111
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Exploring Ag-doped Mullite as High Dielectric and Antimicrobial Reinforcement with Polybenzoxazine Matrix

, , &

References

  • Wang, H.L.; Mac Diarmid, A.G; Wang, Y.Z.; Gebler, D.D.; Epstein, A.J. Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synth. Met. 1996; 78, 33.
  • Prabunathan, P.; Srinivasan, K.; Hariharan, A.; Alagar, M. Exploring the high k dielectric behavior of bio-carbon reinforced cyanate ester nanocomposites. New J. Chem. 2015, 39, 8739–8751, doi:10.1039/C5NJ01188D.
  • Chiang, C.K.; Popielarz, R. Polymer composites with high dielectric constant. Ferroelectrics 2002, 275(1), 1–9, doi:10.1080/00150190214285.
  • Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, M.S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 168–171.
  • Pal, S.; Kyung, Y.; Myong Song, J. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.
  • Kim, T.N.; Feng, Q.L,; Kim, J.O.; Wu, J.; Wang, H.; Chen, G.C.; Cui, F.Z. Antimicrobial effects of metal ions(Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 129–134.
  • Feng, Q.I.; Kim, J.O.; Wu, J.; Park, E.S.; Kim, J.O.; Lim, D.Y.; Cui, F.Z. Ag-Hap thin film on alumina substrate and its antibacterial effects. Thin Solid Film 1998, 335, 214–219.
  • Shirkhanzadeh, M.; Azadegan, M.; Liu, G.Q. Bioactive delivery systems for the slow release of antibiotics; incorporation of Ag+ ions into micro-porous hydroxyyapatite coatings. Mater. Lett. 1995, 24, 7–12.
  • Mayer, A.B.R. Colloidal metal nanoparticles dispersed in amphiphilic polymers. Polym. Adv. Technol. 2001, 12, 96–106.
  • Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innovat. Food Sci. Emerg. Technol. 2002, 3, 113–126.
  • Tuan, W.H.; Chou, W.B. The corrosion behavior of Al2O3 toughened by Ag particles. J. Eur. Ceram. Soc. 1996, 16, 583–586.
  • Liu, D.M.; Tuan, W.H. Microstructure and thermal conduction properties of Al2O3-Ag composites. Acta Mater. 1996, 44(2), 813–818.
  • Popielarz, P.; Ching, C.K.; Nozaki, R.; Obrzut, J. Dielectric properties polymer/ferro electric ceramic composites from 100 Hz to 10 GHz. Macromolecules 2001, 34, 5910–5915.
  • Tuan, W.H.; Chen, W.R. Mechanical properties of alumina-zirconia-silver composites. J. Am. Ceram. Soc. 1995, 78(2), 465–469.
  • Somiya, S.; Davies, R.F.; Pask, J.A., eds., Mullite and Mullite Matrix Composites, Ceramic Transactions, American Ceramic Society: Westerville, OH, 1990; p. 6.
  • Aksay, I.A.; Dabbs, D.M.; Sarikaya, M. Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 1991, 74(10), 2343–2358.
  • Prochazka, S.; Klug, F.J. Infrared-transparent mullite ceramic. J. Am. Ceram. Sot. 1983, 66(12), 874–880.
  • Roncari, E.; Galassi, C.; Bassarello, C. Mullite suspensions for reticulate ceramic preparation. J. Am. Ceram. Soc. 2000, 83(12), 2993–2998.
  • Meng, J.; Cai, S.; Yang, Z.; Yuan, Q.; Chen, Y. Microstructure and mechanical properties of mullite ceramics containing rod like particles. Chen. J. Eur. Ceram. Soc. 1998, 18, 1107–1114.
  • Kanimozhi, K.; Prabunathan, P.; Selvaraj, V.; Alagar, M. Development and characterization of surface modified mullite reinforced BMI toughened epoxy nanocomposites. Polym. Bull. 2014, 71, 1277–1293. doi:10.1007/s00289-014-1122-5.
  • Ilango, K.; Prabunathan, P.; Satheeshkumar, E.; Manohar, P. Ceria doped mullite reinforced polybenzoxazine nanocomposites with improved UV-shielding and thermo-mechanical properties polymer composites. 2016, doi:10.1002/pc.24169.
  • Kanimozhi, K.; Prabunathan, P.; Selvaraj, V.; Alagar, M. Thermal and mechanical properties of functionalized mullite reinforced unsaturated polyester composites. Polym. Compos. 2014, 35, 1663–1670. doi:10.1002/pc.22819.
  • Chang Song, K. Preparation of mullite fibers by the sol-gel method. J. Sol-Gel Sci. Technol. 1998, 13, 1017–1021.
  • Prabunathan, P.; Sethuraman, K.; Alagar, M. Development of bio-based F-SBA-15 reinforced epoxy nanocomposites for low-k dielectric applications. High Perform Polym. 2014, 26, 283–289.
  • Ning, X.; Chin, I.H. Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol – A based benzoxazines and their polymers. J. Polym. Sci. A. Polym. Chem. 1994, 32, 1121–1129.
  • Biplab Kumar, P.; Kumaresh, H.; Debasis, R.; Biswajoy, B.; Alakananda, B.; Sukhen, D. Abrupt change of dielectric properties in mullite due to titanium and strontium incorporation by sol–gel method. J. Adv. Ceram. 2014, 3(4), 278–286, doi:10.1007/s40145-014-0119-8.
  • Debasis, R.; Biswajoy, B.; Alakanand, B.; Sukhen, D.; Papiya, N. A comparative study of densification of sol–gel-derived nano-mullite due to the influence of iron, nickel and copper ions. Int. J. Appl. Ceram. Technol. 2013, 11, 1054–1060. doi:10.1111/ijac.12114.
  • Roy, D.S.; Bagchi, B.J.; Das, S.K.; Papiya, N. Electrical and dielectric properties of sol–gel derived mullite doped with transition metals. Mater. Chem. Phys. 2013, 138, 375–383.
  • Mohseniazar, M.; Barin, M.; Zarredar, H.; Alizadeh, S.; Shanehbandi, D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts. 2011, 1(3), 149–152.
  • Sanad, M.M.S.; Rashad, M.M.; Abdel-Aal, E.A.; El-Shahat, M.F.; Powers, K. Optical and electrical properties of Y3+ ion substituted orthorhombic mullite Y(x) Al (6−x)Si2O13 nanoparticles. J. Mater. Sci. Mater. Electron. 2014, 25, 2487–2493.
  • Boolchand, P., Bresser, W.J. Mobile silver ions and glass formation in solid electrolytes. Nature 2001, 410, 1070–1073, doi:10.1038/35074049.
  • Olsen, A.W.; Kafafi, Z.H. Gold cluster-laden polydiacetylenes: Novel materials for nonlinear optics. J. Am. Chem. Soc. 1991, 113, 7758–7760.
  • Kanimozhi, K.; Devaraju, S.; Vengatesan, M.R.; Selvaraj, V.; Alagar, M. Studies on synthesis and characterization of surface-modified mullitefibre-reinforced epoxy nanocomposites. High Perform Polym. 2013, 25(6), 658–667.
  • Ilango, K.; Prabunathan, P.; Satheeshkumar, E.; Manohar, P. Design of low dielectric constant polybenzoxazine nanocomposite using mesoporous mullite. High Perform Polym. 2016, 29, 141–150. doi:10.1177/0954008316632289.
  • Lee, Y.J.; Kuo, S.W.; Huang, C.F.; Chang, F.C. Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS). Polymer 2006, 47, 4378–4386.
  • Agag, T.; Takeichi, T.; Polybenzoxazine–montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer 2000, 41, 7083–7090.
  • Castillo, U.C.; Rejon, L. A.C. and D.C. measurements of silica-carbon-reinforced polymeric current collector plates. Electrochem. Syst. 2001, 4, 37–40.
  • Mamunya, Ye.P.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Pol. J. 2002, 38, 1887.
  • Sandler, J.K.W.; Kirk, J.E.; Kinloch, A.A.; Shaffer, M.S.P.; Windle, A.H. Electrical percolation threshold in carbon-nanotube-epoxy composities. Polymer 2003, 44, 5893–5899.
  • Bouda, V. Evolution of carbon self-assembly in colloidal phase diagram. MRS Online Proceedings Library Archive 2002, 739.
  • Jagur-Grodzinski, J. Conductive polymer with micro or nanometer structure. Polym. Adv. Technol. 2002, 13, 615.
  • Vengatesan, M.R.; Devaraju, S.; Dinakaran, K.; Alagar, M. Studies on thermal and dielectrical properties of organo clay and octakis (dimethylsiloxypropylglycidylether) silsesquioxane (OG-POSS) filled polybenzoxazine (PBZ) hybrid nanocomposites. Polymer Compos. 2011, 32, 1701–1711.
  • Bouda, V.; Chládek, J. Carbon black metamorphoses in polyethylene with varying ionic concentration. Filled and Nanocomposite Polymer Materials 2001, 17–1.
  • Revathi, R.; Prabunathan, P.; Kumar, M.; Alager, M. Optical and thermomechanical behavior of benzoxazine functionalized ZnO reinforced polybenzoxazine nanocomposites. Polym. Compos. 2015, doi:10.1002/pc.23758.
  • Devaraju, S.; Prabunathan, P.; Selvi, M.; Alager, M. Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nansocomposites. Polym. Chem. 2013, 1(19), 1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.