3,364
Views
81
CrossRef citations to date
0
Altmetric
Reviews

Properties of Glass-Fiber Hybrid Composites: A Review

, , &

References

  • Hancox, N.L. Fibre Composite Hybrid Materials, Applied Science Publishers Ltd: London, 1981.
  • Chou, T.W. Microstructural Design of Fiber Composites, Cambridge Solid State Science Series, Cambridge University Press: Cambridge, 2009.
  • Gururaja, M.N.; Rao, A.N. A review on recent applications and future prospectus of hybrid composites. Int. J. Soft Comput. Eng. 2012, 1 (6), 352–355.
  • Genis, A. Composite Solutions Reinforcement Guide, Owens Corning Composite Materials, LLC: Toledo, OH, 2011.
  • Schutte, C.L. Environmental durability of glass-fiber composites. Mater. Sci. Eng. 1994, R13, 265–324.
  • Freiman, S.W. Effect of chemical environments on slow crack growth in glasses and ceramics. J. Geophys. Res. 1984, 89, 4072–4076.
  • Evans, A.G.; Weiderhorn S.M. Proof testing of ceramic materials—An analytical basis for failure prediction. Int. J. Fract. 1974, 10 (3), 379–392.
  • Ishai, O. Environmental effects on deformation, strength and degradation of unidirectional glass-fiber reinforcement plastics. Polym. Eng. Sci. 1975, 15 (7), 491–499.
  • Agarwal, B.D.; Broutman, L.J. Analysis and Performance of Fiber Composites, Wiley: New York, 1980 (SPE Monograph).
  • Bascom, W.D. The Surface Chemistry of Moisture-induced Composite Failure: Interfaces in Polymer Matrix Composites, Academic Press: New York, 1974.
  • France, P.W.; Duncan, W.J.; Smith, D.J.; Beales, T. Strength and fatigue of multicomponent optical glass fibres. J. Mater. Sci. 1983, 18 (3), 785–792.
  • Schmitz, G.K.; Metcalfe, A.G. Stress corrosion of E-glass fibers. Ind. Eng. Chem. Prod. Res. Dev. 1966, 5 (1), 1–8.
  • Loewenstein, K.L. Manufacturing Technology of Continuous Glass Fibers. Glass Science and Technology, Vol. 6, Elsevier Science Ltd: Amsterdam, 1974.
  • Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Env. 2007, 15, 25–33.
  • Chawla, K.K. Composite Materials: Science and Engineering, Springer Science Business Media Inc.: New York, 1998.
  • Sharma, S.C. Composite Materials, Narosa Publishing House: New Delhi, 2000.
  • Ohsawa, T.; Nakayama, A.; Miwa, M.; Hasegawa, A. Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins. J. Appl. Polym. Sci. 1978, 22, 3203–3212.
  • Miwa, M.; Ohsawa, T.; Tahara, K. Effects of fiber length on the tensile strength of epoxy/glass fiber and polyester/glass fiber composites. J. Appl. Polym. Sci. 1980, 25, 795–807.
  • Yurgartis, S.W. Measurement of small angle fiber misalignments in continuous fiber composites. Compos. Sci. Technol. 1987, 30, 279–293.
  • El-Tayeb, N.S.; Gadelrab, R.M. Friction and wear properties of E-glass fiber reinforced epoxy composites under different sliding contact conditions. Wear 1996, 192, 112–117.
  • Lee, S.H.; Yerramalli, C.S.; Waas, A.M. Compressive splitting response of glass-fiber reinforced unidirectional composites. Compos. Sci. Technol. 2000, 60, 2957–2966.
  • Belingardi, G.; Vadori, R. Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates. Int. J. Impact Eng. 2002, 27, 213–229.
  • Fraga, A.N.; Alvarez, V.A.; Vazquez, A. Relationship between dynamic mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites. J. Compos. Mater. 2003, 37 (17), 153–1574.
  • Suresh, B.; Chandramohan, G.; Samapthkumaran, P.; Seetharamu, S.; Vynatheya, S. Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites. J. Reinf. Plast. Comp. 2006, 25 (7), 771–782.
  • Tercan, M.; Asi, O.; Aktas, A. An experimental investigation of the bearing strength of weft-knitted 1 × 1 rib glass fiber composites. Compos. Struct. 2007, 78, 392–396.
  • Gao, L.; Chou, T.W.; Thostenson, E.T.; Zhang, Z.; Coulaud, M. In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. Carbon 2011, 49, 3371–3391.
  • Godara, A.; Gorbatikh, L.; Kalinka, G.; Warrier, A.; Rochez, O.; Mezzo, L.; Luizi, F.; Vuure, A.W.; Lomov, S.V.; Verpoest, I. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 2010, 70, 1346–1352.
  • Kim, C.; Lee, J.; Kim, B. Synthesis and pore analysis of aerogel–glass fiber composites by ambient drying method. Coll. Surf. A 2008, 313–314, 179–182.
  • Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18 (4), 351–363.
  • Duc, F.; Bourban, P.E.; Plummer, C.J.G.; Månson, J.A.E. Damping of thermoset and thermoplastic flax fibre composites. Compos. A Appl. Sci Manuf. 2014, 64, 115–123.
  • Ben, B.S.; Cheikh, R.B. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos. Sci. Technol. 2007, 67, 140–147.
  • Jawaid, M.; Khalil, H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86 (1), 1–18.
  • Rosato, D.V.; Rosato, M.G.; Rosato, D.V. Concise Encyclopaedia of Plastics. Springer-Science+Business Media: New York, doi:10.1007/978-1-4615-4579-8
  • Yu, T.; Jiang, N.; Li, Y. Study on short ramie fibre/polylactic acid composites compatibilized by maleic anhydride. Compos. A Appl. Sci Manuf. 2014, 64, 139–146.
  • Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. A Appl. Sci Manuf. 2004, 35, 371–376.
  • Mohanty, A.K.; Misra, M.; Drzal, L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interf. 2001, 8 (5), 313–343.
  • Rowell, R.M.; Young, R.A.; Rowell, J.K. Paper and Composites from Agro-based Resources. CRC Lewis Publishers: Boca Raton, FL, 1997.
  • Chandramohan, D.; Marimuthu. A review on natural fibers. Int. J. Res. Rev. Appl. Sci. 2011, 8 (2), 194–206.
  • Priya, S.P.; Rai, S.K. Mechanical performance of biofiber/glass-reinforced epoxy hybrid composites. J. Ind. Text. 2006, 35 (3), 217–226.
  • Joseph, K.; Thomas, S. Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites. Compos. Sci. Technol. 1995, 53, 99–110.
  • George, J.; Sreekala, M.S.; Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001, 41 (9), 1471–1485.
  • Mishra, S.; Mohanty, A.K.; Drzal, L.T.; Misra, M.; Hinrichsen, G. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol. Mater. Eng. 2004, 289, 955–974.
  • Pothan, L.A.; Potschke, P.; Habler, R.; Thomas, S. The static and dynamic mechanical properties of banana and glass fiber woven fabric-reinforced polyester composite. J. Compos. Mater. 2005, 39 (11), 1007–1025.
  • Deshpande, S.; Rangaswamy, T. Effect of fillers on E-glass/jute fiber reinforced epoxy composites. Int. J. Eng. Res. Appl. 2014, 4 (8), 118–123.
  • Goud, G.; Rao, R.N. Mechanical and electrical performance of Roystonea regia/glass fibre reinforced epoxy hybrid composites. Bull. Mater. Sci. 2012, 35 (4), 595–599.
  • Sgriccia, N.; Hawley, M.C.; Misra, M. Characterization of natural fiber surfaces and natural fiber composites. Compos. A Appl. Sci Manuf. 2008, 39, 1632–1637.
  • Seki, Y.; Sever, K.; Erden, S.; Sarikanat, M.; Neser, G.; Ozes, C. Characterization of Luffa cylindrica fibers and the effect of water ageing on the mechanical properties of its composite with polyester. J. Appl. Polym. Sci. 2012, 123, 2330–2337.
  • Kaleemulla, K.M.; Siddeswarappa, B.; Satish, K.G. Investigations to model and analyse the OHC strength of hybrid composites. J. Eng. Sci. Technol. Rev. 2009, 2 (1), 91–98.
  • Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid) (PLA) composites: A comparative study. Compos. Sci. Technol. 2006, 66, 1813–1824.
  • Isayev, A.I.; Modic, M. Self-reinforced melt processible polymer composites: Extrusion, compression, and injection molding. Polym. Comp. 1987, 8 (3), 158–175.
  • Karmaker, A.C.; Youngquist, J.A. Injection molding of polypropylene reinforced with short jute fibers. J. Appl. Polym. Sci. 1996, 62, 1147–1151.
  • Loh, N.H.; Tor, S.B.; Khor, K.A. Production of metal matrix composite part by powder injection molding. J. Mater. Process. Technol. 2001, 108, 398–407.
  • Wang, K.; Guo, M.; Zhao, D.; Zhang, Q.; Du, R.; Fu, Q.; Dong, X.; Han, C.C. Facilitating transcrystallization of polypropylene/glass fiber composites by imposed shear during injection molding. Polymer 2006, 47, 8374–8379.
  • Ye, H.; Yang, X.; Hong, H. Fabrication of metal matrix composites by metal injection molding: A review. J. Mater. Process. Technol. 2008, 200, 12–24.
  • Clemons, C.M.; Stark N.M. Feasibility of using saltcedar as a filler in injection-molded polyethylene composites. Weed Fiber Sci. 2009, 41 (1), 2–12.
  • Rogers, P.; Jain, R. Review on powder injection molding of engineering ceramics. Mater. Manuf. Process. 2016. http://dx.doi.org/10.1080/10426914.2014.984214
  • Karakassides, M.A.; Gournis, D.; Bourlinos, A.B.; Trikalitis, P.N.; Bakas, T. Magnetic Fe2O3–Al2O3 composites prepared by a modified wet impregnation method. J. Mater. Chem. 2003, 13, 871–876.
  • Miranda, C.; Mansilla, H.; Yánez, J.; Obregón, S.; Colón, G. Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. J. Photochem. Photobiol. A 2013, 253, 16–21.
  • Aghajanian, M.K.; Rocazella, M.A.; Burke, J.T.; Keck, S.D. The fabrication of metal matrix composites by pressureless infiltration technique. J. Mater. Sci. 1991, 26, 447–454.
  • Goren, A.; Atas, C. Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding. Arch. Mater. Sci. Eng. 2008, 34 (2), 117–120.
  • Kang, M.K.; Lee, W.I.; Hahn, H.N. Analysis of vacuum bag resin transfer molding process. Compos. A Appl. Sci Manuf. 2001, 32, 1553–1560.
  • Ornaghi, H.L.; Bolner, A.S.; Fiorio, R.; Zattera, A.J.; Amico, S.C. Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J. Appl. Polym. Sci. 2010, 118, 887–896.
  • Advani, S.G.; Simacek, P.; Correia, N.C.; Robitaille, F.; Long, A.C.; Rudd, C.D. Use of resin transfer molding simulation to predict flow, saturation, and compaction in the VARTM process. J. Fluid Eng. 2004, 126, 210–215.
  • Takeda, F.; Hayashi, K.; Suga, Y.; Nishiyama, S.; Komori, Y.; Asahara, N. Industries, M.H. & Technology I: Research in the Application of the Vartm Technique to the Fabrication of Primary Aircraft Composite Structures. Mitsubishi Heavy Industries Ltd. Tech. Rev. 2006, 42 (5), 1–6.
  • Tzetzis, D.; Hogg, P.J. Experimental and finite element analysis on the performance of vacuum-assisted resin infused single scarf repairs. Mater. Des. 2008, 29, 436–449.
  • Fairuz, A.M.; Sapuan, S.M.; Zainudin, E.S.; Jaafar, C.N.A. Polymer composite manufacturing using a pultrusion process: A review. Am. J. Appl. Sci. 2014, 11 (10), 1798–1810.
  • Chandrashekhara, K.; Sundararaman, S.; Flanigan, V.; Kapila, S. Affordable composites using renewable materials. Mater. Sci. Eng. 2005, A412, 2–6.
  • Belingardi, G.; Cavatorta, M.P.; Paolino, D.S. Repeated impact response of hand lay-up and vacuum infusion thick glass reinforced laminates. Int. J. Impact Eng. 2008, 35, 609–619.
  • Yuhazri, M.; Phongsakorn, Y.; Sihombing, P.T.H. A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyster composites. Int. J. Basic Appl. Sci. 2010, 10 (3), 54–57.
  • Das, S. The Cost of the Automotive Polymer Composites: A Review and Assessment of the DOE’s Lightweight Materials Composite Research. Oak National Laboratory: Oak Ridge, TN, 2001.
  • Hayward, J.S.; Harris, B. The effect of vacuum assistance in resin transfer moulding. Compos. Manuf. 1990, 1 (3), 161–166.
  • Song, Y.S.; Young, J.R.; Gutowski, T.G. Life cycle energy analysis of fiber-reinforced composites. Compos. A Appl. Sci Manuf. 2009, 40, 1257–1265.
  • Velmurugan, R.; Manikandan, V.M. Mechanical properties of glass/palmyra fiber waste sandwich composites. Indian J. Eng. Mater. Sci. 2005, 12, 563–570.
  • Hariharan, A.B.A.; Khalil, H.P.S. Lignocellulose-based hybrid bilayer laminate composite: Part I-Studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin. J. Compos. Mater. 2005, 39 (8), 663–684.
  • Ahmed, K.S.; Vijayarangan, S. Elastic property evaluation of jute-glass fibre hybrid composite using experimental and CLT approach. Indian J. Eng. Mater. Sci. 2006, 13, 435–442.
  • Khan, M.A.; Abedin, M.Z.; Beg, M.D.H.; Pickering, K.L.; Kafi, A. Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation. J. Reinforc. Plast. Compos. 2006, 25 (6), 575–588.
  • Khalil, P.S.A.; Hanida, S.; Kang, C.W.; Fuaad, N.A. Agro-hybrid composite: The effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. J. Reinforc. Plast. Compos. 2007, 26 (2), 203–218.
  • Karina, M.; Onggo, H.; Abdullah A.H.D.; Syampurwadi, A. Effect of oil palm empty bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. J. Bio. Sci. 2008, 8 (1), 101–106.
  • Joseph, S.; Sreekala, M.S.; Koshy, P.; Thomas, S. Mechanical properties and water sorption behavior of phenol–formaldehyde hybrid composites reinforced with banana fiber and glass fiber. J. Appl. Polym. Sci. 2008, 109, 1439–1446.
  • Nayak, S.K.; Mohanty, S.; Samal, S.K. Influence of interfacial adhesion on the structural and mechanical behavior of PP-banana/glass hybrid composites. Polym. Compos. 2010, 31 (7), 1247–1257.
  • Pothan, L.A.; George, C.N. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites. J. Reinforc. Plast. Compos. 2010, 29 (8), 1131–1145.
  • Lassila, L.V.J.; Nohrstrom, T.; Vallittu, P.K. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 2002, 23, 2221–2229.
  • Ota, W.N.; Amico, S.C.; Satyanarayana, K.G. Studies on the combined effect of injection temperature and fiber content on the properties of polypropylene-glass fiber composites. Compos. Sci. Technol. 2005, 65, 873–881.
  • Fu, S.Y.; Lauke, B.; Mader, E.; Yue, C.Y.; Hu, X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos. A Appl. Sci Manuf. 2000, 31, 1117–1125.
  • Rizvi, G.M.; Semeralul, H. Glass-fiber-reinforced wood/plastic composites. J. Vinyl Add. Technol. 2008, 14 (1), 39–42.
  • Valente, M.; Sarasini, F.; Marra, F.; Tirillò, J.; Pulci, G. Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization. Compos. A Appl. Sci Manuf. 2011, 42 (6), 649–657.
  • Mohapatra, R.C.; Mishra, A.; Choudhury, B.B. Investigations on tensile and flexural strength of wood dust and glass fibre filled epoxy hybrid composites. Int. J. Mech. Eng. Technol. 2013, 4 (4), 180–187.
  • Kumar, K.N.; Kumar, M.P.; Krishna, V.; Rao D.S. Experimental investigation on mechanical properties of coal ash reinforced glass fiber polymer matrix composites. Int. J. Emerg. Technol. Adv. Eng. 2013, 3 (8), 250–258.
  • Marom, G.; Fischer, S.; Tuler, F.R.; Wagner, H.D. Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behaviour. J. Mater. Sci. 1978, 13, 1419–1426.
  • Liu, G.R. A step-by-step method of rule-of-mixture of fiber and particle reinforced composite materials. Compos. Struct. 1998, 40 (3–4), 313–322.
  • Facca, A.G.; Kortschot, M.T.; Yan N. Predicting the elastic modulus of natural fiber reinforced thermoplastics. Compos. A Appl. Sci Manuf. 2007, 37, 1660–1671.
  • Kim, H.S. On the rule of mixtures for the hardness of particle reinforced composites. Mater. Sci. Eng. 2000, A289, 30–33.
  • Lee, G.Y.; Dharan, C.K.H.; Ritchie, R.O. A physically-based abrasive wear model for composite materials. Wear 2002, 252, 322–331.
  • Barkoula, N.M.; Kocsis J.K. Effects of fibre content and relative fibre-orientation on the solid particle erosion of GF/PP composites. Wear 2002, 252, 80–87.
  • Zare, Y.; Garmabi, H. Analysis of tensile modulus of PP/nanoclay/CaCo3 ternary nanocomposite using composite theories. J. Appl. Polym. Sci. 2012, 123, 2309–2319.
  • Halpin, J.C.; Kardos, J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16 (5), 344–352.
  • Karger-Kocsis, J.; Friedrich, K. Fracture behavior of injection-molded short and long glass fiber-polyamide 6.6 composites. Compos. Sci. Technol. 1998, 32, 293–325.
  • Kumar, M.A.; Reddy, G.R.; Bharathi, Y.S.; Naidu, S.V.; Naidu, N.P. Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal-glass fiber epoxy hybrid composites. J. Compos. Mater. 2010, 44 (26), 3195–3202.
  • Madhuri, K.S.; Rao, H.R. An investigation of mechanical and thermal properties of reinforced sisal-glass fiber epoxy hybrid composites. Int. J. Eng. Res. 2014, 3 (1), 112–115.
  • Velmurugan, R.; Manikandan, V. Mechanical properties of palmyra/glass fiber hybrid composites. Compos. A Appl. Sci Manuf. 2007, 38, 2216–2226.
  • Tungjitpornkull, S.; Sombatsompop, N. Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites. J. Mater. Process. Technol. 2009, 209, 3079–3088.
  • Tanwer, A.K. Mechanical properties testing of uni-directional and bi-directional glass fibre reinforced epoxy based composites. Int. J. Res. Advent Technol. 2014, 2 (11), 34–39.
  • Ferreira, J.A.M.; Costa, J.D.M.; Reis P.N.B. Static and fatigue behaviour of glass-fibre-reinforced polypropylene composites. Theor. Appl. Fract. Mech. 1999, 31, 67–74.
  • Rathnakar, G.; Shivanand, H.K. Fibre orientation and its influence on the flexural strength of glass fibre and graphite fibre reinforced polymer composites. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2 (3), 548–552.
  • Ahmed, M.N.; Kumar, P.V.; Shivanand, H.K.; Muzammil, S.B. A study on effect of variation of thickness on tensile properties of hybrid polymer composites (glassfibre-carbonfibre-graphite) and GFRP composites. Int. J. Eng. Res. Appl. 2013, 3 (4), 2015–2024.
  • Banakar, P.; Shivananda, H.K. Preparation and characterization of the carbon fiber reinforced epoxy resin composites. J. Mech. Civil Eng. 2012, 1 (2), 15–18.
  • Banakar, P.; Shivananda, H.K.; Niranjan, H.B. Influence of fiber orientation and thickness on tensile properties of laminated polymer composites. Int. J. Pure Appl. Sci. Technol. 2012, 9 (1), 61–68.
  • Demir, H.; Atikler, U.; Balkose, D.; Tihminliogluab, F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos. A Appl. Sci Manuf. 2006, 37, 447–456.
  • Jiang, H.; Kamdem, D.P.; Bezubic, B.; Ruede, P. Mechanical properties of poly (vinyl chloride)/wood flour/glass fiber hybrid composites. J. Vinyl Add. Technol. 2003, 9 (3), 138–145.
  • Rao, H.R.; Rajulu, A.V.; Reddy, G.R.; Reddy, K.H. Flexural and compressive properties of bamboo and glass fiber-reinforced epoxy hybrid composites. J. Reinforc. Plast. Compos. 2010, 29 (10), 1446–1450.
  • John, K.; Naidu, S.V. Effect of fiber content and fiber treatment on flexural properties of sisal. J. Reinforc. Plast. Compos. 2004, 23 (15), 1601–1604.
  • John, K.; Naidu, S.V. Tensile properties of unsaturated polyester-based sisal fiber–glass fiber hybrid composites. J. Reinforc. Plast. Compos. 2004, 23 (17), 1815–1819.
  • Mishra, S.; Mohanty, A.K.; Drzal, L.T.; Misra, M.; Parija, S.; Nayak, S.K.; Tripathy, S.S. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos. Sci. Technol. 2003, 63, 1377–1385.
  • Rajulu, A.; Chary, K.; Reddy, G. Chemical resistance and tensile properties of epoxy-coated bamboo fibers. Indian J. Fibre Text. Res. 1998, 21, 223–224.
  • Thwe, M.M.; Liao, K. Effects of environmental ageing on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composite. Compos. A Appl. Sci Manuf. 2002, 33, 43–52.
  • Thwe, M.M.; Liao, K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003, 63, 375–387.
  • Nayak, S.K.; Mohanty, S.; Samal, S.K. Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater. Sci. Eng. A 2009, 523, 32–38.
  • Nayak, S.K.; Samal, S.K.; Mohanty, S. Polypropylene–bamboo/glass fiber hybrid composites: Fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. J. Reinforc. Plast. Compos. 2009, 28 (22), 2729–2747.
  • Dieu, T.V.; Liem, N.T.; Mai, T.T.; Tung, N.H. Study on fabrication of BMC laminates based on unsaturated polyester resin reinforced by hybrid bamboo/glass fibers. JSME Int. J. Series A 2004, 4, 570–573.
  • Reddy, A.; Rao, B.; Suvarna, C. Effect on compressive and flexural properties of cow dung/glass fiber reinforced polyester hybrid composites. Indian J. Adv. Chem. Sci. 2014, 2 (2), 162–166.
  • Sakthivel, R.; Rajendran D. Experimental investigation and analysis a mechanical properties of hybrid polymer composite plates. Int. J. Eng. Trend. Technol. 2014, 9 (8), 407–414.
  • Devendra, K.; Rangaswamy, T. Strength characterization of E-glass fiber reinforced epoxy composites with filler materials. J. Miner. Mater. Charac. Eng. 2013, 1, 353–357.
  • Raj, R.G.; Kokta, B.V.; Daneault, C. A comparative study on the effect of ageing on mechanical properties of LLDPE-glass fiber, mica, and wood fiber composites. J. Appl. Polym. Sci. 1990, 40, 645–655.
  • Wu, H.F.; Dwight, D.W.; Huff, N.T. Effects of silane coupling agents on the interphase and performance of glass-fiber reinforced polymer composites. Compos. Sci. Technol. 1997, 57, 975–983.
  • Pegoretti, A.; Fidanza, M.; Migliaresi, C.; DiBenedetto, A.T. Toughness of the fiber/matrix interface in nylon-6/glass fiber composites. Compos. A Appl. Sci Manuf. 1998, 29A, 283–291.
  • Panthapulakkal, S.; Sain, M. Studies on the water absorption properties of short hemp–glass fiber hybrid polypropylene composites. J. Compos. Mater. 2007, 41 (15), 1871–1883.
  • Panthapulakkal, S.; Sain, M. Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites-mechanical, water absorption and thermal properties. J. Appl. Polym. Sci. 2007, 103, 2432–2441.
  • Jarukumjorn, K.; Suppakarn, N. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Compos. B Eng. 2009, 40 (7), 623–627.
  • Sanjay, M.R.; Arpitha, G.R.; Vasundhara, M.G.; Yogesh, B. Study on mechanical characteristics of unidirectional sisal/glass fiber reinforced polyester hybrid composites. Int. J. Sci. Res. 2014, 3 (8), 2319–7064.
  • Mohanta, N.; Acharya, S.K. Investigation of mechanical properties of Luffa cylindrica fibre reinforced epoxy hybrid composite. Int. J. Eng. Sci. Technol. 2015, 7 (1), 1–10.
  • Abtahi, S.M.; Esfandiarpour, S.; Kunt, M.; Hejazi, S.M.; Ebrahimi, M.G. Hybrid reinforcement of asphalt-concrete mixtures using glass and polypropylene fibers. J. Eng. Fiber. Fabr. 2013, 8 (2), 25–35.
  • Kornmann, X.; Rees, M.; Thomann, Y.; Necola, A.; Barbezat, M.; Thomann, R. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Compos. Sci. Technol. 2005, 65, 2259–2268.
  • Samuel, O.D.; Agbo, S.; Adekanye, T.A. Assessing mechanical properties of natural fibre reinforced composites for engineering applications. J. Miner. Mater. Charact. Eng. 2012, 11, 780–784.
  • Alagarraja, K.; Dhamodharan, A.; Gopinathan, K.; Raj, R.M.; Kumar, K.R. Fabrication and testing of fibre reinforced polymer composites material. J. Mech. Civil Eng. 2014, 3, 27–34.
  • Chaithanyan, C.; Venkatasubramanian, H.; Raghuraman, S.; Panneerselvam, T. Evaluation of mechanical properties of coir-sisal reinforced hybrid composites using isophthalic polyester resin. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2 (12), 7479–7487.
  • Fiore, V.; Bella, G.D.; Valenza, A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011, 32, 2091–2099.
  • Petrucci, R.; Santulli, C.; Puglia, D.; Sarasini, F.; Torre, L.; Kenny, J.M. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Mater. Des. 2013, 49, 728–735.
  • Zhong, L.X.; Fu, S.Y.; Zhou, X.S.; Zhan, H.Y. Effect of surface microfibrillation of sisal fibre on the mechanical properties of sisal/aramid fibre hybrid composites. Compos. A Appl. Sci Manuf.. 2011, 42, 244–252.
  • Pavithran, C.; Mukharjee, P.S.; Brahmakumar, M.; Damodaran, A.D. Impact properties of sisal glass hybrid laminates. J. Mater. Sci. 1999, 26, 455–459.
  • Khanam, P.N.; Khalil, H.P.S.A; Jawaid, M.; Reddy, G.R.; Narayana C.S.; Naidu, S.V. Sisal/carbon fibre reinforced hybrid composites tensile, flexural and chemical resistance properties. J. Polym. Env. 2010, 18, 727–733.
  • Hazizan Akil, M.D.; Santulli, C.; Sarasini, F.; Tirillò; Valente T. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos. Sci. Technol. 2014, 94, 62–70.
  • Zhang, Y.; Li, Y.; Ma, H.; Yu, T. Tensile and interfacial properties of unidirectional flax/glass fibre reinforced hybrid composites. Compos. Sci. Technol. 2013, 88, 172–177.
  • Júnior, J.H.S.A.; Amico, S.C.; Botelho, E.C.; Amado, F.D.R. Hybridization effect on the mechanical properties of curaua/glass fibre composites. Compos. A Appl. Sci Manuf. 2013, 55, 492–497.
  • Atiqah, A.; Maleque, M.A.; Jawaid, M.; Iqbal, M. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos. B Eng. 2014, 56, 68–73.
  • Grimmer, C.S.; Dharan, C.K.H. High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J. Mater. Sci. 2008, 43, 4487–4492.
  • Dincă, I.; Ştefan, A.; Stan, A. Aluminum/glass fibre and aluminum/carbon fibre hybrid laminates. Incas Bull. 2010, 2, 2066–2081.
  • Poyyathappan, K.; Bhaskar, G.B.; Pazhanivel, K.; Venkatesan, N. Tensile and flexural studies on glass-carbon hybrid composites subjected to low frequency cyclic loading. Int. J. Eng. Technol. 2014, 6 (1), 83–90.
  • Guermazi, N.; Haddar, N.; Elleuch, K.; Ayedi, H.F. Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Mater. Des. 2014, 56, 714–724.
  • Zhang, J.; Chaisombat, K.; He, S.; Wang, C.H. Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater. Des. 2012, 36, 75–80.
  • Banerjee, S.; Sankar, B.V. Mechanical properties of hybrid composites using finite element method based micro-mechanics. Compos. B Eng. 2014, 58, 318–327.
  • Dong, C.; Davies, I.J. Flexural strength of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres. Compos. B Eng. 2015, 72, 65–71.
  • Isa, M.T.; Ahmed, A.S.; Aderemi, B.O.; Taib, R.M.; Mohammed-Dabo, I.A. Effect of fibre type and combinations on the mechanical, physical and thermal stability properties of polyester hybrid composites. Compos. B Eng. 2013, 52, 217–223.
  • Arya Subagia, I.D.G.; Kim, Y.; Tijing, L.D.; Kim, C.S.; Shon, H.K. Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibres. Compos. B Eng. 2014, 58, 251–258.
  • Karsli, N.G.; Yesil, S.; Aytac, A. Effect of hybrid carbon nanotube/short glass fibre reinforcement on the properties of polypropylene composites. Compos. B Eng. 2014, 63, 154–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.