384
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Flame Retardant and Mechanical Properties of Toughened Phenolic Foams Containing a Melamine Phosphate Borate

, &

References

  • Stefani, P.M.; Barchi, A.T.; Sabugal, J.; Vazquez, A. Characterization of epoxy foams. J. Appl. Polym. Sci. 2003, 90, 2992–2996.
  • Stec, A.A.; Hull, T.R. Assessment of the fire toxicity of building insulation materials. Energy Build. 2011, 43, 498–506.
  • Sui, X.; Wang, Z. Flame-retardant and mechanical properties of phenolic foams toughened with polyethylene glycol phosphates. Polym. Adv. Technol. 2013, 24, 593–599.
  • Zhuang, Z.H.; He, B.; Yang, Z.G. Preparation and characterisation of phenolic foam/HTAB-ATP nanocomposites. Plast. Rubber Compos. 2010, 39, 460–464.
  • Yang, H.Y.; Wang, X.; Yu, B.; Yuan, H.X.; Song, L.; Hu, Y. A novel polyurethane prepolymer as toughening agent: Preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam. J. Appl. Polym. Sci. 2013, 128, 2720–2728.
  • Zhou, J.; Yao, Z.; Chen, Y.; Wei, D.; Xu, T. Fabrication and mechanical properties of phenolic foam reinforced with graphene oxide. Polym. Compos. 2014, 35, 581–586.
  • Zhou, J.; Yao, Z.; Chen, Y.; Wei, D.; Wu, Y. Thermomechanical analyses of phenolic foam reinforced with glass fiber. Mat. Mater. Design 2013, 51, 131–135.
  • Shen, H.; Nutt, S. Mechanical characterization of short fiber reinforced phenolic foam, Compos. Part A 2003, 34, 899–906.
  • Hu, X.; Cheng, W.; Nie, W.; Wang, D. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam. Polym. Compos. 2015. doi:10.1002/pc.23411.
  • Yu, Z.; Li, J.; Yang, L.; Yao, Y.; Su, Z.; Chen, X. Synthesis and properties of nano carboxylic acrylonitrile butadiene rubber latex toughened phenolic resin. J. Appl. Polym. Sci. 2012, 123, 1079–1084.
  • Auad, M.L.; Zhao, L.; Shen, H.; Nutt, S.R.; Sorathia, U. Flammability properties and mechanical performance of epoxy modified phenolic foams. J. Appl. Polym. Sci. 2007, 104, 1399–1407.
  • Gao, M.; Yang, Y.L.; Xu, Z.Q. Mechanical and flame retardant properties of phenolic foam modified with polyethyleneglycol as toughening agent. Adv. Mater. Res. 2013, 803, 21–25.
  • Yang, H.; Wang, X.; Yu, B.; Yuan, H.; Song, L.; Hu, Y.; Yuen, R.; Yeoh, G.H. A novel polyurethane prepolymer as toughening agent preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam. J. Appl. Polym. Sci. 2012, 128, 2720–2728.
  • Liu, D.; Cai, G.P.; Wang, J.; Tan, X.F.; Lu, H.D.; Zhang, S.Y.; Dai, Q.Q. Thermal and flammability performance of polypropylene composites containing melamine and melamine phosphate-modified α -type zirconium phosphates, J. Appl. Polym. Sci. 2014, 131, 40254–40259.
  • Liu, L.; Ye, Z. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polym. Degrad. Stab. 2009, 94, 1972–1978.
  • Abdalla, M.O.; Ludwick, A.; Mitchell, T. Boron-modified phenolic resins for high performance applications. Polymer 2003, 44, 7353–7359.
  • Liu, L.; Fu, M.; Wang, Z. Synthesis of boron-containing toughening agents and their application in phenolic foams. Ind. Eng. Chem. Res. 2015, 54, 1962–1970.
  • Wang, K.; Duan, D.; Wang, R.; Liu, D.; Tang, L.; Cui, T. Pressure-induced phase transition in hydrogen-bonded supramolecular adduct formed by cyanuric acid and melamine. J. Phys. Chem. B 2009, 113, 14719–14724.
  • Wang, Z.; Lv, P.; Hu, Y.; Hu, K.L. Thermal degradation study of intumescent flame retardants by TG and in situ FTIR: Melamine phosphate and its mixture with pentaerythritol. J. Anal. Appl. Pyrol. 2009, 86, 207–214.
  • Martín, C.; Ronda, J.C.; Cádiz, V. Novel flame-retardant thermosets: Diglycidyl ether of bisphenol A as a curing agent of boron-containing phenolic resins. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1701–1710.
  • Liu, J.; Ying, P.; Xin, Q.; Li, C. Adsorption of boric acid trimethyl ester on silica surface studied by FT-IR spectroscopy. Appl. Surf. Sci. 1998, 126, 16–20.
  • Lv, P.; Wang, Z.; Hu, K.; Fan, W. Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym. Degrad. Stab. 2005, 90, 523–534.
  • Wang, Y.; Fu, X.; Yu, X. Effects of surfactants on the performance of the hydrothermal synthesis nano ZnO powder. Chin. Ceram. 2008, 44, 3–9.
  • Chen, X.; Liu, Y.; Bai, S.; Wang, Q. Macromolecular nitrogen-phosphorous compound/expandable graphite synchronous expansion flame retardant polystyrene foam. Polym. Plast. Tech. Eng. 2014, 53, 1402–1407.
  • Yang, Z.J.; Yuan, L.L.; Gu, Y.Z.; Li, M.; Sun, Z.J.; Zhang, Z.G. Improvement in mechanical and thermal properties of phenolic foam reinforced with multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2013, 130, 1479–1488.
  • Yang, C.; Zhuang, Z.H.; Yang, Z.G. Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam. J. Appl. Polym. Sci. 2014, 131, 39734–39741.
  • Hu, X.M.; Wang, D.M.; Cheng, W.M.; Zhou, G. Effect of polyethylene glycol on the mechanical property, microstructure, thermal stability, and flame resistance of phenol-urea-formaldehyde foams. J. Mater. Sci. 2014, 49, 1556–1565.
  • Choi, M.H.; Byun, H.Y.; Chung, I.J. The effect of chain length of flexible diacid on morphology and mechanical property of modified phenolic resin. Polymer 2002, 43, 4437–4444.
  • Lee, L.J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer nanocomposite foams. Compos Sci. Tech. 2005, 65, 2344–2363.
  • Ibibikcan, E.; Kaynak, C. Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials. J. Fire Sci. 2013, 32, 199–120.
  • Jiang, S.; Shi, Y.; Qian, X.; Zhou, K.; Xu, H.; Luo, S. Synthesis of a novel phosphorus- and nitrogen-containing acrylate and its performance as an intumescent flame retardant for epoxy acrylate. Ind. Eng. Chem. Res. 2013, 52, 17442–17450.
  • Tai, Q.; Song, L.; Feng, H.; Tao, Y.; Yuen, R.K.; Hu, Y. Investigation of a combination of novel polyphosphoramide and boron-containing compounds on the thermal and flame-retardant properties of polystyrene. J. Polym. Res. 2012, 19, 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.