231
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Octene Level in EOC–PDMS Thermoplastic Vulcanizates for Cable Insulation Applications

, &

References

  • Legge, N.R.; Holden, G.; Schroeders, H.E. Thermoplastic Elastomers: A Comprehensive Review, Hanser: Munich, 1987, Chapter 1; pp. 1–25.
  • Bhowmick, A.K.; Stephens, H.L. Handbook of Elastomers: New Developments and Technology, Marcel Dekker: New York, 1988, Chapter 7, pp. 311–320.
  • De, S.K.; Bhowmick, A.K. Thermoplastic Elastomers from Rubber Plastic Blends, Horwood: London, 1990, Chapter 1, pp. 1–20.
  • Bailey, J.T.; Bishop, E.T.; Hendricks, W.R.; Holden, G.; Legge, N.R. Thermoplastic elastomers-physical properties and applications. Rubber Age 1966, 98, 69–74.
  • Fischer, W.K. Thermoplastic blend of partially cured monoolefin copolymer rubber and polyolefin plastic. US Patent 3758643, 1973.
  • Gessler, A.M.; Haslett, W.H. Process for preparing a vulcanized. US Patent 3037954, 1962.
  • Fischer, W.K. Thermoplastic blend of partially cured monoolefin copolymer rubber and polyolefin plastic. US Patent 3862106, 1975.
  • Coran, A.Y.; Patel, R. Rubber-thermoplastic compositions. Part I. EPDM-polypropylene thermoplastic vulcanizates. Rubber Chem. Technol. 1980, 53, 141–150.
  • Coran, A.Y.; Das, B.; Patel, R.P. Thermoplastic vulcanizates of olefin rubber and polyolefin resin. US Patent 4130535, 1978.
  • Coran, A.Y.; Patel, R.P.; Williams, D. Rubber-thermoplastic compositions. Part V. Selecting polymers for thermoplastic vulcanizates. Rubber Chem. Technol. 1982, 55, 116–136.
  • Baranwal, K.C.; Stephens, H.L. Basic Elastomer Technology, American Chemical Society: Akron, 2001, Chapter 7, pp. 330–350.
  • Walker, B.M.; Rader, C.P. Handbook of Thermoplastic Elastomers, 2nd ed., Van Nostrand Reinhold: New York, 1988, Chapter 1, pp. 1–30.
  • Kurian, J.; Nando, G.B. Scanning electron microscopy studies on wear of HDPE-filled natural rubber vulcanizates. Wear 1988, 127, 139–147.
  • Kurian, J.; Akhtar, S.; Nando, G.B.; De, S.K. Scanning electron microscopy studies on tensile failure of polyethylene-filled natural rubber vulcanizates. J. Appl. Polym. Sci. 1989, 37, 961–975.
  • Jose, J.; Nag, A.; Nando, G.B. Processing and characterization of recycled polypropylene and acrylonitrile butadiene rubber blends. J. Polym. Environ. 2010, 18, 155–166.
  • Puydak, R.C.; Hazelton, D.R. New butyl-based dvas act like thermoset rubbers. Plast. Eng. 1988, 44, 37–39.
  • Jiang, X.; Chen, K.; Ding, J.; Chen, Y. Structure and properties of dynamically cured thermoplastic vulcanizate based on poly (vinylidene fluoride), silicone rubber, and fluororubber. Polym. Plast. Technol. Eng. 2015, 54 (2), 209–217.
  • Chatterjee, T.; Wiessner, S.; Naskar, K.; Heinrich, G. Novel thermoplastic vulcanizates (TPVs) based on silicone rubber and polyamide exploring peroxide cross-linking. Exp. Polym. Lett. 2013, 8, 220–231.
  • Li, S.; Lang, F.; Wang, Z. Zinc dimethacrylate-reinforced thermoplastic vulcanizates based on ethylene-vinyl acetate copolymer/chlorinated polyethylene rubber/nitrile butadiene rubber blends. Polym. Plast. Technol. Eng. 2013, 52 (7), 683–689.
  • Coran, A.Y.; Patel, R. Rubber-thermoplastic compositions. Part III. Predicting elastic moduli of melt mixed rubber-plastic blends. Rubber Chem. Technol. 1981, 54, 91–100.
  • Wei, D.; He, N.; Zhao, J.; Wang, Z. Mechanical, water-swelling, and morphological properties of water-swellable thermoplastic vulcanizates based on high density polyethylene/chlorinated polyethylene/nitrile butadiene rubber/cross-linked sodium polyacrylate blends. Polym. Plast. Technol. Eng. 2015, 54 (6), 616–624.
  • Babu, R.R.; Singha, N.K.; Naskar, K. Effects of mixing sequence on peroxide cured polypropylene (PP)/ethylene octene copolymer (EOC) thermoplastic vulcanizates (TPVs). Part. I. Morphological, mechanical and thermal properties. J. Polym. Res. 2010, 17, 657–671.
  • Babu, R.R.; Naskar, K. Recent developments on thermoplastic elastomers by dynamic vulcanization. Adv. Polym. Sci. 2011, 239, 219–248.
  • Babu, R.R.; Singha, N.K.; Naskar, K. Studies on the influence of structurally different peroxides in polypropylene/ethylene alpha olefin thermoplastic vulcanizates (TPVs). Exp. Polym. Lett. 2008, 2, 226–236.
  • Basuli, U.; Chaki, T.K.; Naskar, K. Mechanical properties of thermoplastic elastomers based on silicone rubber and an ethylene-octene copolymer by dynamic vulcanization. J. Appl. Polym. Sci. 2008, 108, 1079–1085.
  • Basuli, U.; Chaki, T.K.; Naskar, K. Influence of Engage® copolymer type on the properties of Engage®/silicone rubber-based thermoplastic dynamic vulcanizates. Exp. Polym. Lett. 2008, 2, 846–854.
  • Mishra, J.K.; Hwang, K.J.; Chang, S.H. Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride. Polymer 2005, 46, 1995–2002.
  • Graces, J.; Moll, D.; Bicerano, J.; Fibiger, R. Polymeric nanocomposites for automotive applications. Adv. Mat. 2000, 12, 1835–1839.
  • Cherney, E.A. Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1108–1115.
  • Meyer, H.; Cherney, E.A.; Jayaram, S.H. The role of inorganic fillers in silicone rubber for outdoor insulation alumina tri-hydrate or silica. IEEE Electr. Insul. Mag. 2004, 20, 13–21.
  • Giri, R.; Sureshkumar, M.; Naskar, K.; Bharadwaj, Y.K.; Sharma, K.S.S.; Sabharwal, S.; Nando, G.B. Electron beam irradiation of LLDPE and PDMS rubber blends: studies on the physicomechanical properties. Adv. Polym. Technol. 2008, 27, 98–107.
  • Jana, R.N.; Nando, G.B.; Khastgir, D. Compatibilised blends of LDPE and PDMS rubber as effective cable insulants. Plast. Rubber Compos. 2003, 32, 11–20.
  • Giri, R.; Naskar, K.; Nando, G.B. Effect of electron beam irradiation on dynamic mechanical, thermal and morphological properties of LLDPE and PDMS rubber blends. Radiat. Phys. Chem. 2012, 81, 1930–1942.
  • Santra, R.N.; Samantaray, B.K.; Bhowmick, A.K.; Nando, G.B. In situ compatibilization of low-density polyethylene and polydimethylsiloxane rubber blends using ethylene–methyl acrylate copolymer as a chemical compatibilizer. J. Appl. Polym. Sci. 1993, 49, 1145–1158.
  • Santra, R.N.; Roy, S.; Bhowmick, A.K.; Nando, G.B. Studies on miscibility of blends of ethylene methyl acrylate and polydimethyl siloxane rubber. Polym. Eng. Sci. 1993, 33, 1352–1359.
  • Jana, R.N.; Bhunia, H.P.; Nando, G.B. An investigation into the mechanical properties and curing kinetics of blends of low-density polyethylene and polydimethyl siloxane rubber. Thermochim. Acta 1997, 302, 1–9.
  • Jana, R.N.; Bhattacharya, A.K.; Nando, G.B.; Gupta, B.R. Compatibilized blends of low density polyethylene and polydimethylsiloxane rubber: rheological behaviour. Kautsch. Gummi Kunstst. 2002, 55, 660–664.
  • Jana, R.N.; Nando, G.B. Thermogravimetric analysis of blends of low-density polyethylene and poly (dimethyl siloxane) rubber: The effects of compatibilizers. J. Appl. Polym. Sci. 2003, 90, 635–642.
  • Jana, R.N.; Mukunda, P.; Nando, G.B. Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly (dimethyl siloxane) rubber. Polym. Degrad. Stab. 2003, 80, 75–82.
  • Jana, R.N.; Nando, G.B. Rheological behavior of low-density polyethylene (LDPE)-polydimethylsiloxane rubber (PDMS) blends. J. Elast. Plast. 2005, 37, 149–163.
  • Giri, R.; Naskar, K.; Nando, G.B. Evaluation of process parameters using Taguchi methodology for blends of low density polyethylene (LDPE) and polydimethyl siloxane (PDMS) rubber. Plast. Rubber Compos. 2012, 41, 341–349.
  • Giri, R.; Naskar, K.; Nando, G.B. In-situ compatibilization of linear low-density polyethylene and Polydimethyl siloxane rubber through reactive blending. Mater. Exp. 2012, 2, 37–50.
  • Padmanabhan, R.; Naskar, K.; Nando, G.B. Investigation into the structure-property relationship and technical properties of TPEs and TPVs derived from ethylene octene copolymer (EOC) and polydimethyl siloxane (PDMS) rubber blends. Mater. Res. Exp. 2015, 2, 105301.
  • Flory, P.J.; Rehner, J. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 521–526.
  • Mullins, L.; Tobin, N.R. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J. Appl. Polym. Sci. 1965, 9, 2993–3009.
  • Padmanabhan, R.; Naskar, K.; Nando, G.B. Radiation crosslinked blends based on an ethylene octene copolymer (EOC) and polydimethyl siloxane (PDMS) rubber with special reference to the optimization of processing parameters. RSC Adv. 2015, 5, 99405–99417.
  • Svoboda, P.; Poongavalappil, S.; Theravalappil, R.; Svobodova, D.; Mokrejs, P. Effect of octene content on peroxide crosslinking of ethylene-octene copolymers. Polym. Int. 2013, 62, 184–189.
  • Poongavalappil, S.; Svoboda, P.; Theravalappil, R.; Svobodova, D.; Ougizawa, T.; Sedlacek, T. Influence of branching density on the cross-linkability of ethylene-octene copolymers. Polym. J. 2013, 45, 651–658.
  • Paul, S.; Kale, D. Impact modification of polypropylene copolymer with a polyolefinic elastomer. J. Appl. Polym. Sci. 2000, 76, 1480–1484.
  • Padmanabhan, R.; Naskar, K.; Nando, G.B. Exploring the effect of radiation crosslinking on the physico-mechanical, dynamic mechanical and dielectric properties of EOC–PDMS blends for cable insulation applications. Polym. Adv. Tech. 2017, 28, 80–93.
  • Padmanabhan, R.; Naskar, K.; Nando, G.B. Effect of electron beam irradiation on the structure-property relationship of ethylene octene copolymer and polydimethyl siloxane rubber blends. Rubb. Chem. Tech. 2016, 89, 477–498.
  • Dey, P.; Naskar, K.; Dash, B.; Nair, S.; Unnikrishnan, G.; Nando, G.B. Thermally cross-linked and sulphur-cured soft TPVs based on S-EB-S and S-SBR blends. RSC Adv. 2014, 4, 35879–35895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.