2007, 103, 192–199.
  • Huanga, N.; Yanga, P.; Lenga, Y.X.; Chena, J.Y.; Suna, H.; Wanga, J.; Wanga, G.J.; Dingb, P.D.; Xic, T.F.; Leng, Y. Hemocompatibility of titanium oxide films. Biomaterials 2003, 24, 2177–2187.
  • Wang, J.; Pan, C.J.; Huang, N.; Sun, H.; Yang, P.; Leng, Y.X.; Chen, J.Y.; Wan, G.J.; Chu, P.K. Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surf. Coat. Technol. 2005, 196, 307–311.
  • Wen, C.L.; Da, G.Y.; Ming, C.Y. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids Surf. B. 2005, 44, 82–92.
  • Kaiyong, C.; Bossert, J.; Klaus, D.J. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf. B. 2006, 49, 136–144.
  • Wu, Y.; Simonovsky, F.I.; Ratner, B.D.; Horbett, T.A. The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J. Biomed. Mater. Res. A 2005, 74A, 722–738.
  • Zhengbao, Z. Yan, M.X.; Yue, M.L.; Zhifei, D. Self-assembled hemocompatible coating on poly(vinyl chloride) surface. Appl. Surf. Sci. 2009, 256, 805–814.
  • Zingg, W.; Neumann, A.W.; Strong, A.B.; Hum, O.S.; Absolom, D.R. Effect of surface roughness on platelet adhesion under static and under flow conditions. Can. J. Surg. 1982, 1, 16–19.
  • Zhang, Q.; Liao, J.F.; Shi, X.H.; Qiu, Y.G.; Chen, H.J. Surface biocompatible construction of polyurethane by heparinization. J. Polym. Res. 2015, 22, 68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.