3,692
Views
191
CrossRef citations to date
0
Altmetric
Reviews

PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application

, ORCID Icon, &

References

  • Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265.
  • Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging. Trends Food Sci. Technol. 2008, 19, 634–643.
  • Silvestre, C.; Duraccio, D.; Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782.
  • Arora, A.; Padua, G. Review: Nanocomposites in food packaging. J. Food Sci. 2010, 75, R43–R49.
  • Butnaru, E.; Cheaburu, C.N.; Yilmaz, O.; Pricope, G.M.; Vasile, C. Poly(vinyl-alcohol)/chitosan/montmorillonite nanocomposites for food packaging applications: Influence of montmorillonite content. High Perform. Polym. 2016, 28, 1124–1138.
  • Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind. Crop. Prod. 2011, 33, 229–235.
  • Avella, M.; Vlieger, J.J.; Errico, M.E.; Fischer, S.; Vacca, P.; Volpe, M.G. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 2005, 93, 467–474.
  • Rhim, J.; Ng, P.K. Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr. 2007, 47, 411–433.
  • Sinharay, S.; Bousmina, M. Biodegradable polymers and their layered silicate nanocomposites: In greeting the 21st century materials world. Prog. Mater. Sci. 2005, 50, 962–1079.
  • Avérous, L.; Halley, P.J. Biocomposites based on plasticized starch. Biofuels Bioprod. Bioref. 2009, 3, 329–343.
  • Ma, X.; Chang, P.R.; Yu, J.; Stumborg, M. Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr. Polym. 2009, 75, 1–8.
  • Mantia, F.L.; Morreale, M. Green composites: A brief review. Compos. A Appl. Sci. Manuf. 2011, 42, 579–588.
  • Broek, L.A.; Knoop, R.J.; Kappen, F.H.; Boeriu, C.G. Chitosan films and blends for packaging material. Carbohydr. Polym. 2015, 116, 237–242.
  • Kim, M.; Lee, S. Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydr. Polym. 2002, 50, 331–337.
  • Sorrentino, A.; Gorrasi, G.; Vittoria, V. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 2007, 18, 84–95.
  • Rhim, J.; Park, H.; Ha, C. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652.
  • Mensitieri, G.; Maio, E.D.; Buonocore, G.G.; Nedi, I.; Oliviero, M.; Sansone, L.; Iannace, S. Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci. Technol. 2011, 22, 72–80.
  • Romero-Bastida, C.A.; Bello-Pérez, L.A.; García, M.A.; Martino, M.N.; Solorza-Feria, J.; Zaritzky, N.E. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr. Polym. 2005, 60, 235–244.
  • Avérous, L. Biodegradable multiphase systems based on plasticized starch: A review. J. Macromol. Sci. C Polym. Rev. 2004, 44, 231–274.
  • Fukushima, K.; Camino, G. Polymer nanocomposites biodegradation. In: Dasari, A., Fukushim, K. eds. Functional and Physical Properties of Polymer Nanocomposites, Wiley: Chichester, 2016; pp. 57–91.
  • Avérous, L.; Pollet, E. Biodegradable polymers. In: Avérous, L., Pollet, E. eds. Environmental Silicate Nano-biocomposites, Springer: London, 2012; pp. 13–39.
  • Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273–1335.
  • Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442.
  • Chiellini, E.; Corti, A.; Solaro, R. Biodegradation of poly (vinyl-alcohol) based blown films under different environmental conditions. Polym. Degrad. Stabil. 1999, 64, 305–312.
  • Gáspár, M.; Benkő, Z.; Dogossy, G.; Réczey, K.; Czigány, T. Reducing water absorption in compostable starch-based plastics. Polym. Degrad. Stabil. 2005, 90, 563–569.
  • Averous, L.; Boquillon, N. Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydr. Polym. 2004, 56, 111–122.
  • Follain, N.; Joly, C.; Dole, P.; Bliard, C. Mechanical properties of starch-based materials. I. Short review and complementary experimental analysis. J. Appl. Polym. Sci. 2005, 97, 1783–1794.
  • Demirgöz, D.; Elvira, C.; Mano, J.F.; Cunha, A.M.; Piskin, E.; Reis, R.L. Chemical modification of starch based biodegradable polymeric blends: Effects on water uptake, degradation behaviour and mechanical properties. Polym. Degrad. Stabil. 2000, 70, 161–170.
  • George, J.; Sabapathi, S.N.; Siddaramaiah. Water soluble polymer-based nanocomposites containing cellulose nanocrystals. In: Thakur, V.K., Thakur, M.K. eds. Advanced Structured Materials Eco-friendly Polymer Nanocomposites, Springer: New Delhi, 2015; pp. 259–293.
  • Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl-alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014.
  • Singha, A.S.; Priya, B.; Pathania, D. Corn starch/poly (vinyl-alcohol) biocomposite blend films: Mechanical properties, thermal behavior, fire retardancy, and antibacterial activity. Int. J. Polym. Anal. Charact. 2015, 20, 357–366.
  • Tânase, E.E.; Popa, M.E.; Râpâ, M.; Popa, O. Preparation and characterization of biopolymer blends based on polyvinyl alcohol and starch. Rom. Biotech. Lett. 2015, 20, 10306–10315.
  • Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16.
  • Xiong, H.; Tang, S.; Tang, H.; Zou, P. The structure and properties of a starch-based biodegradable film. Carbohydr. Polym. 2008, 71, 263–268.
  • Sapalidis, A.A.; Katsaros, F.K.; Kanellopoulos, N.K. PVA/montmorillonite nanocomposites: Development and properties. In: Cuppoletti, J. ed. Nanocomposites and Polymers with Analytical Methods, InTech: Rijeka, 2011; pp. 29–50.
  • Ismail, H.; Zaaba, N.F. Effect of additives on properties of polyvinyl alcohol (PVA)/tapioca starch biodegradable films. Polym. Plast. Technol. 2011, 50, 1214–1219.
  • Shimao, M. Biodegradation of plastics. Curr. Opin. Biotechnol. 2001, 12, 242–247.
  • Guimarães, M.; Botaro, V.R.; Novack, K.M.; Teixeira, F.G.; Tonoli, G.H. Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind. Crop. Prod. 2015, 70, 72–83.
  • Tang, S.; Zou, P.; Xiong, H.; Tang, H. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym. 2008, 72, 521–526.
  • Mousa, M.H.; Dong, Y.; Davies, I.J. Recent advances in bionanocomposites: Preparation, properties, and applications. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 225–254.
  • Gaaz, T.; Sulong, A.; Akhtar, M.; Kadhum, A.; Mohamad, A.; Al-Amiery, A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015, 20, 22833–22847.
  • Zhou, J.; Ma, Y.; Ren, L.; Tong, J.; Liu, Z.; Xie, L. Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym. 2009, 76, 632–638.
  • Rahman, W.; Sin, L.T.; Rahmat, A.; Samad, A. Thermal behaviour and interactions of cassava starch filled with glycerol plasticized polyvinyl alcohol blends. Carbohydr. Polym. 2010, 81, 805–810.
  • Luo, X.; Li, J.; Lin, X. Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films. Carbohydr. Polym. 2012, 90, 1595–1600.
  • Yuan, P.; Tan, D.; Annabi-Bergaya, F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Appl. Clay Sci. 2015, 112–113, 75–93.
  • Jang, J.; Lee, D.K. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer 2003, 44, 8139–8146.
  • Negim, E.S.M.; Rakhmetullayeva, R.K.; Yeligbayeva, G.Zh.; Urkimbaeva, P.I.; Primzharova, S.T.; Kaldybekov, D.B.; Khatib, J.M.; Mun, G.A.; Craig, W. Improving biodegradability of polyvinyl alcohol/starch blend films for packaging applications. Int. J. Basic Appl. Sci. 2014, 3, 263–273.
  • Roohani, M.; Habibi, Y.; Belgacem, N.M.; Ebrahim, G.; Karimi, A.N.; Dufresne, A. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 2008, 44, 2489–2498.
  • Lim, M.; Kwon, H.; Kim, D.; Seo, J.; Han, H.; Khan, S.B. Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly (vinyl-alcohol) hybrid films for packaging applications. Prog. Org. Coat. 2015, 85, 68–75.
  • Mishra, R.; Rao, K.J. On the formation of poly (ethylene oxide)-poly (vinyl alcohol) blends. Eur. Polym. J. 1999, 35, 1883–1894.
  • Cao, Y.; Wei, W.; Liu, J.; You, Q.; Liu, F.; Lan, Q.; Zhang, C.; Liu, C.; Zhao, J. The preparation of graphene reinforced poly (vinyl-alcohol) antibacterial nanocomposite thin film. Int. J. Polym. Sci. 2015, 2015, 1–7 (Article ID 407043).
  • Giannakas, A.; Vlacha, M.; Salmas, C.; Leontiou, A.; Katapodis, P.; Stamatis, H.; Barkoula, N.; Ladavos, A. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr. Polym. 2016, 140, 408–415.
  • Grande, R.; Pessan, L.A.; Carvalho, A.J. Ternary melt blends of poly (lactic acid)/poly (vinyl alcohol)-chitosan. Ind. Crop. Prod. 2015, 72, 159–165.
  • Grande, R.; Carvalho, A.J. Compatible ternary blends of chitosan/poly(vinyl alcohol)/poly(lactic acid) produced by oil-in-water emulsion processing. Biomacromolecules 2011, 12, 907–914.
  • Sakurada, I. Polyvinyl Alcohol Fibres, Marcel Dekker: New York, 1985.
  • Sadegh-Hassani, F.; Nafchi, A.M. Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int. J. Biol. Macromol. 2014, 67, 458–462.
  • Priya, B.; Gupta, V.K.; Pathania, D.; Singha, A.S. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym. 2014, 109, 171–179.
  • Krumova, M.; López, D.; Benavente, R.; Mijangos, C.; Pereña, J. Effect of crosslinking on the mechanical and thermal properties of poly (vinyl-alcohol). Polymer 2000, 41, 9265–9272.
  • Loryuenyong, V.; Saewong, C.; Aranchaiya, C.; Buasri, A. The improvement in mechanical and barrier properties of poly (vinyl-alcohol)/graphene oxide packaging films. Packag. Technol. Sci. 2015, 28, 939–947.
  • Cui, Y.; Kumar, S.; Kona, B.R.; Houcke, D.V. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2015, 5, 63669–63690.
  • Nielsen, L.E. Models for the permeability of filled polymer systems. J. Macromol. Sci. A Chem. 1967, 1, 929–942.
  • Feldman, D. Polymer nanocomposite barriers. J. Macromol. Sci. A Chem. 2013, 50, 441–448.
  • Sin, L.T.; Rahman, W.; Rahmat, A.; Khan, M. Detection of synergistic interactions of polyvinyl alcohol–cassava starch blends through DSC. Carbohydr. Polym. 2010, 79, 224–226.
  • Choudalakis, G.; Gotsis, A. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 2009, 45, 967–984.
  • Bhattacharya, M.; Biswas, S.; Bhowmick, A.K. Permeation characteristics and modeling of barrier properties of multifunctional rubber nanocomposites. Polymer 2011, 52, 1562–1576.
  • Eitzman, D.M.; Melkote, R.R.; Cussler, E.L. Barrier membranes with tipped impermeable flakes. AIChE J. 1996, 42, 2–9.
  • Yeun, J.; Bang, G.; Park, B.J.; Ham, S.K.; Chang, J. Poly(vinyl alcohol) nanocomposite films: Thermooptical properties, morphology, and gas permeability. J. Appl. Polym. Sci. 2006, 101, 591–596.
  • Ramaraj, B. Crosslinked poly(vinyl-alcohol) and starch composite films: Study of their physicomechanical, thermal, and swelling properties. J. Appl. Polym. Sci. 2006, 103, 1127–1132.
  • Holland, B.J.; Hay, J.N. The thermal degradation of poly(vinyl-alcohol). Polymer 2001, 42, 6775–6783.
  • Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polym. Degrad. Stabil. 2016, 132, 11–20.
  • Kopčilová, M.; Hubáčková, J.; Růžička, J.; Dvořáčková, M.; Julinová, M.; Koutný, M.; Tomalová, M.; Alexy, P.; Bugaj, P.; Filip, J. Biodegradability and mechanical properties of poly(vinyl alcohol)-based blend plastics prepared through extrusion method. J. Polym. Environ. 2012, 21, 88–94.
  • Corti, A.; Cinelli, P.; D’antone, S.; Kenawy, E.; Solaro, R. Biodegradation of poly(vinyl alcohol) in soil environment: Influence of natural organic fillers and structural parameters. Macromol. Chem. Phys. 2002, 203, 1526–1531.
  • Solaro, R.; Corti, A.; Chiellini, E. Biodegradation of poly(vinyl-alcohol) with different molecular weights and degree of hydrolysis. Polym. Adv. Technol. 2000, 11, 873–878.
  • Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 2007, 67, 288–295.
  • Cai, J.; Chen, J.; Zhang, Q.; Lei, M.; He, J.; Xiao, A.; Ma, C.; Li, S.; Xiong, H. Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties. Carbohydr. Polym. 2016, 140, 238–245.
  • Kim, H.M.; Lee, J.K.; Lee, H.S. Transparent and high gas barrier films based on poly (vinyl-alcohol)/graphene oxide composites. Thin Solid Films 2011, 519, 7766–7771.
  • Rahmat, A.R.; Rahman, W.A.; Sin, L.T.; Yussuf, A. Approaches to improve compatibility of starch filled polymer system: A review. Mater. Sci. Eng. C 2009, 29, 2370–2377.
  • Gupta, B.; Agarwal, R.; Alam, M.S. Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. J. Appl. Polym. Sci. 2012, 127, 1301–1308.
  • García, N.L.; Famá, L.; D’Accorso, N.B.; Goyanes, S. Biodegradable starch nanocomposites. In: Thakur, V.K., Thakur, M.K. eds. Advanced Structured Materials Eco-friendly Polymer Nanocomposites, Springer: New Delhi, 2015; pp. 17–77.
  • Wang, W.; Zhang, H.; Dai, Y.; Hou, H.; Dong, H. Effects of low poly (vinyl-alcohol) content on properties of biodegradable blowing films based on two modified starches. J. Thermoplast. Compos. doi:10.1177/0892705715614080 (published online on October 28, 2015).
  • Corre, D.L.; Bras, J.; Dufresne, A. Starch nanoparticles: A review. Biomacromolecules 2010, 11, 1139–1153.
  • Schmitt, H.; Prashantha, K.; Soulestin, J.; Lacrampe, M.; Krawczak, P. Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydr. Polym. 2012, 89, 920–927.
  • Song, T.; Tanpichai, S.; Oksman, K. Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 2016, 23, 1925–1938.
  • Shi, R.; Zhang, Z.; Liu, Q.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr. Polym. 2007, 69, 748–755.
  • Taghizadeh, M.; Sabouri, N.; Ghanbarzadeh, B. Polyvinyl-alcohol:starch:carboxymethyl cellulose containing sodium montmorillonite clay blends; mechanical properties and biodegradation behavior. SpringerPlus 2013, 2, 376 (8 pages).
  • Xiao, C.; Yang, M. Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydr. Polym. 2006, 64, 37–40.
  • Sreedhar, B.; Sairam, M.; Chattopadhyay, D.K.; Rathnam, P.A.; Rao, D.V. Thermal, mechanical, and surface characterization of starch-poly (vinyl-alcohol) blends and borax-crosslinked films. J. Appl. Polym. Sci. 2005, 96, 1313–1322.
  • Sreedhar, B.; Chattopadhyay, D.K.; Karunakar, M.S.; Sastry, A.R. Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J. Appl. Polym. Sci. 2006, 101, 25–34.
  • Zou, G.; Qu, J.; Zou, X. Optimization of water absorption of starch/PVA composites. Polym. Compos. 2007, 28, 674–679.
  • Majdzadeh-Ardakani, K.; Navarchian, A.H.; Sadeghi, F. Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr. Polym. 2010, 79, 547–554.
  • Sin, L.T.; Rahmat, A.; Rahman, W.; Sun, Z.; Samad, A. Rheology and thermal transition state of polyvinyl alcohol–cassava starch blends. Carbohydr. Polym. 2010, 81, 737–739.
  • Yoon, S.; Park, M.; Byun, H. Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly (methyl methacrylate-co-acrylamide) particles. Carbohydr. Polym. 2012, 87, 676–686.
  • Bin-Dahman, O.A.; Jose, J.; Al-Harthi, M.A. Effect of natural weather aging on the properties of poly(vinyl alcohol)/starch/graphene nanocomposite. Starch—Stärke 2016, 68, 1–8.
  • Tânase, E.E.; Popa, E.M.; Râpâ, M.; Popa, O.; Popa, I.V. Biodegradation study of some food packaging biopolymers based on PVA. Bull. UASVM Anim. Sci. Biotechnol. 2016, 73, 1–5.
  • Park, H.; Chough, S.; Yun, Y.; Yoon, S. Properties of starch/PVA blend films containing citric acid as additive. J. Polym. Environ. 2005, 13, 375–382.
  • Yun, Y.; Na, Y.; Yoon, S. Mechanical properties with the functional group of additives for starch/PVA blend film. J. Polym. Environ. 2006, 14, 71–78.
  • Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64.
  • Siddaramaiah; Raj, B.; Somashekar, R. Structure–property relation in polyvinyl alcohol/starch composites. J. Appl. Polym. Sci. 2004, 91, 630–635.
  • Chen, Y.; Cao, X.; Chang, P.R.; Huneault, M.A. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym. 2008, 73, 8–17.
  • Zhang, G.; Liu, Y.; Fang, C.; Zhang, M.; Zhou, C.; Chen, Z. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly (vinyl alcohol) blend film. Polym. Degrad. Stabil. 2006, 91, 703–711.
  • Jayasekara, R.; Harding, I.; Bowater, I.; Christie, G.; Lonergan, G. Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym. Test. 2004, 23, 17–27.
  • Visakh, P.M. Starch: State-of-the-art, new challenges and opportunities. In: Visakh, P.M., Long, Y. eds. Starch-based Blends, Composites and Nanocomposites, RSC: Cambridge, 2016; pp. 1–16.
  • Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr. Polym. 2008, 74, 763–770.
  • Eaysmine, S.; Haque, P.; Ferdous, T.; Gafur, M.A.; Rahman, M.M. Potato starch-reinforced poly (vinyl-alcohol) and poly (lactic-acid) composites for biomedical applications. J. Thermoplast. Compos. 2016, 29, 1536–1553.
  • Lawton, J. Effect of starch type on the properties of starch containing films. Carbohydr. Polym. 1996, 29, 203–208.
  • Zanela, J.; Olivato, J.B.; Dias, A.P.; Grossmann, M.V.; Yamashita, F. Mixture design applied for the development of films based on starch, polyvinyl alcohol, and glycerol. J. Appl. Polym. Sci. 2015, 132, 1–8 (Article No. 42697).
  • He, Z.; Xiong, L. Evaluation of physical and biological properties of polyvinyl alcohol/chitosan blend films. J. Macromol. Sci. B 2012, 51, 1705–1714.
  • Li, H.; Chen, S.; Wang, Y. Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Compos. Sci. Technol. 2015, 115, 60–65.
  • Bari, S.S.; Chatterjee, A.; Mishra, S. Biodegradable polymer nanocomposites: An overview. Polym. Rev. 2016, 56, 287–328.
  • Khoo, W.S.; Ismail, H.; Ariffin, A. Tensile, swelling, and oxidative degradation properties of crosslinked polyvinyl alcohol/chitosan/halloysite nanotube composites. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 390–396.
  • Tripathi, S.; Mehrotra, G.; Dutta, P. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int. J. Biol. Macromol. 2009, 45, 372–376.
  • Zou, G.; Jin, P.; Xin, L. Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. J. Elastom. Plast. 2008, 40, 303–316.
  • Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366.
  • Zhang, R.; Xu, W.; Jiang, F. Fabrication and characterization of dense chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes. Fibers Polym. 2012, 13, 571–575.
  • Li, H.; Chen, S.; Wang, Y. Thermoplastic PVA/PLA blends with improved processability and hydrophobicity. Ind. Eng. Chem. Res. 2014, 53, 17355–17361.
  • Gajria, A.M.; Davé, V.; Gross, R.A.; Mccarthy, S.P. Miscibility and biodegradability of blends of poly (lactic acid) and poly (vinyl acetate). Polymer 1996, 37, 437–444.
  • Hu, Y.; Wang, Q.; Tang, M. Preparation and properties of starch-g-PLA/poly(vinyl alcohol) composite film. Carbohydr. Polym. 2013, 96, 384–388.
  • Shuai, X.; He, Y.; Asakawa, N.; Inoue, Y. Miscibility and phase structure of binary blends of poly (L-lactide) and poly (vinyl alcohol). J. Appl. Polym. Sci. 2001, 81, 762–772.
  • Bailey, F.E.; Koleske, J.V. Properties of poly (ethylene oxide). In: Poly(ethylene oxide), Academic Press: New York, 1976; pp. 105–149.
  • Sawatari, C.; Kondo, T. Interchain hydrogen bonds in blend films of poly (vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules 1999, 32, 1949–1955.
  • Cano, A.; Fortunati, E.; Cháfer, M.; González-Martínez, C.; Chiralt, A.; Kenny, J.M. Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl-alcohol) blend films. J. Mater. Sci. 2015, 50, 6979–6992.
  • Hu, D.; Wang, L. Fabrication of antibacterial blend film from poly(vinyl alcohol) and quaternized chitosan for packaging. Mater. Res. Bull. 2016, 78, 46–52.
  • Ramaraj, B. Crosslinked poly(vinyl-alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. J. Appl. Polym. Sci. 2006, 103, 909–916.
  • Azahari, N.A.; Othman, N.; Ismail, H. Biodegradation studies of polyvinyl-alcohol/corn starch blend films in solid and solution media. J. Phys. Sci. 2011, 22, 15–31.
  • Das, K.; Ray, D.; Bandyopadhyay, N.R.; Gupta, A.; Sengupta, S.; Sahoo, S.; Mohanty, A.; Misra, M. Preparation and characterization of cross-linked starch/poly (vinyl-alcohol) green films with low moisture absorption. Ind. Eng. Chem. Res. 2010, 49, 2176–2185.
  • Yoon, S.; Chough, S.; Park, H. Preparation of resistant starch/poly (vinyl-alcohol) blend films with added plasticizer and crosslinking agents. J. Appl. Polym. Sci. 2007, 106, 2485–2493.
  • Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702–711.
  • Mao, L.; Imam, S.; Gordon, S.; Cinelli, P.; Chiellini, E. Extruded corn starch-glycerol-polyvinyl alcohol blends: Mechanical properties, morphology, and biodegradability. J. Polym. Environ. 2000, 8, 205–211.
  • Bertuzzi, M.; Vidaurre, E.C.; Armada, M.; Gottifredi, J. Water vapour permeability of edible starch based films. J. Food Eng. 2007, 80, 972–978.
  • Spiridon, I.; Popescu, M.C.; Bodârlău, R.; Vasile, C. Enzymatic degradation of some nanocomposites of poly (vinyl alcohol) with starch. Polym. Degrad. Stabil. 2008, 93, 1884–1890.
  • Hu, G.; Chen, J.; Gao, J. Preparation and characteristics of oxidized potato starch films. Carbohydr. Polym. 2009, 76, 291–298.
  • Chen, L.; Imam, S.H.; Gordon, S.H.; Greene, R.V. Starch- polyvinyl alcohol crosslinked film-performance and biodegradation. J. Environ. Polym. Degrad. 1997, 5, 111–117.
  • Julkapli, N.M.; Bagheri, S.; Sapuan, S.M. Multi-functionalized carbon nanotubes polymer composites: Properties and applications. In: Thakur, V.K., Thakur, M.K. eds., Advanced Structured Materials Eco-friendly Polymer Nanocomposites, Springer: New Delhi, 2015; pp. 155–214.
  • Aydın, A.A.; Ilberg, V. Effect of different polyol-based plasticizers on thermal properties of poly vinyl-alcohol: Starch blends. Carbohydr. Polym. 2016, 136, 441–448.
  • Jose, J.; Al-Harthi, M.A.; Alma’adeed, M.A.; Dakua, J.B.; De, S.K. Effect of graphene loading on thermomechanical properties of poly(vinyl-alcohol)/starch blend. J. Appl. Polym. Sci. 2015, 132, 1–8 (Article No. 41827).
  • Othman, N.; Azahari, N.A.; Ismail, H. Thermal properties of polyvinyl alcohol (PVOH)/corn starch blend film. Malaysian Polym. J. 2011, 6, 147–154.
  • Yin, Y.; Li, J.; Liu, Y.; Li, Z. Starch crosslinked with poly(vinyl-alcohol) by boric acid. J. Appl. Polym. Sci. 2005, 96, 1394–1397.
  • Soheilmoghaddam, M.; Pour, R.H.; Wahit, M.U.; Balakrishnan, H. Bionanocomposites of regenerated cellulose reinforced with halloysite nanoclay and graphene nanoplatelets: Characterizations and properties. In: Thakur, V.K., Thakur, M.K. eds. Advanced Structured Materials Eco-friendly Polymer Nanocomposites, Springer: New Delhi, 2015; pp. 295–321.
  • Youssef, A.M. Polymer nanocomposites as a new trend for packaging applications. Polym. Plast. Technol. Eng. 2013, 52, 635–660.
  • Cano, A.; Fortunati, E.; Cháfer, M.; Kenny, J.; Chiralt, A.; González-Martínez, C. Properties and ageing behaviour of pea starch films as affected by blend with poly (vinyl-alcohol). Food Hydrocoll. 2015, 48, 84–93.
  • Minelli, M.; Baschetti, M.G.; Doghieri, F. Analysis of modelling results for barrier properties in ordered nanocomposite systems. J. Membr. Sci. 2009, 327, 208–215.
  • Azeredo, H.M. Nanocomposites for food packaging applications. Food Res. Int. 2009, 42, 1240–1253.
  • Ray, S.; Quek, S.Y.; Easteal, A.; Chen, X.D. The potential use of polymer-clay nanocomposites in food packaging. Int. J. Food Eng. 2006, 2. doi:10.2202/1556-3758.1149 (Article 5).
  • Dean, K.M.; Do, M.D.; Petinakis, E.; Yu, L. Key interactions in biodegradable thermoplastic starch/poly (vinyl alcohol)/montmorillonite micro- and nanocomposites. Compos. Sci. Technol. 2008, 68, 1453–1462.
  • Li, Y.; Tian, H.; Jia, Q.; Niu, P.; Xiang, A.; Liu, D.; Qin, Y. Development of polyvinyl alcohol/intercalated MMT composite foams fabricated by melt extrusion. J. Appl. Polym. Sci. 2015, 132, 1–7 (Article No. 42706).
  • Chiou, B.; Yee, E.; Glenn, G.M.; Orts, W.J. Rheology of starch–clay nanocomposites. Carbohydr. Polym. 2005, 59, 467–475.
  • Majdzadeh-Ardakani, K.; Nazari, B. Improving the mechanical properties of thermoplastic starch/poly (vinyl alcohol)/clay nanocomposites. Compos. Sci. Technol. 2010, 70, 1557–1563.
  • Rawtani, D; Agrawal, Y.K. Multifarious applications of halloysite nanotubes: A review. Rev. Adv. Mater. Sci. 2012, 30, 282–295.
  • Tully, J.; Fakhrullin, R.; Lvov, Y. Halloysite clay nanotube composites with sustained release of chemicals. In: Bardosova, M., Wagner, T. eds. Nanomaterials and Nanoarchitectures, Springer: Dordrecht, 2015; pp. 87–118.
  • Schmitt, H.; Creton, N.; Prashantha, K.; Soulestin, J.; Lacrampe, M.; Krawczak, P. Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J. Appl. Polym. Sci. 2014, 132, 1–9 (Article No. 41341).
  • Meira, S.M.; Zehetmeyer, G.; Scheibel, J.M.; Werner, J.O.; Brandelli, A. Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in soft cheese. LWT - Food Sci. Technol. 2016, 68, 226–234.
  • Xie, Y.; Chang, P.R.; Wang, S.; Yu, J.; Ma, X. Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. Starch composites. Carbohydr. Polym. 2011, 83, 186–191.
  • Huang, H.; Ren, P.; Chen, J.; Zhang, W.; Ji, X.; Li, Z. High barrier graphene oxide nanosheet/poly (vinyl alcohol) nanocomposite films. J. Membr. Sci. 2012, 409–410, 156–163.
  • Alipoormazandarani, N.; Ghazihoseini, S.; Nafchi, A.M. Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay. Carbohydr. Polym. 2015, 134, 745–751.
  • Zhang, Y.; Tang, A.; Yang, H.; Ouyang, J. Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. 2016, 119, 8–17.
  • Tully, J.; Yendluri, R.; Lvov, Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 2016, 17, 615–621.
  • He, Y.; Kong, W.; Wang, W.; Liu, T.; Liu, Y.; Gong, Q.; Gao, J. Modified natural halloysite/potato starch composite films. Carbohydr. Polym. 2012, 87, 2706–2711.
  • Sellam, C.; Zhai, Z.; Zahabi, H.; Picot, O.T.; Deng, H.; Fu, Q.; Bilotti, E.; Peijs, T. High mechanical reinforcing efficiency of layered poly (vinyl-alcohol)-graphene oxide nanocomposites. Nanocomposites 2015, 1, 89–95.
  • Schmitt, H.; Creton, N.; Prashantha, K.; Soulestin, J.; Lacrampe, M.; Krawczak, P. Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym. Eng. Sci. 2014, 55, 573–580.
  • Liu, D.; Bian, Q.; Li, Y.; Wang, Y.; Xiang, A.; Tian, H. Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Compos. Sci. Technol. 2016, 129, 146–152.
  • Liu, H.; Bandyopadhyay, P.; Kim, N.H.; Moon, B.; Lee, J.H. Surface modified graphene oxide/poly (vinyl alcohol) composite for enhanced hydrogen gas barrier film. Polym. Test. 2016, 50, 49–56.
  • Raheel, M.; Yao, K.; Gong, J.; Chen, X.; Liu, D.; Lin, Y.; Cui, D.; Siddiq, M.; Tang, T. Poly (vinyl-alcohol)/GO-MMT nanocomposites: Preparation, structure and properties. Chin. J. Polym. Sci. 2015, 33, 329–338.
  • Lemes, A.P.; Montanheiro, T.L.; Passador, F.R.; Durán, N. Nanocomposites of polyhydroxyalkanoates reinforced with carbon nanotubes: Chemical and biological properties. In: Thakur, V.K., Thakur, M.K. eds. Advanced Structured Materials Eco-friendly Polymer Nanocomposites, Springer: New Delhi, 2015; pp. 79–108.
  • Kumar, B.R.; Crasta, V.; Praveen, B.M.; B, S. Enhancement of micro structural properties of PVA doped with MWCNT’s and metal oxide nanocomposites films, AIP Conf. Proc. 2015, 1665, 140002.
  • Liu, L.; Barber, A.H.; Nuriel, S.; Wagner, H.D. Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites. Adv. Funct. Mater. 2005, 15, 975–980.
  • Samal, S.K.; Fernandes, E.G.; Chiellini, F.; Chiellini, E. Thermal analysis of PVA/CNTs 2D membrane. J. Therm. Anal. Calorim. 2009, 97, 859–864.
  • Zhao, B.; Wang, J.; Li, Z.; Liu, P.; Chen, D.; Zhang, Y. Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings. Mater. Lett. 2008, 62, 4380–4382.
  • Basiuk, E.V.; Anis, A.; Bandyopadhyay, S.; Alvarez-Zauco, E.; Chan, S.L.; Basiuk, V.A. Poly (vinyl alcohol)/CNT composites: An effect of cross-linking with glutaraldehyde. Superlatt. Microstruct. 2009, 46, 379–383.
  • Ryan, K.P.; Cadek, M.; Nicolosi, V.; Blond, D.; Ruether, M.; Armstrong, G.; Swan, H.; Fonseca, A.; Nagy, J.B.; Maser, W.K.; Blau, W.J.; Coleman, J.N. Carbon nanotubes for reinforcement of plastics? A case study with poly (vinyl alcohol). Compos. Sci. Technol. 2007, 67, 1640–1649.
  • Sam, S.T.; Nuradibah, M.A.; Chin, K.M.; Hani, N. Current application and challenges on packaging industry based on natural polymer blending. In: Olatunj, O. ed. Natural Polymers: Industrial Techniques and Applications, Springer: New York, 2015; pp. 163–184.
  • Aloui, H.; Khwaldia, K.; Hamdi, M.; Fortunati, E.; Kenny, J.M.; Buonocore, G.G.; Lavorgna, M. Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain. Chem. Eng. 2016, 4, 794–800.
  • Frone, A.N.; Nicolae, C.A.; Gabor, R.A.; Panaitescu, D.M. Thermal properties of water-resistant starch-polyvinyl alcohol films modified with cellulose nanofibers. Polym. Degrad. Stabil. 2015, 121, 385–397.
  • Qua, E.H.; Hornsby, P.R.; Sharma, H.S.; Lyons, G.; Mccall, R.D. Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J. Appl. Polym. Sci. 2009, 113, 2238–2247.
  • Cho, M.; Park, B. Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J. Ind. Eng. Chem. 2011, 17, 36–40.
  • Tan, B.; Thomas, N. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J. Membr. Sci. 2016, 514, 595–612.
  • Qiu, K.; Netravali, A.N. Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polym. Compos. 2013, 34, 799–809.
  • Sadhu, S.D.; Soni, A.; Varmani, S.G.; Garg, M. Preparation of starch-poly vinyl alcohol (PVA) blend using potato and study of its mechanical properties. Int. J. Pharm. Sci. 2014, 3, 33–37.
  • Liu, D.; Sun, X.; Tian, H.; Maiti, S.; Ma, Z. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 2013, 20, 2981–2989.
  • Strawhecker, K.E.; Manias, E. Structure and properties of poly(vinyl alcohol)/Na montmorillonite nanocomposites. Chem. Mater. 2000, 12, 2943–2949.
  • Taghizadeh, M.T.; Abbasi, Z.; Nasrollahzade, Z. Study of enzymatic degradation and water absorption of nanocomposites starch/polyvinyl alcohol and sodium montmorillonite clay. J. Taiwan Inst. Chem. Eng. 2011, 43, 120–124.
  • Nistor, M.; Vasile, C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly (vinyl-alcohol)/montmorillonite nanocomposites. J. Therm. Anal Calorim. 2012, 111, 1903–1919.
  • Nistor, M.; Vasile, C. TG/FTIR/MS study on the influence of nanoparticles content upon the thermal decomposition of starch/poly(vinyl-alcohol) montmorillonite nanocomposites. Iran Polym. J. 2013, 22, 519–536.
  • Taghizadeh, M.T.; Sabouri, N. Study of enzymatic degradation and water absorption of nanocomposites polyvinyl alcohol/starch/carboxymethyl cellulose blends containing sodium montmorillonite clay nanoparticle by cellulose and α-amylase. J. Taiwan Inst. Chem. Eng. 2013, 44, 995–1001.
  • Zhou, W.Y.; Guo, B.; Liu, M.; Liao, R.; Rabie, A.B.; Jia, D. Poly(vinyl-alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. J. Biomed. Mater. Res. 2010, 93A, 1574–1587.
  • Rayleigh, L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos. Mag. Ser. 5, 1892, 34, 481–502.
  • Picard, E.; Vermogen, A.; Gerard, J.; Espuche, E. Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state consequences on modelling. J. Membr. Sci. 2007, 292, 133–144.
  • Xu, B.; Zheng, Q.; Song, Y.; Shangguan, Y. Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers. Polymer 2006, 47, 2904–2910.
  • Fredrickson, G.H.; Bicerano, J. Barrier properties of oriented disk composites. J. Chem. Phys. 1999, 110, 2181.
  • Moggridge, G.; Lape, N.K.; Yang, C.; Cussler, E. Barrier films using flakes and reactive additives. Prog. Org. Coat. 2003, 46, 231–240.
  • Lape, N.K.; Nuxoll, E.E.; Cussler, E. Polydisperse flakes in barrier films. J. Membr. Sci. 2004, 236, 29–37.
  • Cussler, E.; Hughes, S.E.; Ward, W.J.; Aris, R. Barrier membranes. J. Membr. Sci. 1988, 38, 161–174.
  • Gusev, A.A.; Lusti, H.R. Rational design of nanocomposites for barrier applications. Adv. Mater. 2001, 13, 1641–1643.
  • Saritha, A.; Joseph, K.; Thomas, S.; Muraleekrishnan, R. Chlorobutyl rubber nanocomposites as effective gas and VOC barrier materials. Compos. A Appl. Sci. Manuf. 2012, 43, 864–870.
  • Takahashi, S.; Goldberg, H.; Feeney, C.; Karim, D.; Farrell, M.; O’leary, K.; Paul, D. Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 2006, 47, 3083–3093.
  • Yeh, J.; Huang, H.; Chen, C.; Su, W.; Yu, Y. Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf. Coat. Tech. 2006, 200, 2753–2763.
  • Tortora, M.; Vittoria, V.; Galli, G.; Ritrovati, S.; Chiellini, E. Transport properties of modified montmorillonite-poly(ε-caprolactone) nanocomposites. Macromol. Mater. Eng. 2002, 287, 243–249.
  • Yoon, S.; Chough, S.; Park, H. Properties of starch-based blend films using citric acid as additive. II. J. Appl. Polym. Sci. 2006, 100, 2554–2560.
  • Aris, R. On a problem in hindered diffusion. Arch. Ration. Mech. Anal. 1986, 95, 83–91.
  • DeMerlis, C.C.; Schoneker, D.R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food. Chem. Toxicol. 2003, 41, 319–326.
  • Robyt, J.F. Starch: Structure, properties, chemistry, and enzymology. In: Fraser-Reid, B., Tatsuta, K., Thiem, J. eds. Glycoscience, Springer-Verlag: Berlin Heidelberg, 2008; pp. 1437–1472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.