112
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Novel Synthetic Approach to Tune the Surface Properties of Polymeric Films: Ionic Exchange Reaction between Sulfonated Polyarylethersulfones and Ionic Liquids

, , , &

References

  • Yuan, Z.; Huang, J.; Peng, C.; Wang, M.; Wang, X.; Bin, J.; Fu, X. Facile preparation of superhydrophobic candle soot coating and its wettability under condensation. Appl. Phys. A 2016, 122 (2), 1–9. doi:10.1007/s00339-016-9664-z.
  • Vafaei, S.; Tuck, C.; Ashcroft, I.; Wildman, R. Surface microstructuring to modify wettability for 3D printing of nano-filled inks. Chem. Eng. Res. Des. 2016, 109, 414–420. doi:10.1016/j.cherd.2016.02.004.
  • Dey, T.; Daragh, N. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. Sol-Gel Sci. Technol. 2016, 77 (1), 1–27. doi:10.1007/s10971-015-3879-x.
  • Iwasaki, Y.; Kazuhiko, I. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci. Technol. Adv. Mater. 2012, 13 (6). doi:10.1088/1468-6996/13/6/064101.
  • Wang, Z.; Elimelech, M.; Lin, S. Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Environ. Sci. Technol. 2016, 50 (5), 2132–2150. doi:10.1021/acs.est.5b04351.
  • Rtimi, S.; Pulgarin, C.; Sanjines, R. Accelerated self-cleaning by Cu promoted semiconductor binary-oxides under low intensity sunlight irradiation. Kiwi. J. Appl. Catal. B 2016, 180, 648–655. doi:10.1016/J.Apcatb.2015.06.047.
  • Smitha, V.S.; Jaimy, K.B.; Shajesh, P.; Jeena, J.K.; Warrier, K.G. UV curable hydrophobic inorganic–organic hybrid coating on solar cell covers for photocatalytic self cleaning application. J. Mat. Chem. 2013, 1, 12641. doi:10.1039/c3ta12314f.
  • Wojciechowski, L.; Kubiak, K.J.; Mathia, T.G. Roughness and wettability of surfaces in boundary lubricated scuffing wear. Tribol. Int. 2016, 93, 593–601. doi:10.1016/J.Triboint.2015.04.013.
  • Qi, R.; Hu, Y.; Wang, Y.; Lu, L.J. A new approach to enhance the heat and mass transfer of liquid desiccant dehumidification with a titanium dioxide superhydrophilic self-cleaning coating. Cleaner Prod. 2016, 112, 3555–3561. doi:10.1016/J.Jclepro.2015.10.115.
  • Callies, M., Quéré, D. On water repellency. Soft Mater. 2005, 1, 55. doi:10.1039/b501657f.
  • Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. doi:10.1146/annurev.matsci.38.060407.132434.
  • Jordan, J.H.; Gibb, B.C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015, 44 (2), 547–585. doi:10.1039/C4CS00191E.
  • Liu, X.; Wang, L.; Hao, J.; Chu, L. Pulsed plasma polymerization of perfluorooctyl ethylene for transparent hydrophobic thin coatings. Plasma Sci. Technol. 2015, 17, 1013–1018. doi:10.1088/1009-0630/17/12/06.
  • Kato, K.; Yagami, H. Plasma vapor deposition. Plasma vapor deposition, U.S. Patent No 4,446,168, 1984.
  • He, T.; Wang, Y.; Zhang, Y.; Xu, T.; Liu, T. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. Corros. Sci. 2009, 51 (8), 1757–1761. doi:10.1016/j.corsci.2009.04.027.
  • Marmur, A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 2003, 19 (20), 8343–8348. doi:10.1021/la0344682.
  • Nakajima, A.; Abe, K.; Hashimoto, K.; Watanabe, T. Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 2000, 376 (1), 140–143. doi:10.1016/S0040-6090(00)01417-6.
  • Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super‐hydrophobic surfaces: from natural to artificial. Adv. Mater. 2002, 14 (24), 1857–1860. doi:10.1002/adma.200290020.
  • Chen, C.; Wang, J.; Chen, Z. Surface restructuring behavior of various types of poly (dimethylsiloxane) in water detected by SFG. Langmuir 2004, 20 (23), 10186–10193. doi:10.1021/la049327 u.
  • Giordano, S.; Longhi, M.; Formaro, L.; Farina, H.; Di Silvestro, G. Electrochemical behaviour of PES ionomer and Pt-free catalyst for PEMFCs. J. Electrochem. Sci. Eng. 2013, 3 (3), 115–123. doi:10.5599/jese.2013.0035.
  • Gohil, G.S.; Nagarale, R.H.; Binsu, V.V.; Shahi, V.K. Preparation and characterization of monovalent cation selective sulfonated poly (ether ether ketone) and poly (ether sulfone) composite membranes. J. Colloid Interface Sci. 2006, 298 (2), 845–853. doi:10.1016/j.jcis.2005.12.069.
  • Falciola, L.; Checchia, S.; Pifferi, V.; Farina, H.; Ortenzi, M.A.; Sabatini, V. Electrodes modified with sulphonated poly (aryl ether sulphone): effect of casting conditions on their enhanced electroanalytical performance. Electrochim. Acta 2016, 57, 142–149. doi.org/10.1016/j.electacta.2016.02.110.
  • Bai, P.; Cao, X.; Zhang, Y.; Yin, Z.; Wei, Q.; Zhao, C. Modification of a polyethersulfone matrix by grafting functional groups and the research of biomedical performance. J. Biomat. Sci. 2010, 21 (12), 1559–1572. doi:10.1163/092050609x12519805626158.
  • Balster, J.; Krupenko, O.; Pünt, I.; Stamatialis, D.F.; Wessling, M. Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly (ether ether ketone). J. Membr. Sci. 2005, 263 (1), 137–145. doi:10.1016/j.memsci.2005.04.019.
  • Kang, M.S.; Choi, Y.J.; Yoon, T.H.; Moon, S.H.J. Electrochemical characterization of sulfonated poly (arylene ether sulfone) (S-PES) cation-exchange membranes. Membr. Sci. 2003, 216 (1), 39–53. doi:10.1016/S0376-7388(03)00045-0.
  • Bikson, B.; Coplan, M.J.; Gotz, G. Compositions and method of preparation by chlorosulfonation of difficultly sulfonatable poly (ether sulfone). Compositions and method of preparation by chlorosulfonation of difficultly sulfonatable poly (ether sulfone), U.S. Patent No 4, 508, 852, 1985.
  • Blanco, J.F.; Nguyen, Q.T.; Schaetzel, P. Sulfonation of polysulfones: Suitability of the sulfonated materials for asymmetric membrane preparation. J. Appl. Polym. Sci. 2002, 84 (13), 2461–2473. doi:10.1002/app.10536.
  • Jutemar, E.P.; Jannasch, P. Locating sulfonic acid groups on various side chains to poly(arylene ether sulfone)s: Effects on the ionic clustering and properties of proton-exchange membranes. J. Membr. Sci. 2010, 351(1–2), 87–95. doi:10.1016/j.memsci.2010.01.036.
  • Harrison, W.L.; Wang, F.; Mecham, J.B.; Bhanu, V.A.; Hill, M.; Kim, Y.S.; McGrath, J.E. Influence of the bisphenol structure on the direct synthesis of sulfonated poly (arylene ether) copolymers. I. J. Polym. Sci. Part A Polym. Chem. 2003, 41 (14), 2264–2276. doi:10.1002/pola.10755.
  • Higashihara, T.; Matsumoto, K.; Ueda, M. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 2009, 50 (23), 5341–5357. doi:10.1016/j.polymer.2009.09.001.
  • Sabatini, V.; Checchia, S.; Farina, H.; Ortenzi, M.A. Homogeneous synthesis and characterization of sulfonated polyarylethersulfones having low degree of sulfonation and highly hydrophilic behavior. Macromol. Res. 2016, 24, 800–810.
  • Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99 (8), 2071–2084. doi:10.1021/cr980032 t.
  • Fuller, J.; Breda, A.C.; Carlin, R.T. Ionic liquid‐polymer gel electrolytes. J. Electrochem. Soc. 1997, 144 (4), L67–L70. doi:10.1149/1.1837555.
  • Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willaeur, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3 (4), 156–164. doi:10.1039/B103275P.
  • Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 2005, 109 (13), 6103–6110. doi:10.1021/jp044626d.
  • Soliveri, G.; Sabatini, V.; Farina, H.; Ortenzi, M.A.; Meroni, D.; Colombo, A. Double side self-cleaning polymeric materials: the hydrophobic and photoactive approach. Colloid. Surf. A Physochem. Eng. Asp. 2015, 483, 28–291. doi:10.1016/j.colsurfa.2015.06.059.
  • Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 1982, 21 (3), 1263–1264. doi:10.1021/ic00133a078.
  • Browne, C.; Tabor, R.F.; Grieser, F.; Dagastine, R.R. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: Effect of collision speed, polyelectrolyte concentration and molar mass. J. Colloid. Int. Sci. 2015, 1 (449), 236–245. doi:10.1016/j.jcis.2014.12.076.
  • Li, Y.; Wang, F.; Yang, J.; Liu, D.; Roy, A.; Case, S.; Lesko, J.; McGrath, J. Synthesis and characterization of controlled molecular weight disulfonated poly(arylene ether sulfone) copolymers and their applications to proton exchange membranes. Polymer 2006, 47, 11. doi:10.1016/j.polymer.2006.03.003.
  • Wang, L.R.; Qin, H.; Nie, S.Q.; Sun, S.D.; Ran, F.; Zhao, C.S. Direct synthesis of heparin-like poly (ether sulfone) polymer and its blood compatibility. Acta Biomater. 2013, 9, 8851–8863. doi:10.1016/j.actbio.2013.07.010.
  • Harrison, W.L.; Hickner, M.A.; Kim, Y.S.; McGrath, J.E. Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: synthesis, characterization, and performance – a topical review. Fuel Cells 2005, 5 (2), 201–212. doi:10.1002/fuce.200400084.
  • Wang, M.; Wu, L.G.; Mo, J.X.; Gao, C.J. The preparation and characterization of novel charged polyacrylonitrile/PES-C blend membranes used for ultrafiltration. J. Membr. Sci. 2006, 274 (1), 200–208. doi:10.1016/j.memsci.2005.05.035.
  • Yeo, J.K.; Sperling, L.H.; Thomas, D.A. Poly (n‐Butyl acrylate)/polystyrene interpenetrating polymer networks and related materials. II. Aspects of molecular mixing via modulus‐temperature studies. Polym. Eng. Sci. 1981, 21 (11), 696–702. doi:10.1002/pen.760211111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.