961
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Significance of Carbon Nanotube in Flame-Retardant Polymer/CNT Composite: A Review

, &

References

  • Rafique, I.; Kausar, A.; Anwar, Z.; Muhammad, B. Exploration of epoxy resins, hardening systems and epoxy/carbon nanotube composite designed for high performance materials: A review. Polym. Plast. Technol. Eng. 2015, 55, 312–333.
  • Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. nanotechnol. 2008, 3, 626–631.
  • Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174.
  • Ajayan, P.M.; Schadler, L.S.; Giannaris, C.; Rubio, A. Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 2000, 12, 750–753.
  • Kausar, A.; Rafique, I.; Anwar, Z.; Muhammad, B. Recent developments in different types of flame retardant and effect on fire retardancy of epoxy composite. Polym. Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1163607
  • Chauvet, O.; Benoit, J.M.; Corraze, B. Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 2004, 42, 949–952.
  • Kausar, A.; Rafique, I.; Muhammad, B. A review on applications of polymer/carbon nanotube and epoxy/CNT composites. Polym. Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1163588.
  • Lau, A.K.T.; Hui, D. The revolutionary creation of new advanced materials-carbon nanotube composites. Compos. Part B 2002, 33, 263–277.
  • Celzard, A.; McRae, E.; Deleuze, C.; Dufort, M.; Furdin, G.; Mareche, J.F. Critical concentration in percolating systems containing a high aspect-ratio filler. Phys. Rev. B 1996, 53, 6209–6214.
  • Schueler, R.; Petermann, J.; Schulte, K.; Wentzel, H.P. Percolation in carbon black filled epoxy resin. Macromol. Symp. 1996, 104, 261–268.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  • Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R 2004, 43, 61–102.
  • Gheysari, D.; Behjat, A. The effect of high-energy electron beam irradiation and content of ATH upon mechanical and thermal properties of EVA copolymer. Eur. Polym. J. 2002, 38, 1087–1093.
  • Kashiwagi, T.; Du, F.; Douglas, J.F.; Winey, K.I.; Harris, R.H.; Shields, J.R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928–933.
  • Beyer, G. Short communication: carbon nanotubes as flame retardants for polymers. Fire Mater. 2002, 26, 291–293.
  • Ma, H.; Song, P.; Fang, Z. Flame retarded polymer nanocomposites: Development, trend and future perspective. Sci. China Chem. 2011, 54, 302–313.
  • Ma, H.; Tong, L.; Xu, Z.; Fang, Z. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 2007, 18, 375602.
  • Lyon, R.E.; Walters, R.N. Pyrolysis combustion flow calorimetry. J. Anal. Appl. Pyrol. 2004, 71, 27–46.
  • Bourbigot, S.; Duquesne, S.; Fontaine, G.; Bellayer, S.; Turf, T.; Samyn, F. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst. 2008, 486, 325–1367.
  • Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 2000, 28, 1–63.
  • Index, L.O. Standard test method for measuring minimum oxygen concentration to support candle-like combustion of plastics. ASTM. D. 1983, 2863–13.
  • Babrauskas, V. Development of the cone calorimeter—A bench‐scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984, 8, 81–95.
  • Duquesne, S.; Samyn, F.; Bourbigot, S.; Amigouet, P.; Jouffret, F.; Shen, K. Influence of talc on the fire retardant properties of highly filled intumescent polypropylene composites. Polym. Adv. Technol. 2008, 19, 620–627.
  • Lammers, M.; Klop, E.A.; Northolt, M.G.; Sikkema, D.J. Mechanical properties and structural transitions in the new rigid-rod polymer fibre PIPD (M5’) during the manufacturing process. Polymer 1998, 39, 5999–6005.
  • Liu, Y.L.; Hsiue, G.H.; Lan, C.W.; Chiu, Y.S. Flame‐retardant polyurethanes from phosphorus-containing isocyanates. J. Polym. Sci. A 1997, 35, 1769–1780.
  • Lu, S.Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Progr. Polym. Sci. 2002, 27, 1661–1712.
  • Hergenrother, P.M.; Thompson, C.M.; Smith, J.G.; Connell, J.W.; Hinkley, J.A.; Lyon, R.E.; Moulton, R. Flame retardant aircraft epoxy resins containing phosphorus. Polymer 2005, 46, 5012–5024.
  • Toldy, A.; Toth, N.; Anna, P.; Keglevich, G.; Kiss, K.; Marosi, G. Flame retardancy of epoxy resin with phosphorus-containing reactive amine and clay minerals. Polym. Adv. Technol. 2006, 17, 778–781.
  • Hoffmann, T.; Pospiech, D.; Häußler, L.; Komber, H.; Voigt, D.; Harnisch, C.; Sandler, J. Novel phosphorous-containing aromatic polyethers—Synthesis and characterization. Macromol. Chem. Phys. 2005, 206, 423–431.
  • Gilman, J.W.; Jackson, C.L.; Morgan, A.B.; Harris, R.; Manias, E.; Giannelis, E.P.; Phillips, S.H. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 2000, 12, 1866–1873.
  • Torikai, A.; Kobatake, T.; Okisaki, F.; Shuyama, H. Photodegradation of polystyrene containing flame-retardants: Wavelength sensitivity and efficiency of degradation. Polym. Degrad. Stab. 1995, 50, 261–267.
  • Anilkumar, K.R.; Parveen, A.; Badiger, G.R.; Prasad, M.A. Effect of molybdenum trioxide (MoO 3) on the electrical conductivity of polyaniline. Phys. B: Condens. Matt. 2009, 404, 1664–1667.
  • Kryszewski, M. Heterogeneous conducting polymeric systems: Dispersions, blends, crystalline conducting networks—An introductory presentation. Synth. Met. 1991, 45, 289–296.
  • Ahmed, M. Polypropylene fibers, science and technology. Elsevier Sci. Technol. 1982, 5, 660–766.
  • Gleixner, G. Flame retardant PP fibers-latest developments. Chemic. Fiber. Int. 2001, 51, 422–426.
  • Yuan, C.Y.; Chen, S.Y.; Tsai, C.H.; Chiu, Y.S.; Chen-Yang, Y.W. Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes: Synthesis and properties. Polym. Adv. Technol. 2005, 16, 393–399.
  • Huang, G.; Gao, J.; Li, Y.; Han, L.; Wang, X. Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane. Polym. Degrad. Stab. 2010, 95, 245–253.
  • Mukhopadhyay, K., Ram, K.; Rao, K.B. Carbon nanotubes and related structures. Def. Sci. J. 2008, 58, 437–450.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136.
  • Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Ruoff, R.S.; Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33, 925–930.
  • KeLly, B.T. Physics of Graphite, Applied Science: London, 1981.
  • Tersoff, J. Anomalous corrugations in scanning tunneling microscopy: imaging of individual states. Phys. Rev. Lett. 1986, 57, 440.
  • Charlier, J.C.; Michenaud, J.P. Energetics of multilayered carbon tubules. Phys. Rev. Lett. 1993, 70, 1858.
  • Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.
  • Yakobson, B.I.; Brabec, C.J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511.
  • Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297.
  • Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.
  • Mizel, A.; Benedict, L.X.; Cohen, M.L.; Louie, S.G.; Zettl, A.; Budraa, N.K.; Beyermann, W.P. Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Phys. Rev. B 1999, 60, 3264.
  • Hone, J.; Batlogg, B.; Benes, Z.; Johnson, A.T.; Fischer, J.E. Quantized phonon spectrum of single-wall carbon nanotubes. Science 2000, 289, 1730–1733.
  • Lasjaunias, J.C.; Biljaković, K.; Benes, Z.; Fischer, J.E.; Monceau, P. Low-temperature specific heat of single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 113409.
  • Elliott, J.A.; Sandler, J.K.; Windle, A.H.; Young, R.J.; Shaffer, M.S. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 2004, 92, 095501.
  • Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174.
  • Dürkop, T.; Kim, B.M.; Fuhrer, M.S. Properties and applications of high-mobility semiconducting nanotubes. J. Phys.: Condens. Matt. 2004, 16, 553.
  • Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R 2009, 63, 100–125.
  • Irvine, D.J.; McCluskey, J.A.; Robinson, I.M. Fire hazards and some common polymers. Polym. Degrad. Stab. 2000, 67, 383–396.
  • Innes, J.D. Flame retardants and their market applications. Flame Retard. 1996, 101, 61–69.
  • Hindersinn, R.R. Historical aspects of polymer fire retardance. In: Fire and Polymers: Hazards Identification and Prevention, ACS Symposium Series, Vol. 425, 1990; pp. 87–96.
  • Gilman, J.W.; Kashiwagi, T.; Giannelis, E.P.; Manias, E.; Lomakin, S.; Lichtenhan, J.D.; Delobel, R. Fire retardancy of polymers: The use of intumescence. Le. Bras. M. 1998, 201–221.
  • Akovali, G.; Gundogan, G. Studies on flame retardancy of polyacrylonitrile fiber treated by flame-retardant monomers in cold plasma. J. Appl. Polym. Sci. 1990, 41, 2011–2019.
  • Zhao, C.; Hu, G.; Justice, R.; Schaefer, D.W.; Zhang, S.; Yang, M.; Han, C.C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 2005, 46, 5125–5132.
  • Kuan, C.F.; Chen, W.J.; Li, Y.L.; Chen, C.H.; Kuan, H.C.; Chiang, C.L. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J. Phys. Chem. Sol. 2010, 71, 539–543.
  • Gojny, F.H.; Wichmann, M.H.; Fiedler, B.; Kinloch, I.A.; Bauhofer, W.; Windle, A.H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036–2045.
  • Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385.
  • Schartel, B.; Bartholmai, M.; Knoll, U. Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym. Adv. Technol. 2006, 17, 772–777.
  • Yuen, S.M.; Ma, C.C.M.; Wu, H.H.; Kuan, H.C.; Chen, W.J.; Liao, S.H.; Wu, H.L. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites. J. Appl. Polym. Sci. 2007, 103, 1272–1278.
  • Schilde, C.; Schlömann, M.; Overbeck, A.; Linke, S.; Kwade, A. Thermal, mechanical and electrical properties of highly loaded CNT-epoxy composites–A model for the electric conductivity. Compos. Sci. Technol. 2015, 117, 183–190.
  • Chen, X.; Tao, F.; Wang, J.; Yang, H.; Zou, J.; Chen, X.; Feng, X. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Mater. Sci. Eng. A 2009, 499, 469–475.
  • Qian, D.; Dickey, E.C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868–2870.
  • Amr, I.T.; Al-Amer, A.; Al-Harthi, M.; Girei, S.A.; Sougrat, R.; Atieh, M.A. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites. Compos. Part B 2011, 42, 1554–1561.
  • Kota, A.K.; Cipriano, B.H.; Duesterberg, M.K.; Gershon, A.L.; Powell, D.; Raghavan, S.R.; Bruck, H.A. Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 2007, 40 (20), 7400–7406.
  • Lu, H.; Wilkie, C.A. Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym. Degrad. Stab. 2010, 95, 564–571.
  • Wang, D.; Echols, K.; Wilkie, C.A. Cone calorimetric and thermogravimetric analysis evaluation of halogen-containing polymer nanocomposites. Fire Mater. 2005, 29, 283–294.
  • Reddy, K.R.; Lee, K.P.; Kim, J.Y.; Lee, Y. Self-assembly and graft polymerization route to monodispersed Fe3O4@ SiO2—Polyaniline core–shell composite nanoparticles: Physical properties. J. Nanosci. Nanotechnol. 2008, 8, 5632–5639.
  • Gull, N.; Khan, S.M.; Islam, A.; Zia, S.; Shafiq, M.; Sabir, A.; Jamil, T. Effect of different oxidants on polyaniline/single walled carbon nanotubes composites synthesized via ultrasonically initiated in-situ chemical polymerization. Mater. Chem. Phys. 2016, 172, 39–46.
  • Tantawy, H.R.; Kengne, B.A.F.; McIlroy, D.N.; Nguyen, T.; Heo, D.; Qiang, Y.; Aston, D.E. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys. 2015, 118, 175501.
  • Oueiny, C.; Berlioz, S.; Perrin, F.X. Carbon nanotube–polyaniline composites. Progr. Polym. Sci. 2014, 39, 707–748.
  • Sobha, A.P.; Narayanankutty, S.K. DC conductivity retention of functionalised multiwalled carbon nanotube/polyaniline composites. Mater. Sci. Semiconductor Process. 2015, 39, 764–770.
  • Kim, B.; Koncar, V.; Devaux, E.; Dufour, C.; Viallier, P. Electrical and morphological properties of PP and PET conductive polymer fibers. Synth. Met. 2004, 146, 167–174.
  • Marosfői, B.B.; Szabo, A.; Marosi, G.; Tabuani, D.; Camino, G.; Pagliari, S. Thermal and spectroscopic characterization of polypropylene–carbon nanotube composites. J. therm. Anal. Calorim. 2006, 86, 669–673.
  • Zaikov, G.E.; Lomakin, S.M.; Kuvardina, E.V.; Novokshonova, L.A.; Shilkina, N.G.; Kozlowski, R. Thermal and combustion behaviour of PP/MWCNT composites. Oxidation Commun. 2012, 35, 438–451.
  • Zhou, T.Y.; Tsui, G.C.; Liang, J.Z.; Zou, S.Y.; Tang, C.Y.; Mišković-Stanković, V. Thermal properties and thermal stability of PP/MWCNT composites. Compos. Part B 2016, 90, 107–114.
  • Kashiwagi, T.; Grulke, E.; Hilding, J.; Groth, K.; Harris, R.; Butler, K.; Douglas, J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 2004, 45, 4227–4239.
  • Guo, S.; Zhang, C.; Wang, W.; Liu, T.; Tjiu, W.C.; He, C.; Zhang, W.D. Preparation and characterization of polyurethane/multiwalled carbon nanotube composites. Polym. Polym. Compos. 2008, 16, 501.
  • Xiong, J.; Zheng, Z.; Qin, X.; Li, M.; Li, H.; Wang, X. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 2006, 44, 2701–2707.
  • Lima, A.M.; Castro, V.G.D.; Borges, R.S.; Silva, G.G. Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros 2012, 22, 117–124.
  • Raravikar, N.R.; Schadler, L.S.; Vijayaraghavan, A.; Zhao, Y.; Wei, B.; Ajayan, P.M. Synthesis and characterization of thickness-aligned carbon nanotube–polymer composite films. Chem. Mater. 2005, 17, 974–983.
  • Berber, S.; Kwon, Y.K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613.
  • Bower, C.; Rosen, R.; Jin, L.; Han, J.; Zhou, O. Deformation of carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett. 1999, 74, 3317–3319.
  • Sinnott, S.B.; Andrews, R. Carbon nanotubes: Synthesis, properties, and applications. Crit. Rev. Sol. Stat. Mater. Sci. 2001, 26, 145–249.
  • Tang, B.Z.; Xu, H. Preparation, alignment, and optical properties of soluble poly (phenylacetylene)-wrapped carbon nanotubes. Macromolecules 1999, 32, 2569–2576.
  • Jin, Z.; Sun, X.; Xu, G.; Goh, S.H.; Ji, W. Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chem. Phys. Lett. 2000, 318, 505–510.
  • Lourie, O.; Wagner, H.D. Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 1998, 13, 2418–2422.
  • Lourie, O.; Wagner, H.D. Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl. Phys. Lett. 1998, 73, 3527–3529.
  • Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645.
  • An, K.H.; Kim, W.S.; Park, Y.S.; Moon, J.M.; Bae, D.J.; Lim, S.C.; Lee, Y.H. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 2001, 11, 387–392.
  • Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967–5971.
  • Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A. 1999, 271, 395–400.
  • Shaffer, M.S.P.; Windle, A.H. Fabrication and characterization of carbon nanotubes/poly(vinyl alcohol) composites. Adv. Mater. 1999, 11, 937–941.
  • Tong, X.; Liu, C.; Cheng, H.M.; Zhao, H.C.; Yang, F.; Zhang, X.Q. Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler–Natta polymerization. J. Appl. Polym. Sci. 2004, 92, 3697–3700.
  • Liao, K.; Seam, L.I. Interfacial characteristic of a carbon nanotubes–polystyrene composite system. Appl. Phys. Lett. 2001, 79, 4225–4227.
  • Gohardani, O.; Elola, M.C.; Elizetxea, C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progr. Aerosp. Sci. 2014, 70, 42–68.
  • Vavouliotis, A.I.; Kostopoulos, V. On the use of electrical conductivity for the assessment of damage in carbon nanotubes enhanced aerospace composites. In: Carbon Nanotube Enhanced Aerospace Composite Materials, Springer: The Netherlands, 2013; pp. 21–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.