943
Views
55
CrossRef citations to date
0
Altmetric
Reviews

Advances in Polymer/Fullerene Nanocomposite: A Review on Essential Features and Applications

References

  • Dalton, A.B.; Collins, S.; Muñoz, E.; Razal, J.M.; Ebron, V.H.; Ferraris, J.P.; Baughman, R.H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703–703.
  • Afzal, A.; Kausar, A.; Siddiq, M. Perspectives of polystyrene composite with fullerene, carbon black, graphene and carbon nanotube: A review. Polym. Plast. Technol. Eng. 2016, 55, 1988–2011. doi:10.1080/03602559.2016.1185632.
  • Cao, T.; Webber, S.E. Free radical copolymerization of styrene and C60. Macromolecules 1996, 29, 3826–3830.
  • Ruoff, R.S.; Tse, D.S.; Malhotra, R.; Lorents, D.C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 1993, 97, 3379–3383.
  • Prato, M. [60] Fullerene chemistry for materials science applications. J. Mater. Chem. 1997, 7, 1097–1109.
  • Hirsch, A. The chemistry of the fullerenes: An overview. Angew. Chem. Int. Ed. Eng. 1993, 32, 1138–1141.
  • Kroto, H.; Heath, J.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C 60: buckminsterfullerene. Nature 1985, 318, 162–163.
  • Kratschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 27.
  • Dörnenburg, E.; Hintenberger, H. Notizen: Das Auftreten vielatomiger Kohlenstoffmoleküle im Hochfrequenzfunken zwischen Graphitelektroden. Zeitschr. Naturforschung A 1959, 14, 765–767.
  • Nakamura, E.; Tahara, K.; Matsuo, Y.; Sawamura, M. Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10] cyclophenacene. J. Am. Chem. Soc. 2003, 125, 2834–2835.
  • Ravi, P.; Dai, S.; Wang, C.; Tam, K.C. Fullerene containing polymers: A review on their synthesis and supramolecular behavior in solution. J. Nanosci. Nanotechnol. 2007, 7, 1176–1196.
  • Huo, H.; Ngai, T.; Goh, S.H. Self-organization of double-C60 end-capped poly (ethylene oxide) in chloronaphthalene and benzene solvent mixtures. Langmuir 2007, 23, 12067–12070.
  • Chen, Y.; Bothun, G.D. Lipid-assisted formation and dispersion of aqueous and bilayer-embedded nano-C60. Langmuir 2009, 25, 4875–4879.
  • Phillips, J.P.; Deng, X.; Stephen, R.R.; Fortenberry, E.L.; Todd, M.L.; McClusky, D.M.; Long, T.E. Nano-and bulk-tack adhesive properties of stimuli-responsive, fullerene–polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. Polymer 2007, 48, 6773–6781.
  • Li, F.; Li, Y.; Ge, Z.; Zhu, D.; Song, Y.; Fang, G. Synthesis and optical limiting properties of polycarbonates containing fullerene derivative. J. Phys. Chem. Sol. 2000, 61, 1101–1103.
  • Tang, B.Z.; Leung, S.M.; Peng, H.; Yu, N.T.; Su, K.C. Direct fullerenation of polycarbonate via simple polymer reactions. Macromolecules 1997, 30, 2848–2852.
  • Liu, B.; Bunker, C.E.; Sun, Y.P. Preparation and characterization of soluble pendant [60] fullerene-polystyrene polymers. Chem. Commun. 1996, 10, 1241–1242.
  • Zhang, F.; Svensson, M.; Andersson, M.R.; Maggini, M.; Bucella, S.; Menna, E.; Inganäs, O. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv. Mater. 2001, 13, 1871–1874.
  • Chen, Y.; Cai, R.F.; Huang, Z.E.; Kong, S.Q. A novel and versatile method for the synthesis of soluble fullerenated polymers. Polym. Bull. 1995, 35, 705–710.
  • Chen, Y.; Huang, Z.E.; Cai, R.F.; Kong, S.Q.; Chen, S.; Shao, Q.; Fu, D. Synthesis and characterization of soluble C60-chemically modified poly (p-bromostyrene). J. Polym. Sci. A Polym. Chem. 1996, 34, 3297–3302.
  • Cai, R.F.; Bai, X.; Chen, Y.; Huang, Z.E. Preparation and structural characterization of C 70 chemically modified poly (N-vinylcarbazole). Eur. Polym. J. 1998, 34, 7–12.
  • Dai, L.; Mau, A.W.; Griesser, H.J.; Spurling, T.H.; White, J.W. Grafting of buckminsterfullerene onto polydiene: A new route to fullerene-containing polymers. J. Phys. Chem. 1995, 99, 17302–17304.
  • Bergbreiter, D.E.; Chen, Z.; Hu, H.P. Entrapment of functionalized ethylene oligomers in polyethylene. Macromolecules 1984, 17, 2111–2116.
  • Bergbreiter, D.E.; Gray, H.N. Grafting of C60 onto polyethylene surfaces. J. Chem. Soc. Chem. Commun. 1993, 7, 645–646.
  • Goh, H.W.; Goh, S.H.; Xu, G.Q. Synthesis and miscibility studies of [60] fullerenated poly (2-hydroxyethyl methacrylate). J. Polym. Sci. A Polym. Chem. 2002, 40, 1157–1166.
  • Okoroafor, E.U.; Hill, R. Determination of fibre-resin interface strength in fibre-reinforced plastics using the acoustic emission technique. J. Phys. D Appl. Phys. 1995, 28, 1816.
  • Zhamu, A.; Zhong, W.H.; Stone, J.J. Experimental study on adhesion property of UHMWPE fiber/nano-epoxy by fiber bundle pull-out tests. Compos. Sci. Technol. 2006, 66, 2736–2742.
  • Rosso, P.; Váradi, K. FE macro/micro analysis of thermal residual stresses and failure behaviour under transverse tensile load of VE/CF–fibre bundle composites. Compos. Sci. Technol. 2006, 66, 3241–3253.
  • Jiang, Z.; Zhang, H.; Zhang, Z.; Murayama, H.; Okamoto, K. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Compos. A Appl. Sci. Manuf. 2008, 39, 1762–1767.
  • Goswami, T.H.; Nandan, B.; Alam, S.; Mathur, G.N. A selective reaction of polyhydroxy fullerene with cycloaliphatic epoxy resin in designing ether connected epoxy star utilizing fullerene as a molecular core. Polymer 2003, 44, 3209–3214.
  • Shigemitsu, Y.; Kaneko, M.; Tajima, Y.; Takeuchi, K. Efficient acetalization of epoxy rings on a fullerene cage. Chem. Lett. 2004, 33, 1604–1605.
  • Ogasawara, T.; Ishida, Y.; Kasai, T. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos. Sci. Technol. 2009, 69, 2002–2007.
  • Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.
  • Briscoe, B.J.; Fiori, L.; Pelillo, E. Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 1998, 31, 2395.
  • Li, H.C.; Rao, K.K.; Jeng, J.Y.; Hsiao, Y.J.; Guo, T.F.; Jeng, Y.R.; Wen, T.C. Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Sol. Energ. Mater. Sol. Cells 2011, 95, 2976–2980.
  • Rafiee, M.A.; Yavari, F.; Rafiee, J.; Koratkar, N. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. J. Nanoparticle Res. 2011, 13, 733–737.
  • Chirvase, D.; Parisi, J.; Hummelen, J.C.; Dyakonov, V. Influence of nanomorphology on the photovoltaic action of polymer? Fullerene composites. Nanotechnology 2004, 15, 1317.
  • Yang, X.; Loos, J.; Veenstra, S.C.; Verhees, W.J.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A. Nanoscale morphology of high-performance polymer solar cells. Nano. Lett. 2005, 5, 579–583.
  • Richards, J.J.; Rice, A.H.; Nelson, R.D.; Kim, F.S.; Jenekhe, S.A.; Luscombe, C.K.; Pozzo, D.C. Modification of PCBM crystallization via incorporation of C60 in polymer/fullerene solar cells. Adv. Funct. Mater. 2013, 23, 514–522.
  • Yang, X.; van Duren, J.K.; Janssen, R.A.; Michels, M.A.; Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylene vinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, 2151–2158.
  • Delpeux, S.; Beguin, F.; Benoit, R.; Erre, R.; Manolova, N.; Rashkov, I. Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. Eur. Polym. J. 1998, 34, 905–915.
  • Bertho, S.; Haeldermans, I.; Swinnen, A.; Moons, W.; Martens, T.; Lutsen, L.; Bonfiglio, A. Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energ. Mater. Sol. Cells 2007, 91, 385–389.
  • Cheng, Y.J.; Hsieh, C.H.; Li, P.J.; Hsu, C.S. Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv. Funct. Mater. 2011, 21, 1723–1732.
  • Zhao, J.; Swinnen, A.; Van Assche, G.; Manca, J.; Vanderzande, D.; Mele, B.V. Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. J. Phys. Chem. B 2009, 113, 1587–1591.
  • Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476.
  • Smilowitz, L.; Sariciftci, N.S.; Wu, R.; Gettinger, C.; Heeger, A.J.; Wudl, F. Photoexcitation spectroscopy of conducting-polymer–C60 composites: Photoinduced electron transfer. Phys. Rev. B 1993, 47, 13835.
  • Morita, S.; Zakhidov, A.A.; Yoshino, K. Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence. Sol. Stat. Commun. 1992, 82, 249–252.
  • Brabec, C.J.; Padinger, F.; Sariciftci, N.S.; Hummelen, J.C. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J. Appl. Phys. 1999, 85, 6866–6872.
  • Susarova, D.K.; Khakina, E.A.; Troshin, P.A.; Goryachev, A.E.; Sariciftci, N.S.; Razumov, V.F.; Egbe, D.A. Photovoltaic performance of PPE-PPV copolymers: Effect of the fullerene component. J. Mater. Chem. 2011, 21, 2356–2361.
  • Troshin, P.A.; Hoppe, H.; Peregudov, A.S.; Egginger, M.; Shokhovets, S.; Gobsch, G.; Sariciftci, N.S.; Razumov, V.F. [70] Fullerene-based materials for organic solar cells. Chem. Sus. Chem. 2011, 4, 119–124.
  • Gur, I.; Fromer, N.A.; Geier, M.L.; Alivisatos, A.P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.
  • Hou, W.W.; Bob, B.; Li, S.H.; Yang, Y. Low-temperature processing of a solution-deposited CuInSSe thin-film solar cell. Thin Sol. Film. 2009, 517, 6853–6856.
  • Hertel, D.; Bässler, H. Photoconduction in amorphous organic solids. Chem. Phys. Chem. 2008, 9, 666–688.
  • Chamberlain, G.A. Organic solar cells: A review. Sol. Cell. 1983, 8, 47–83.
  • Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185.
  • Smalley, R.E. Discovering the fullerenes. Rev. Mod. Phys. 1997, 69, 723–730.
  • Gu, T.; Xu, J.M.; Chen, W.X.; Xu, Z.D. Synthesis and photoconductivity of fullerenated polymethylphenylsilane. Chem. J. Chin. Univ. Chin. 1999, 20, 150–152.
  • Wang, C.C.; Deng, B.J.; Fu, S.K. Spectrm study of PVK/C60 charge transfer complex. Chem. J. Chin. Univ. Chin. 1994, 15, 1559–1562.
  • Amao, Y. Probes and polymers for optical sensing of oxygen. Microchim. Acta 2003, 143, 1–12.
  • Yakuphanoglu, F. Photovoltaic properties of the organic–inorganic photodiode based on polymer and fullerene blend for optical sensors. Sens. Actuat. A Phys. 2008, 141, 383–389.
  • Marjanović, N.; Singh, T.B.; Dennler, G.; Günes, S.; Neugebauer, H.; Sariciftci, N.S.; Schwödiauer, R.; Bauer, S. Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends. Org. Electron. 2006, 7, 188–194.
  • Hong, S.W.; Kim, D.Y.; Lee, J.U.; Jo, W.H. Synthesis of polymeric temperature sensor based on photophysical property of fullerene and thermal sensitivity of poly (N-isopropylacrylamide). Macromolecules 2009, 42, 2756–2761.
  • Ono, Y.; Shikata, T. Hydration and dynamic behavior of poly (N-isopropylacrylamide)s in aqueous solution: A sharp phase transition at the lower critical solution temperature. J. Am. Chem. Soc. 2006, 128, 10030–10031.
  • Schild, H.G.; Tirrell, D.A. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem. 1990, 94, 4352–4356.
  • Ilmain, F.; Tanaka, T.; Kokufuta, E. Volume transition in a gel driven by hydrogen bonding. Nature 1991, 349, 400–401.
  • Li, C.; Gunari, N.; Fischer, K.; Janshoff, A.; Schmidt, M. New perspectives for the design of molecular actuators: Thermally induced collapse of single macromolecules from cylindrical brushes to spheres. Angew. Chem. Int. Ed. 2004, 43, 1101–1104.
  • Yagi, Y.; Inomata, H.; Saito, S. Solubility parameter of an N-isopropylacrylamide gel. Macromolecules 1992, 25, 2997–2998.
  • Weissman, J.M.; Sunkara, H.B.; Tse, A.S.; Asher, S.A. Thermally Switchable Periodicities and Diffraction from Novel Mesoscopically Ordered Materials (No. TR-5), Department of Chemistry, Pittsburgh University: Pittsburgh, PA, 1996 (DTIC Document).
  • An, Z.; Shi, Q.; Tang, W.; Tsung, C.K.; Hawker, C.J.; Stucky, G.D. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 2007, 129, 14493–14499.
  • Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, P.; Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 2007, 315, 487–490.
  • Dong, L.; Agarwal, A.K.; Beebe, D.J.; Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 2006, 442, 551–554.
  • Cheng, Z.; Liu, S.; Beines, P.W.; Ding, N.; Jakubowicz, P.; Knoll, W. Rapid and highly efficient preparation of water-soluble luminescent quantum dots via encapsulation by thermo-and redox-responsive hydrogel. Chem. Mater. 2008, 20, 7215–7219.
  • Bromberg, L.E.; Ron, E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998, 31, 197–221.
  • Kiser, P.F.; Wilson, G.; Needham, D. A synthetic mimic of the secretory granule for drug delivery. Nature 1998, 394, 459–462.
  • Murthy, N.; Xu, M.; Schuck, S.; Kunisawa, J.; Shastri, N.; Fréchet, J.M. A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels. Proc. Nat. Acad. Sci. 2003, 100, 4995–5000.
  • Kim, J.; Nayak, S.; Lyon, L.A. Bioresponsive hydrogel microlenses. J. Am. Chem. Soc. 2005, 127, 9588–9592.
  • Li, Y.; Tang, Y.; Narain, R.; Lewis, A.L.; Armes, S.P. Biomimetic stimulus-responsive star diblock gelators. Langmuir 2005, 21, 9946–9954.
  • Das, M.; Mardyani, S.; Chan, W.C.; Kumacheva, E. Biofunctionalized pH-responsive microgels for cancer cell targeting: Rational design. Adv. Mater. 2006, 18, 80–83.
  • Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510.
  • Koopmans, C.; Ritter, H. Color change of N-isopropylacrylamide copolymer bearing Reichardts dye as optical sensor for lower critical solution temperature and for host–guest interaction with β-cyclodextrin. J. Am. Chem. Soc. 2007, 129, 3502–3503.
  • Lyon, D.Y.; Adams, L.K.; Falkner, J.C.; Alvarez, P.J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 2006, 40, 4360–4366.
  • Fang, J.; Lyon, D.Y.; Wiesner, M.R.; Dong, J.; Alvarez, P.J. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ. Sci. Technol. 2007, 41, 2636–2642.
  • Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602.
  • Barber, R.P.; Gomez, R.D.; Herman, W.N.; Romero, D.B. Organic photovoltaic devices based on a block copolymer/fullerene blend. Org. Electron. 2006, 7, 508–513.
  • Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N.S.; Latreche, M.; Czeremuszkin, G.; Wertheimer, M.R. A new encapsulation solution for flexible organic solar cells. Thin Sol. Film. 2006, 511, 349–353.
  • Janssen, R.A.; Hummelen, J.C.; Sariciftci, N.S. Polymer–fullerene bulk heterojunction solar cells. MRS Bull. 2005, 30, 33–36.
  • Antipov, O.L.; Yurasova, I.V.E.; Domrachev, G.A. Optical nonlinearity of fullerene-doped polymer nanocomposites. Quant. Electron. 2002, 32, 776–780.
  • Elim, H.I.; Ji, W.; Meng, G.C.; Ouyang, J.; Goh, S.H. Nonlinear optics and optical limiting properties of multifunctional fullerenol/polymer composite. J. Nonlin. Opt. Phys. Mater. 2003, 12, 175–186.
  • Kamanina, N.V. Nonlinear optical coefficients of polyimide doped with fullerenes. Synth. Met. 2003, 139, 547–550.
  • Zeng, H.; Sun, Z.; Segawa, Y.; Lin, F.; Mao, S.; Xu, Z. Nonlinear photoluminescence of fullerene-doped optical glasses. J. Appl. Phys. 2001, 89, 6539–6541.
  • McCluskey, D.M.; Smith, T.N.; Madasu, P.K.; Coumbe, C.E.; Mackey, M.A.; Fulmer, P.A.; Phillips, J.P. Evidence for singlet-oxygen generation and biocidal activity in photoresponsive metallic nitride fullerene−polymer adhesive films. ACS Appl. Mater. Interf. 2009, 1, 882–887.
  • Phillips, J.P.; Deng, X.; Todd, M.L.; Heaps, D.T.; Stevenson, S.; Zhou, H.; Hoyle, C.E. Singlet oxygen generation and adhesive loss in stimuli-responsive, fullerene-polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. J. Appl. Polym. Sci. 2008, 109, 2895–2904.
  • Florián, Š.; Novák, I. Properties of pressure-sensitive adhesives based on styrene copolymers. J. Mater. Sci. 2004, 39, 649–651.
  • Kim, K.S.; Chung, S.; Chin, I.J.; Kim, M.N.; Yoon, J.S. Crystallization behavior of biodegradable amphiphilic poly (ethylene glycol)-poly (L-lactide) block copolymers. J. Appl. Polym. Sci. 1999, 72, 341–348.
  • Stevenson, S.; Harich, K.; Yu, H.; Stephen, R.R.; Heaps, D.; Coumbe, C.; Phillips, J.P. Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@ C80 metallofullerenes. J. Am. Chem. Soc. 2006, 128, 8829–8835.
  • Stevenson, S.; Thompson, M.C.; Coumbe, H.L.; Mackey, M.A.; Coumbe, C.E.; Phillips, J.P. Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@ C80 metallic nitride fullerenes. J. Am. Chem. Soc. 2007, 129, 16257–16262.
  • Arai, H.; Tajima, Y.; Takeuchi, K. Photo curing kinetics for poly furfuryl methacrylate doped with fullerene: The influence of oxygen partial pressure on sensitivity. Japan J. Appl. Phys. 2001, 40, 6623.
  • Yanagi, K.; Okubo, S.; Okazaki, T.; Kataura, H. Endohedral metallo fullerenes as strong singlet oxygen quenchers. Chem. Phys. Lett. 2007, 435, 306–310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.