502
Views
17
CrossRef citations to date
0
Altmetric
Review

Modification of Low-surface Energy Fibers used as Reinforcement in Cementitious Composites: A Review

&

References

  • Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites, CRC Press: UK, 2006.
  • Vandewalle, L. Post cracking behaviour of hybrid steel fiber reinforced concrete. In Fracture Mechanics of Concrete and Concrete Structures–FraMCoS, Proceedings of the 6th International Conference, Catania, Italy, 2007; pp. 17–22.
  • Yao, W.; Li, J.; Wu, K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 2003, 33 (1), 27–30.
  • Brandt, A.M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 2008, 86 (1), 3–9.
  • Mukhopadhyay, S.; Khatana, S. A review on the use of fibers in reinforced cementitious concrete. J. Ind. Textiles 2014, 1528083714529806.
  • Pakravan, H.R.; Jamshidi, M.; Latifi, M. Performance of fibers embedded in a cementitious matrix. J. Appl. Polym. Sci. 2010, 116, 1247–1253.
  • Li, C.Y.; Wang, Y.; Backer, S. Effect of fiber-matrix bond strength on the crack resistance of synthetic fiber reinforced cementitious composites. Mater. Res. Soc. Symp. Proc. 1988, 114, 167–173.
  • Mobasher, B.; Li, C.Y. Effect of interfacial properties on the crack propagation in cementitious composites. Adv. Cem. Based Mater. 1996, 4, 93–105.
  • Chan, Y.-W.; Li, V.C. Age effect on the characteristics of fiber/cement interfacial properties. J. Mater. Sci. 1997, 32, 5287–5292.
  • Bentur, A. Role of interfaces in controlling durability of fiber-reinforced cements. J. Mater. Civil Eng. 2000, 12 (1), 21725.
  • Chan, Y.-W. Fiber/cement Bonding Property Modification in Relation to Interfacial Microstructure. Desertion these. Ph.D. Michigan, 1994.
  • Yan, L.; Jenkins, C.H.; Pendleton, R.L. Polyolefin fiber-reinforced concrete composites: Part II. Damping and interface debonding. Cem. Concr. Res. 2000, 30 (3), 403–410.
  • Pakravan, H.R.; Jamshidi, M.; Latifi, M.; Pacheco-Torgal, F. Evaluation of adhesion in polymeric fibre reinforced cementitious composites. Int. J. Adhesion Adhesives, 2012, 32, 53–60.
  • Zhandarov, S.; Mäder, E. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters. Compos. Sci. Technol. 2005, 65 (1), 149–160.
  • Igarashi, S.; Bentur, A.; Mindess, S. The effect of processing on the bond and interfaces in steel fiber reinforced cement composites. Cem. Concr. Compos. 1996, 18 (5), 313–322.
  • Shao, Y.; Li, Z.; Shah, S.P. Matrix cracking and interface de-bonding in fiber-reinforced cement-matrix composites. Adv. Cem. Based Mater. 1993, 1 (2), 55–66.
  • Kanda, T.; Li, V.C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. J. Mater. Civil Eng. 1998, 10 (1), 5–13.
  • Lin, Z.; Kanda, T.; Li, V.C. On interface property characterization and performance of fiber reinforced cementitious composites. Concr. Sci. Eng. 1999, 1 (3), 173–184.
  • Wu, H.C.; Li, V.C. Fiber/cement interface tailoring with plasma treatment. Cem. Concr. Compos. 1999, 21 (3), 205–212.
  • Silvaa, D.A.; Betiolia, A.M.; Gleizea, P.J.P.; Romana, H.R.; Gómeza, L.A.; J.L.D. Ribeiro. Degradation of recycled PET fibers in Portland cement-based materials. Cem. Concr. Res. 2005, 35, 1741–1746.
  • Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.-H.J.; Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240.
  • Pelisser, F.; Montedo, O.R.K.; Gleize, P.J.P.; Roman, H.R. Mechanical properties of recycled PET fibers in concrete. Mater. Res. 2012, 15 (4), 679–686.
  • Hsie, M.; Tu, C.; Song, P.S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494 (1), 153–157.
  • Song, P.S.; Hwang, S.; Sheu, B.C. Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 2005, 35 (8), 1546–1550.
  • Alhozaimy, A.M.; Soroushian, P.; Mirza, F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem. Concr. Compos. 1996, 18 (2), 85–92.
  • Pakravan, H.R.; Jamshidi, M.; Latifi, M. Investigation on polymeric fibers as reinforcement in cementitious composites: Flexural performance. J. Ind. Textiles 2012, 42 (1), 3–18.
  • Zollo, R.F. Fiber-reinforced concrete: an overview after 30 years of development. Cem. Concr. Compos. 1997, 19 (2), 107–122.
  • Mazzoli, A.; Monosi, S.; Plescia, E.S. Evaluation of the early-age-shrinkage of fiber reinforced concrete (FRC) using image analysis methods. Constr. Build. Mater. 2015, 101, 596–601.
  • Kakooei, S.; Akil, H.M.; Jamshidi, M.; Rouhi, J. The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater. 2012, 27 (1), 73–77.
  • Mazaheripour, H.; Ghanbarpour, S.; Mirmoradi, S.H.; Hosseinpour, I. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr. Build. Mater. 2011, 25 (1), 351–358.
  • Singh, S.; Shukla, A.; Brown, R. Pullout behavior of polypropylene fibers from cementitious matrix. Cem. Concr. Res. 2004, 34, 1919–1925.
  • Hannant, D.J.; Zonsveld, J.J.; Hughes, D.C. Polyropylene film in cement based materials. Composites 1978, 8 (2), 8–83.
  • Bentur, A.; Mindess, S.; Vondran, G. Bonding in polypropylene fibre reinforced concretes. Int. J. Cem. Compos. Lightweight Concr. 1989, 11 (3), 153–158.
  • Peled, A.; Guttman, H.; Bentur, A.treatments of polypropylene fibres to optimize their reinforcing efficiency in cement composites. Cem. Concr. Compos. 1992, 14, 277–285.
  • Bentur, A.; Peled, A.; Yankelevsky, D. Enhanced bonding of low modulus polymer fibers–cement matrix by means of crimped geometry. Cem. Concr. Res. 1997, 27 (7), 1099–1111.
  • Li, V.C.; Wang, Y.; Backer, S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites 1990, 21 (2), 132–142.
  • Corinaldesi, V.; Nardinocchi, A. Influence of type of fibers on the properties of high performance cement-based composites. Constr. Build. Mater. 2016, 107, 321–331.
  • Kaufmann, J.; Lübben, J.; Schwitter, E. Mechanical reinforcement of concrete with bi-component fibers. Compos. A 2007, 38 (9), 1975–1984.
  • Oh, B.H.; Kim, J.C.; Choi, Y.C. Fracture behavior of concrete members reinforced with structural synthetic fibers. Eng. Fract. Mech. 2007, 74 (1), 243–257.
  • George, B.; Hudson, S.; McCoRD, M.G. Surface features of mineral-filled polypropylene filaments. In: Christopher M. Pastore and Kiekens, P., eds. Handbook of Surface Characteristics of Fibers and Textiles, 1st ed., Marcel Dekker Publishing: New York, NY, 2001; pp. 139–160.
  • Naaman, A.E. Engineered steel fibers with optimal properties for reinforcement of cement composites. J. Adv. Concr. Technol. 2003, 1 (3), 241–252.
  • Ma, Y.; Tan, M.; Wu, K. Effect of different geometric polypropylene fibers on plastic shrinkage cracking of cement mortars. Mater. Struct. 2002, 35 (3), 165–169.
  • Ma, Y.; Zhu, B.; Tan, M.; Wu, K. Effect of Y type polypropylene fiber on plastic shrinkage cracking of cement mortar. Mater. Struct. 2004, 37 (2), 92–95.
  • Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449.
  • Richardson, A.; Coventry, K.; Boussoffara, R. Performance of dove tailed synthetic fibres in concrete. Emerg. Mater. Res. 2013, 3 (1), 52–66, ISSN 2046–0147.
  • Thomas, W.M.; Thomas, R.L.; Paglia, C.; Ralph, B.; Fenn, R. Evaluation of novel fibre reinforcement by punch testing. Concrete 2011, 45 (6), 104–108 (UK).
  • Silva, E.R.; Coelho, J.F.J.; Bordado, J.C. Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology. Constr. Build. Mater. 2013, 40, 473–480.
  • Pakravan, H.R.; Jamshidi, M.; Latifi, M. The effect of hybridization and geometry of polypropylene fibers on engineered cementitious composites reinforced by polyvinyl alcohol fibers. J. Compos. Mater. 2015, 50 (8), 1007–1020.
  • Di Maida, P.; Radi, E.; Sciancalepore, C.; Bondioli, F. Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Constr. Build. Mater. 2015, 82, 39–44.
  • Yang, Z.; Liu, J.; Liu, C.; Zhou, H. Silica modified synthetic fiber for improving interface property in FRCC. In: Barros, J.A.O. ed., 8th Rilem International Symposium on Fiber Reinforced Concrete: Challenge and Opportunities (BEFIB 2012), RILEM Publications SARL: Bagneux, France; 2012; pp. 347–357.
  • Mu, B.; Meyer, C.; Shimanovich, S. Improving the interface bond between fiber mesh and cementitious matrix. Constr. Build. Mater. 2002, 32 (5), 783–787.
  • Kim, D.H.; Park, C.G. Strength, permeability, and durability of hybrid fiber‐reinforced concrete containing styrene butadiene latex. J. Appl. Polym. Sci. 2013, 129 (3), 1499–1505.
  • Park, C.G.; Lee, J.H. Effect of styrene butadiene latex polymer contents on the bond properties of macro polypropylene fiber in polymer‐modified cement‐based composites. J. Appl. Polym. Sci. 2012, 126 (S2), 330–337.
  • Jung, J.Y.; Park, C.G.; Park, J.S. Bond properties of structural polypropylene fiber in hybrid nonstructural polypropylene and structural polypropylene fiber‐reinforced latex‐modified cement‐based composites. J. Appl. Polym. Sci. 2013, 127 (2), 1221–1227.
  • Ostertag, C.P.; Yi, C.K.; Vondran, G. Tensile strength enhancement in interground fiber cements composites. Cem. Concr. Compos. 2001, 23, 419–425.
  • Christine, E.D.; Dorel, F.; Dorina, B.; Michelle, R.N.; Pouria, P.; Rolf, S. Effect of UV and UV–ozone treatment of polyolefin fibers on toughness of fiber concrete composite. Adv. Civil Eng. Mater. 2013, 2 (1), 51–61.
  • Denes, F.; Feldman, D.; Hua, Z.Q.; Zheng, Z.; Young, R.A. Cementitious-matrix composites from SiCl4-plasma-activated polypropylene fibres. J. Adhesion Sci. Technol. 1996, 10 (1), 61–77.
  • Chen, P.; Wang, J.; Wang, B.; Li, W.; Zhang, C.; Li, H.; Sun, B. Improvement of interfacial adhesion for plasma-treated aramid fiber-reinforced poly(phthalazinone ether sulfone ketone) composite and fiber surface aging effects. Surf. Interface Anal. 2009, 41, 38–43.
  • Li, V.; Wu, H.C.; Chan, Y.W. Effect of plasma treatment of polyethylene fibers on interface and cementitious composite properties. J. Am. Ceram. Soc. 1996, 79 (3), 700.
  • C. Zhang, V.S.; Gopalaratnam, H.K.; Yasuda. Plasma treatment of polymeric fibers for improved performance in cement matrices. J. Appl. Polym. Sci. 2000, 76, 1985–1996.
  • Wu, H.-C.; Li, V.C. Fiber/cement interface tailoring with plasma treatment. Cem. Concr. Compos. 1999, 21, 205–212.
  • Feldman, D.; Denes, F.; Zeng, Z.; Denes, A.R.; Banu, D. Polypropylene fiber–matrix bonds in cementitious composites. J. Adhesion Sci. Technol. 2000, 14 (13), 1705–1721.
  • Tosun, K.; Felekoğlu, B.; Baradan, B. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading. Cem. Concr. Compos. 2012, 34 (4), 508–520.
  • Felekoglu, B.; Tosun, K.; Baradan, B. A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites. J. Mater. Process. Technol. 2009, 209 (11), 5133–5144.
  • Huang, F.; Wei, Q.; Wang, X.; Xu, W. Dynamic contact angles and morphology of PP fibres treated with plasma. Polym. Test. 2006, 25 (1), 22–27.
  • Wei, Q.F. Surface characterization of plasma-treated polypropylene fibers. Mater. Charact. 2004, 52 (3), 231–235.
  • Payrow, P.; Nokken, M.R.; Banu, D.; Feldman, D. Effect of surface treatment on the post-peak residual strength and toughness of polypropylene/polyethylene-blended fiber-reinforced concrete. J. Compos. Mater. 2011, 0021998311399481.
  • Chou, L.H.; Lin, L.K.; Lee, M.T. On the improvement of fiber reinforced concrete through surface modification 925 of polypropylene by grafting method. Adv. Mat. Res. 2011, 194, 1693–1696.
  • Garg, D.H.; Lenk, W.; Berwald, S.; Lunkwitz, K.; Simon, F.; Eichhorn, K.J. Hydrophilization of microporous polypropylene celgard1 membranes by the chemical modification technique. J. Appl. Polym. Sci. 1996, 60 (12), 2087–2104.
  • Duann, Y.F.; Chen, Y.C.; Shen, J.T.; Lin, Y.H. Thermal induced graft polymerization using peroxide onto polypropylene fiber. Polymer 2004, 45 (20), 6839–6843.
  • Mukhertee, A.K.; Gupta, B.D. Radiation-induced graft copolymerization of methacrylic acid onto polypropylene fibers. IV. Thermal behavior. J. Appl. Polym. Sci. 1985, 30 (8), 3479–3491.
  • Mukhertee, A.K.; Gupta, B.D. Radiation-induced graft copolymerization of methacrylic acid onto polypropylene fibers. II. Effect of solvents. J. Appl. Polym. Sci. 1985, 30 (6), 2655–2661.
  • Yao, Z.P.; Rånby, B. Surface modification by continuous graft copolymerization. IV. Photoinitiated graft copolymerization onto polypropylene fiber surface. J. Appl. Polym. Sci. 1990, 41 (7–8), 1469–1478.
  • Vahdat, A.; Bahrami, H.; Ansari, N.; Ziaie, F. Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam. Rad. Phys. Chem. 2007, 76 (5), 787–793.
  • Buchenska, J. Polypropylene fibers grafted with poly (acrylic acid). J. Appl. Polym. Sci. 2002, 83 (11), 2295–2299.
  • Pei, M.; Wang, D.; Zhao, Y.; Hu, X.; Xu, Y.; Wu, J.; Xu, D. Surface treatments of subdenier monofilament polypropylene fibers to optimize their reinforcing efficiency in cementitious composites. J. Appl. Polym. Sci. 2004, 92 (4), 2637–2641.
  • Lu, W.; Fu, X.; Chung, D.D.L. Comparative study of the wettability of steel, carbon, and polyethylene fibers by water. Cem. Concr. Res. 1998, 28 (6), 783–786.
  • Wang, W.; Wang, L.; Shi, Q.; Yu, H.; Chen, T.; Wang, C.; Sun, T. Progress of the surface modification of PP fiber used in concrete. Polym. Plast. Technol. Eng. 2006, 45 (1), 29–34.
  • Lovata, N.L.; Fahmy, M.F. Interfacial bond study of a chemically treated polypropylene fibre-reinforced concrete. Constr. Build. Mater. 1987, 1 (2), 83–87.
  • Tu, L.; Kruger, D.; Wagener, J.B.; Carstens, P.A.B. Wettability of surface oxyfluorinated polypropylene fibres and its effect on interfacial bonding with cementitious matrix. J. Adhesion 1997, 62 (1–4), 187–211.
  • Carstens, P.A.B.; Marais, S.A.; Thompson, C.J. Improved and novel surface fluorinated products. J. Fluor. Chem. 2000, 104 (1), 97–107.
  • Wu, Y.; Sun, Q.; Fang, H.; Ren, W.; Liu, F. Surface-treated polypropylene fiber for reinforced repair mortar cementitious composites. Compos. Interfaces 2014, 21 (9), 787–796.
  • López-Buendía, A.M.; Romero-Sánchez, M.D.; Climent, V.; Guillem, C. Surface treated polypropylene (PP) fibres for reinforced concrete. Cem. Concr. Res. 2013, 54, 29–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.