988
Views
12
CrossRef citations to date
0
Altmetric
Reviews

High-Performance Polymers for Separation and Purification Processes: An Overview

&

References

  • Fakhru’l-Razi, A.; Pendashteh, A.R.; Luqman Chuah, A.; Dayang Radiah, A.B.; Madaeni, S.S.; Zurina, Z.A. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551.
  • Ekins, P.; Vanner, R.; Firebrace, J. Zero emissions of oil in water from offshore oil and gas installations: Economic and environmental implications. J. Clean. Prod. 2007, 15, 1302–1315.
  • Moawed, E.A.; El-Shahat, M.F. Synthesis, characterization of low density polyhydroxy polyurethane foam and its application for separation and determination of gold in water and ores samples. Anal. Chim. Acta 2013, 788, 200–207.
  • Kalin, M.; Fyson, A.; Wheeler, W.N. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci. Total Environ. 2006, 366, 395–408.
  • Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509–521.
  • Zhong, D.L.; Lu, Y.; Sun, D.J.; Zhao, W.L.; Li, Z. Performance evaluation of methane separation from coal mine gas by gas hydrate formation in a stirred reactor and in a fixed bed of silica sand. Fuel 2015, 143 (1), 586–594.
  • Fischer, M. DFT-based evaluation of porous metal formates for the storage and separation of small molecules. Microp. Mesop. Mater. 2016, 219, 249–257.
  • Hamman, C.; Schmidt, Jr. D.E.; Wong, M.; Hayes, M. The use of ammonium hydroxide as an additive in supercritical fluid chromatography for achiral and chiral separations and purifications of small, basic medicinal molecules. J. Chromatogr. A 2011, 1218, 7886–7894.
  • Nor, N.M.; Lau, L.C.; Lee, K.T.; Mohamed, A. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J. Environ. Chem. Eng. 2013, 1, 658–666.
  • Bergbeiter, B.E.; Martin, C.R. Functional Polymers, Plenum Press: New York, 1989.
  • Arshady, R. Desk Reference of Functional Polymers: Syntheses and Applications, ACS: Washington, DC, 1997.
  • Ji, W.; Chen, L.; Ma, X.; Wang, X.; Gao, Q.; Geng, Y.; Huang, L. Molecularly imprinted polymers with novel functional monomer for selective solid-phase extraction of gastrodin from the aqueous extract of Gastrodiaelata. J. Chromatogr. A 2014, 1342 (1), 1–7.
  • Saldivar-Guerra, E.; Vivaldo-Lima, E. Handbook of Polymer Synthesis, Characterization, and Processing, John Wiley & Sons, Inc.: Hoboken, NJ, 2013.
  • Heftmann, E. Chromatography: Fundamentals and Applications of Chromatography and Related Differential Migration Methods, Elsevier: Amsterdam, 2004.
  • Poole, F. The Essence of Chromatography, Elsevier: Amsterdam, 2003.
  • Dawson, R.; Cooper, A.I.; Adams, D.J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.
  • Jiang, J.X.; Cooper, A.I. Microporous organic polymers: Design, synthesis, and function. Top. Curr. Chem. 2010, 293, 1–33.
  • Kim, S.; Lee, Y.M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 2015, 43, 1–32.
  • Xu, S.J.; Luo, Y.L.; Tan, B.E. Recent development of hypercrosslinked microporous organic polymers. Macromol. Rapid Commun. 2013, 34, 471–484.
  • Sapozhnikova, Y.; Lehotay, S.J. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography. Anal. Chim. Acta 2015, 899, 13–22.
  • Wu, D.C.; Xu, F.; Sun, B.; Fu, R.W.; He, H.K.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012, 112, 3959–4015.
  • El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortes, J.L.; Côté, A.P.; Taylor, R.E.; O’Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.
  • McKeown, N.B.; Makhseed, S.; Budd, P.M. Phthalocyanine-based nanoporous network polymers. Chem. Commun. 2002, 23, 2780–2781.
  • Jiang, J.X.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.J.; Khimyak, Y.Z.; Cooper, A.I. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46, 8574–8578.
  • Lu, W.G.; Yuan, D.Q.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H.C. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc. 2011, 133, 18126–18129.
  • Wood, C.D.; Tan, B.E.; Trewin, A.; Niu, H.J.; Bradshaw, D.; Rosseinsky, M.J.; Khimyak, Y.Z.; Campbell, N.L.; Kirk, R.; Stockel, E.; Cooper, A.I. Hydrogen storage € in microporous hypercrosslinked organic polymer networks. Chem. Mater. 2007, 19, 2034–2038.
  • Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J.C.; Bernardo, P.; Bazzarelli, F.; McKeown, N.B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303–307.
  • Nagai, A.; Guo, Z.Q.; Feng, X.; Jin, S.B.; Chen, X.; Ding, X.S.; Jiang, D.L. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2011, 2, 536.
  • Totten, R.K.; Kim, Y.S.; Weston, M.H.; Farha, O.K.; Hupp, J.T.; Nguyen, S.T. Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing: Al(Porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant. J. Am. Chem. Soc. 2013, 135, 11720–11723.
  • Liu, X.M.; Xu, Y.H.; Jiang, D.L. Conjugated microporous polymers as molecular sensing devices: Microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J. Am. Chem. Soc. 2012, 134, 8738–8741.
  • Dong, J.Q.; Liu, Y.; Cui, Y. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem. Commun. 2014, 50, 14949–14952.
  • Kewley, A.; Stephenson, A.; Chen, L.J.; Briggs, M.E.; Hasell, T.; Cooper, A.I. Porous organic cages for gas chromatography separations. Chem. Mater. 2015, 27, 3207–3210.
  • Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trac-Trend. Anal. Chem. 2013, 45, 169–181.
  • Augusto, F.; Hantao, L.W.; Mogollón, N.G.S.; Braga, S.C.G.N. New materials and trends in sorbents for solid-phase extraction. Trac.-Trend. Anal. Chem. 2013, 43, 14–23.
  • Pichon, V. Selective sample treatment using molecularly imprinted polymers Valérie Pichon. J. Chromatogr. A 2007, 1152, 41–53.
  • Yan, H.; Sun, N.; Han, Y.; Yang, C.; Wang, M.; Wu, R. Ionic liquid-mediated molecularly imprinted solid-phase extraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol in vegetables. J. Chromatogr. A 2013, 1307, 21–26.
  • Tamayo, F.G.; Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J. Chromatogr. A 2007, 1152, 32–40.
  • Caro, E.; Marcé, R.M.; Borrull, F. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. Trac.-Trend. Anal. Chem. 2006, 25, 143–154.
  • Yan, H.; Yang, C.; Sun, Y.; Row, K.H. Ionic liquid molecularly imprinted polymers for application in pipette-tip solid-phase extraction coupled with gas chromatography for rapid screening of dicofol in celery. J. Chromatogr. A 2014, 1361, 53–59.
  • Sever, M.J.; Weisser, J.T.; Monahan, J.; Srinivasan, S.; Wilker, J.J. Metal-mediated crosslinking in the generation of a marine-mussel adhesive. Angew. Chem. Int. Ed. 2004, 43, 447–450.
  • Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.
  • Liebscher, J.; Mrówczyński, R.; Scheidt, H.A.; Filip, C.; Hădade, N.D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: A never-ending story? Langmuir 2013, 29, 10539–10548.
  • Kang, S.M.; Hwang, N.S.; Yeom, J.; Park, S.Y.; Messersmith, P.B.; Choi, I.S.; Langer, R.; Anderson, D.G.; Lee, H. One-step multipurpose surface functionalization by adhesive catecholamine. Adv. Funct. Mater. 2012, 22, 2949–2955.
  • Yin, X.B.; Liu, D.Y. Polydopamine-based permanent coating capillary electrochromatography for auxin determination. J. Chromatogr. A 2008, 1212, 130–136.
  • Zeng, R.J.; Luo, Z.F.; Zhou, D.; Cao, F.H.; Wang, Y.M. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis 2010, 31, 3334–3341.
  • Zhang, Y.F.; Qi, M.L.; Fu, R.N. Separation performance of polydopamine-based cucurbit[7]uril stationary phase for capillary gas chromatography. Chin. Chem. Lett. 2016, 27, 88–90.
  • Zhang, P.; Qin, S.J.; Qi, M.L.; Fu, R.N. Cucurbit[n]urils as a new class of stationary phases for gas chromatographic separations. J. Chromatogr. A 2014, 1334, 139–148.
  • Ghosal, S.; Srivastava, S.K. Fundamentals of Bioanalytical Techniques and Instrumentation, PHI Learning Private Limited, 2009; pp. 130–163.
  • Berezkin, V.; Zeeuw, J. Capillary Gas Adsorption Chromatography, Wiley-VCH: Middelburg, 2008.
  • Bruner, F.; Attaran Rezai, M.; Lattanzi, L. New GC quartz-lined aluminum capillary columns coated with graphitized carbon black modified by liquid phases. Chromatographia 1995, 41, 403–406.
  • de Zeeuw, J. Gas chromatography: Gas–solid chromatography. In: Wilson, I.D.; Poole, C.F. eds. Handbook of Methods and Instrumentation in Separation Science, Vol. 1, Academic Press: Cambridge, MA, 2000; pp. 225–232.
  • Weitzhandler, M.; Farnan, D.; Horvath, J.; Rohrer, J.S.; Slingsby, R.W.; Avdalovic, N.; Pohl, C. Protein variant separations by cation-exchange chromatography on tentacle-type polymeric stationary phases. J. Chromatogr. A 1998, 828, 365–372.
  • Shchukina, O.I.; Zatirakha, A.V.; Smolenkov, A.D.; Nesterenko, P.N.; Shpigun, O.A. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography. J. Chromatogr. A 2015, 1408, 78–86.
  • Rodrigues, A.E. ed. Ion Exchange: Science & Technology, Martinus Nijhoff Publishers and NATO Scientific Affairs Division: Troia, 1986.
  • Kim, H.C.; Dempsey, B.A. Removal of organic acids from EfOM using anion exchange resins and consequent reduction of fouling in UF and MF. J. Membr. Sci. 2010, 364, 325–330.
  • Harvey, D. Other forms of liquid chromatography. Chem. Libre Texts. Supported by the National Science Foundation, web, July 2016.
  • Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers, Royal Society of Chemistry: London, 1997.
  • Li, J.; Wang, X.; Yuan, B.; Fu, M.L. Layered chalcogenide for Cu2+ removal by ion-exchange from wastewater. J. Mol. Liquids B 2014, 200, 205–212.
  • Lim, S.J.; Kim, T.; Kim, J.U.; Shin, I.H.; Kwak, H.S. Enhanced treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor. Sep. Purif. Technol. 2016, 157, 72–79.
  • Malovanyy, A.; Sakalova, H.; Yatchyshyn, Y.; Plaza, E.; Malovanyy, M. Concentration of ammonium from municipal wastewater using ion exchange process. Desalination 2013, 329, 93–102.
  • Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; Ding, L. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2010, 662, 31–38.
  • Gika, H.; Kaklamanos, G.; Manesiotis, P.; Theodoridis, G. Chromatography: High-Performance Liquid Chromatography, Encyclopedia of Food and Health, 2016; pp. 93–99.
  • Wiese, S.; Teutenberg, T.; Schmidt, T.C. A general strategy for performing temperature-programming in high performance liquid chromatography – further improvements in the accuracy of retention time predictions of segmented temperature gradients. J. Chromatogr. A 2012, 1222, 71–80.
  • Li, Y.; Lee, M.L.; Jin, J.; Chen, J. Preparation and characterization of neutral poly(ethylene glycol) methacrylate-based monolith for normal phase liquid chromatography. Talanta 2012, 99, 91–98.
  • Tanaka, N.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Hosoya, K.; Ikegami, T. Monolithic silica columns for high-efficiency chromatographic separations. J. Chromatogr. A 2002, 965, 35–49.
  • Ishizuka, N.; Kobayashi, H.; Minakuchi, H.; Nakanishi, K.; Hirao, K.; Hosoya, K.; Ikegami, T.; Tanaka, N. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography. J. Chromatogr. A 2002, 960, 85–96.
  • Nunez, O.; Ikegami, T.; Miyamoto, K.; Tanaka, N. Study of a monolithic silica capillary column coated with poly(octadecyl methacrylate) for the reversed-phase liquid chromatographic separation of some polar and non-polar compounds. J. Chromatogr. A 2007, 1175, 7–15.
  • Siswoyo, Lim, L.W.; Takeuchi, T. Separation of gold nanoparticles with a monolithic silica capillary column in liquid chromatography. Anal. Sci. 2012, 28, 107–113.
  • Kitagawa, F.; Kubota, K.; Sueyoshi, K.; Otuska, K. One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules. J. Pharm. Biomed. Anal. 2010, 53, 1272–1277.
  • Wang, R.; Zhang, Y.; Ma, G.; Su, Z. Modification of poly(glycidyl methacrylate-divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein. Colloids Surf. 2006, 51, 93–99.
  • Rahayu, A.; Lim, L.W.; Takeuch, T. Polymer monolithic mathacrylate base modified with tosylated-polyethylene glycole monomethyl ether as a stationary phase for capillary liquid chromatography. Talanta 2015, 134, 232–238.
  • Lin, S.L.; Wu, Y.R.; Lin, T.Y.; Fuh, M.R. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography. Anal. Chim. Acta 2015, 871, 57–65.
  • Svobodová, A.; Krížek, T.; Širc, J.; Šálek, P.; Tesarová, E.; Coufal, P.; Štulík, K. Monolithic columns based on a poly(styrene–divinylbenzene–methacrylic acid) copolymer for capillary liquid chromatography of small organic molecules. J. Chromatogr. A 2011, 1218, 1544–1547.
  • Bouvier, E.S.P. Liquid chromatography: Monolithic columns. In: Wilson, I.D.; Poole, C.F. eds. Handbook of Methods and Instrumentation in Separation Science, Vol. 1, Academic Press: Cambridge, MA, 2000, pp. 574–580.
  • Liu, K.; Dennis Tolley, H.; Lawson, J.S.; Lee, M.L. Highly crosslinked polymeric monoliths with various C6 functional groups for reversed-phase capillary liquid chromatography of small molecules. J. Chromatogr. A 2013, 1321, 80–87.
  • Courtois, J.; Bystrom, E.; Irgum, K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 2006, 47, 2603–2611.
  • Lim, L.W.; Rong, L.; Takeuchi, T. Polyoxyethylene as the stationary phase in ion chromatography. Anal. Sci. 2012, 28, 205–213.
  • Rong, L.; Takeuchi, T. Determination of iodide in seawater and edible salt by microcolumn liquid chromatography with poly(ethylene glycol) stationary phase. J. Chromatogr. A 2004, 1024, 131–135.
  • Rong, L.; Lim, L.W.; Takeuchi, T. Determination of iodide in seawater samples by ion chromatography with chemically-bonded poly(ethylene glycol) stationary phase. J. Chromatogr. A 2006, 1128, 68–72.
  • Linda, R.; Lim, L.W.; Takeuchi, T. Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography. J. Chromatogr. A 2013, 1294, 117–121.
  • Akay, S.; Odabas, M.; Yang, Y.; Kayan, B. Synthesis and evaluation of NA-PHEMAH polymer for use as a new stationary phase in high-temperature liquid chromatography. Sep. Purif. Technol. 2015, 152, 1–6.
  • Brunner, G. Applications of supercritical fluids. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 321–342.
  • Chester, T.L.; Pinkston, J.D. Supercritical fluid and unified chromatography. Anal. Chem. 2004, 76, 4606–4643.
  • Guiochon, G.; Tarafder, A. Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J. Chromatogr. A 2011, 1218, 1037–1114.
  • Saito, M. History of supercritical fluid chromatography: Instrumental development. J. Biosci. Bioeng. 2013, 115, 590–599.
  • Bargmann-Leyder, N.; Caude, M. Supercritical fluid chromatography: Chiral. In: Wilson, I.D.; Poole, C.F. eds. Handbook of Methods and Instrumentation in Separation Science, Vol. 1, Academic Press: Cambridge, MA, 2000; pp. 629–641.
  • Felix, G.; Berthod, A.; Piras, P.; Roussel, C. Part III: Supercritical fluid chromatographic separations. Sep. Purif. Rev. 2008, 37, 229–301.
  • Chankvetadze, B. Recent developments on polysaccharide-based chiral stationary phases for liquid phase separation of enantiomers. J. Chromatogr. A 2012, 1269, 26–51.
  • Gübitz, G.; Schmid, M.G. Chiral separation principles in chromatographic and electromigration techniques. Mol. Biotechnol. 2006, 32, 159–179.
  • Ikai, T.; Okamoto, Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem. Rev. 2009, 109, 6077–6101.
  • Rumondor, A.C.F.; Stanford, L.A.; Taylor, L.S. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm. Res. 2009, 26, 2599–2606.
  • Wang, Y.; Cai, D.; Chen, C.; Wang, Z.; Qin, P.; Tan, T. Efficient magnesium lactate production with in situ product removal by crystallization. Bioresour. Technol. 2015, 198, 658–663.
  • Kolašinac, N.; Kachrimanis, K.; Homšek, I.; Grujić, B.; Ðurić, Z.; Ibrić, S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int. J. Pharm. 2012, 436, 161–170.
  • Mihai, M.; Huneault, M.A.; Favis, B.D. Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide. J. Appl. Polym. Sci. 2009, 113, 2920–2932.
  • Zhao, Z.W.; Cao, C.F.; Chen, Z.Y. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt. Trans. Nonferrous Metals Soc. China 2011, 21, 2758–2763.
  • Miura, C.; Li, H.; Matsunaga, H.; Haginaka, J. Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves. J. Pharm. Biomed. Anal. 2015, 114, 139–144.
  • Shi, N.Q.; Lei, Y.S.; Song, L.M.; Yao, J.; Zhang, X.B.; Wang, X.L. Impact of amorphous and semicrystalline polymers on the dissolution and crystallization inhibition of pioglitazone solid dispersions. Powder Technol. 2013, 247, 211–221.
  • Alonzo, D.E.; Zhang, G.G.Z.; Zhou, D.; Gao, Y.; Taylor, L.S. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res. 2010, 27, 608–618.
  • Konno, H.; Handa, T.; Alonzo, D.E.; Taylor, L.S. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur. J. Pharm. Biopharm. 2008, 70, 493–499.
  • Ilevbare, G.A.; Liu, H.Y.; Edgar, K.J.; Taylor, L.S. Maintaining supersaturation in aqueous drug solutions: Impact of different polymers on induction times. Crystal Growth Des. 2013, 13, 740–751.
  • Caron, V.; Tajber, L.; Corrigan, O.I.; Healy, A.M. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol. Pharm. 2011, 8, 532–542.
  • Kolašinac, N.; Kachrimanis, K.; Homšek, I.; Grujić, B.; Ðurić, Z.; Ibrić, S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int. J. Pharm. 2012, 436, 161–170.
  • Kestur, U.S.; Lee, H.Y.; Santiago, D.; Rinaldi, C.; Won, Y.Y.; Taylor, L.S. Effects of the molecular weight and concentration of polymer additives, and temperature on the melt crystallization kinetics of a small drug molecule. Crystal Growth Des. 2010, 10, 3585–3595.
  • Cai, T.; Zhu, L.; Yu, L. Crystallization of organic glasses: Effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine. Pharm. Res. 2011, 28, 2458–2466.
  • Sun, Y.; Zhu, L.; Wu, T.; Cai, T.; Gunn, E.M.; Yu, L. Stability of amorphous pharmaceutical solids: Crystal growth mechanisms and effect of polymer additives. AAPS J. 2012, 14, 380–388.
  • Zhu, Q.; Harris, M.T.; Taylor, L.S. Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. Mol. Pharm. 2012, 9, 546–553.
  • Saridakis, E.; Chayen, N.E. Imprinted polymers assisting protein crystallization. Trends Biotechnol. 2013, 31, 515–520.
  • Mahadevan, H.; Hall, C.K. Theory of precipitation of protein mixtures by nonionic polymer. AlChE J. 1992, 38, 573–591.
  • Grimm, C.; Chari, A.; Reuter, K.; Fischer, U. A crystallization screen based on alternative polymeric precipitants. Acta Cryst. 2010, D66, 685–697.
  • Criscuoli, A.; Zhong, J.; Figoli, A.; Carnevale, M.; Huang, R.; Drioli, E. Treatment of dye solutions by vacuum membrane distillation. Water Res. 2008, 42, 5031–5037.
  • Gryta, M.; Karakulski, K. The application of membrane distillation for the concentration of oil–water emulsions. Desalination 1999, 121 (1), 23–29.
  • Jonathan, J.; Guerrero-Fajardo, C.A.; Sodré, J.R. Distillation process optimization for styrene production from a styrene-benzene-toluene system in a Petlyuk column. Chem. Eng. Process. Process Intensif. 2015, 98, 106–111.
  • Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490.
  • Tomaszewska, M. Membrane distillation-examples of applications in technology and environmental protection. Pol. J. Environ. Stud. 2000, 9, 27–36.
  • Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88.
  • Tomaszewska, M.; Gryta, M.; Morawski, A.W. Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation. J. Membr. Sci. 2000, 166, 149–157.
  • Gryta, M.; Morawski, A.W.; Tomaszewska, M. Ethanol production in membrane distillation bioreactor. Catal. Today 2000, 56, 159–165.
  • El-Bourawi, M.S.; Ding, Z.; Ma, R.; Khayet, M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 2006, 285, 4–29.
  • Izquierdo-Gil, M.A.; Garcia-Payo, M.C.; Fernandez-Pineda, C. Air gap membrane distillation of sucrose aqueous solutions. J. Membr. Sci. 1999, 155, 291–307.
  • Garcia-Payo, M.C.; Izquierdo-Gil, M.A.; Fernandez-Pineda, C. Air gap membrane distillation of aqueous alcohol solutions. J. Membr. Sci. 2000, 169, 61–80.
  • Banat, F.A.; Simandl, J. Membrane distillation for dilute ethanol-separation from aqueous streams. J. Membr. Sci. 1999, 163, 333–348.
  • Wu, B.; Li, K.; Teo, W.K. Preparation and characterization of poly(vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation. J. Appl. Polym. Sci. 2007, 106, 1482–1495.
  • Uragami, T.; Fujimoto, M.; Sugihara, M. Studies on syntheses and permeabilities of special polymer membranes. 27. Concentration of poly(styrene sulphonic acid) in various aqueous solutions using poly(vinylidene fluoride) membranes. Polymer 1981, 22, 240–244.
  • Tomaszewska, M. Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation. Desalination 1996, 104, 1–11.
  • Wang, D.; Li, K.; Teo, W.K. Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J. Membr. Sci. 2000, 178, 13–23.
  • Yeow, M.L.; Liu, Y.T.; Li, K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 2004, 92, 1782–1789.
  • Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27.
  • Lai, C.; Groth, A.; Gray, S.; Duke, M. Impact of casting conditions on PVDF/nanoclay nanocomposite membrane properties. Chem. Eng. J. 2015, 267, 73–85.
  • Aptel, P.; Challard, N.; Cuny, J.; Neel, J. Application of pervaporation process to separate azeotropic mixtures. J. Membr. Sci. 1976, 1, 271–287.
  • Franken, A.C.M.; Mulder, M.H.V.; Smolders, C.A. Pervaporation process using a thermal-gradient as the driving force. J. Membr. Sci. 1990, 53, 127–141.
  • Borisov, I.L.; Volkov, V.V.; Kirsh, V.A.; Roldugin, V.I. Simulation of the temperature-driven pervaporation of dilute 1-butanol aqueous mixtures through a PTMSP membrane in a cross-flow module. Pet. Chem. 2011, 51, 542–554.
  • Kujawska, A.; Kujawski, J.; Bryjak, M.; Kujawski, W. Removal of volatile organic compounds from aqueous solutions applying thermally driven membrane processes. 1. Thermopervaporation. Chem. Eng. Process. 2015, 94, 62–71.
  • Borisov, I.L.; Volkov, V.V. Thermopervaporation concept for biobutanol recovery: The effect of process parameters. Sep. Purif. Technol. 2015, 146, 33–41.
  • Kiai, H.; García-Payo, M.C.; Hafidi, A.; Khayet, M. Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process. 2014, 86, 153–161.
  • Rastegarpanah, A.; Mortaheb, H.R. Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination 2016, 377, 99–107.
  • Cottet, H.; Gareil, P. Separation of synthetic (co)polymers by capillary electrophoresis techniques. In: Kopplin, P.S. ed. Capillary Electrophoresis: Methods and Protocols, Springer-Verlag: Berlin, Heidelberg, 2008; pp. 541–567.
  • Zhu, Z.; Lu, J.J.; Liu, S. Protein separation by capillary gel electrophoresis: A review. Anal. Chim. Acta 2012, 709, 21–31.
  • Porras, S.P.; Riekkola, M.-L.; Kenndler, E. The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents. Electrophoresis 2003, 24, 1485–1498.
  • Wang, H.Q.; Deng, Z.H. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 2015, 26, 1435–1438.
  • Sola, L.; Chiari, M. Modulation of electroosmotic flow in capillary electrophoresis using functional polymer coatings. J. Chromatogr. A 2012, 1270, 324–329.
  • Cretich, M.; Chiari, M.; Pirri, G.; Crippa, A. Electroosmotic flow suppression in capillary electrophoresis: Chemisorption of trimethoxy silane-modified polydimethylacrylamide. Electrophoresis 2005, 26, 1913–1919.
  • Pirri, G.; Damin, F.; Chiari, M.; Bontempi, E.; Depero, L.E. Characterization of a polymeric adsorbed coating for DNA microarray glass slides. Anal. Chem. 2004, 76, 1352–1358.
  • Yalçın, A.; Damin, F.; Özkumur, E.; Di Carlo, G.; Goldberg, B.B.; Chiari, M.; Ünlü, M.S. Direct observation of conformation of a polymeric coating with implications in microarray applications. Anal. Chem. 2009, 81, 625–630.
  • Chiari, M. Silane copolymers and uses thereof, Patent No. WO2011124715 A1, October 2011.
  • Alenazi, A.N.; Manthorpe, J.M.; Lai, E.P.C. Selective extraction of BPA in milk analysis by capillary electrophoresis using a chemically modified molecularly imprinted polymer. Food Control 2015, 50, 778–783.
  • Xu, Z.; Ding, L.; Long, Y.; Xu, L.; Wang, L.; Xu, C. Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol A in packed food. Anal. Methods 2011, 3, 1737–1744.
  • Ji, Y.; Yin, J.; Xu, Z.; Zhao, C.; Huang, H.; Zhang, H.; Wang, C. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal. Bioanal. Chem. 2009, 395, 1125–1133.
  • Alexiadou, D.K.; Maragou, N.C.; Thomaidis, N.S.; Theodoridis, G.A.; Koupparis, M.A. Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk. J. Separation Sci. 2008, 31, 2272–2282.
  • Mei, S.; Wu, D.; Jiang, M.; Lu, B.; Lim, J.M.; Zhou, Y.K. Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem. J. 2011, 98, 150–155.
  • Zhang, J.H.; Jiang, M.; Zou, L.; Shi, D.; Mei, S.R.; Zhu, Y.X. Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples. Anal. Bioanal. Chem. 2006, 385, 780–786.
  • Moors, S.; Blaszkewicz, M.; Bolt, H.M.; Degen, G.H. Simultaneous determination of daidzein, equol, genistein and bisphenol A in human urine by a fast and simple method using SPE and GCeMS. Mol. Nutr. Food Res. 2007, 51, 787–798.
  • Canale, F.; Cordero, C.; Baggiani, C.; Baravalle, P.; Giovannoli, C.; Bicchi, C. Development of a molecularly imprinted polymer for selective extraction of bisphenol A in water samples. J. Separ. Sci. 2010, 33, 1644–1651.
  • Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Bülow, L.; Ye, L.; Prachayasittikul, V. In silico design for synthesis of molecularly imprinted microspheres specific towards bisphenol A by precipitation polymerization. EXCLI J. 2006, 5, 103–117.
  • Kou, L.J.; Liang, R.N.; Wang, X.W.; Chen, Y.; Qin, W. Potentiometric sensor for determination of neutral bisphenol A using a molecularly imprinted polymer as a receptor. Anal. Bioanal. Chem. 2013, 405, 4931–4936.
  • Alsudir, S.; Lai, E.P.C. High specificity of molecularly imprinted polymer particles toward target compound in competitive environmental binding. Eur. Chem. Bull. 2013, 2, 112–118.
  • Huang, J.; Zhang, X.; Lin, Q.; Zhu, H. Electrochemical sensor based on imprinted sol-gel and nanomaterials for sensitive determination of bisphenol A. Food Control 2011, 22, 786–791.
  • Apodaca, D.C.; Pernites, R.B.; Ponnapati, R.; Del Mundo, F.R.; Advincula, R.C. Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A. Macromolecules 2011, 44, 6669–6682.
  • Inou, N.; Ooya, T.; Toshifumi, T. Hydrophilic molecularly imprinted polymers for bisphenol A prepared in aqueous solution. Microchim. Acta 2013, 180, 1387–1392.
  • Civan, F. Reservoir Formation Damage, 3rd ed. Cake Filtration: Mechanism, Parameters and Modeling, Elsevier Inc., 2016; pp. 295–341.
  • Dang, T.T.H.; Li, C.W.; Choo, K.H. Comparison of low-pressure reverse osmosis filtration and polyelectrolyte-enhanced ultrafiltration for the removal of Co and Sr from nuclear plant wastewater. Separ. Purif. Technol. 2016, 157, 209–214.
  • Han, S.; Choo, K.; Choi, S.; Benjamin, M. Removal of manganese from water using combined chelation/membrane separation systems. Water Sci. Technol. 2005, 51, 349–355.
  • Han, S.C.; Choo, K.H.; Choi, S.J.; Benjamin, M.M. Modeling manganese removal in chelating polymer-assisted membrane separation systems for water treatment. J. Membr. Sci. 2007, 290, 55–61.
  • Khodakarami, M.; Alagha, L. Study on the recovery of rare Earth Metals using stimuli-responsive macromolecules, SME Annual Meeting & Expo., Phoenix, AZ, USA, 2016.
  • Li, C.-W.; Cheng, C.-H.; Choo, K.-H.; Yen, W.-S. Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): Effects of organic ligands and solution pH. Chemosphere 2008, 72, 630–635.
  • Aroua, M.K.; Zuki, F.M.; Sulaiman, N.M. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater. 2007, 147, 752–758.
  • Juang, R.S.; Shiau, R.C. Metal removal from aqueous solutions using chitosan enhanced membrane filtration. J. Membr. Sci. 2000, 165, 159–167.
  • Sasaki, K.J.; Burnett, S.L.; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. Polyelectrolyte ultrafiltration of multivalent ions. Removal of copper (2+) by sodium poly (styrene-sulfonate). Langmuir 1989, 5, 363–369.
  • Hwang, E.D.; Lee, K.W.; Choo, K.H.; Choi, S.J.; Kim, S.H.; Yoon, C.H.; Lee, C.H. Effect of precipitation and complexation on nanofiltration of strontium containing nuclear wastewater. Desalination 2002, 147, 289–294.
  • Graillot, A.; Cojocariu, C.; Bouyer, D.; Monge, S.; Mauchauffe, S.; Robin, J.J.; Faur, C. Thermosensitive polymer enhanced filtration (TEF) process: An innovative process for heavy metals removal and recovery from industrial wastewaters. Separ. Purif. Technol. 2015, 141, 17–24.
  • Undabeytia, T.; Posada, R.; Nir, S.; Galindo, I.; Laiz, L.; Saiz-Jimenez, C.; Morillo, E. Removal of waterborne microorganisms by filtration using clay–polymer complexes. J. Hazard. Mater. 2014, 279, 190–196.
  • Theng, B.K.G. Formation and Properties of Clay-Polymer Complexes, 2nd ed. Elsevier: Oxford, 2012.
  • Tan, S.Z.; Li, G.; Shen, J.; Liu, Y.; Zong, M. Study of modified polypropylene nonwoven cloth. II. Antibacterial activity of modified polypropylene nonwoven cloths. J. Appl. Polym. Sci. 2000, 77, 1869–1876.
  • Wang, Z.; Pan, Z. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration. Appl. Surf. Sci. 2015, 356, 1168–1179.
  • Matulevicius, J.; Kliucininkas, L.; Prasauskas, T.; Buivydiene, D.; Martuzevicius, D. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J. Aerosol Sci. 2016, 92, 27–37.
  • Kiani, S.; Mousavi, S.M.; Shahtahmassebi, N.; Saljoughi, E. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol. Appl. Surf. Sci. 2015, 359, 252–258.
  • Dudenkov, C.V.; Shubov, L.I. Application of Flotation Reagents, Theory and Practice, Nedra, Moscow, 1969; pp. 109–135.
  • Gorlovskii, C.I. High molecular weight organic compounds as depressants. Obogaschenie Rud. 1956, 6, 25–32.
  • Haung, H.H.; Calara, J.V.; Bauer, D.L.; Miller, J.D. Adsorption reactions in the depression of coal by organic colloids. Recent Dev. Separ. Sci. 1978, 4, 115.
  • Miller, J.D.; Laskowski, J.S.; Chang, S.S. Dextrin adsorption by oxidised coal. Colloids Surf. 1983, 8, 137–151.
  • Pugh, R.J. Macromolecular organic depressants in sulphide flotation—a review: 2. Theoretical analysis of the forces involved in the depressant action. Int. J. Miner. Process. 1989, 25, 131–146.
  • Steenberg, E.; Harris, P.J. Adsorption of carboxymethyl cellulose, guar gum, and starch onto talc, sulphides, oxides and salt-type minerals. S. Afr. J. Chem. 1984, 37, 85–90.
  • Shortridge, P.G.; Harris, P.J.; Bradshaw, D.J.; Koopal, L.K. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. Int. J. Miner. Process. 2000, 59, 215–224.
  • Liu, Q.; Zhang, Y.; Laskowski, J.S. The adsorption of polysaccharides onto mineral surfaces: an acidrbase interaction. Int. J. Miner. Process. 2000, 60, 229–245.
  • Rath, R.K.; Subramanian, S.; Laskowski, J.S. Adsorption of dextrin and guar gum onto talc. A comparative study. Langmuir 1997, 13, 6260–6266.
  • Chen, H.T.; Ravishankar, S.A.; Farinato, R.S. Rational polymer design for solid–liquid separations in mineral processing applications. Int. J. Miner. Process. 2003, 72, 75–86.
  • Huang, P.; Wang, L.; Liu, Q. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena. Int. J. Miner. Process. 2014, 128, 6–15.
  • Williams, K.P.; Unlu, M. Coal flotation in the presence of polymeric flocculants. Coal Prep. 1987, 4, 109–132.
  • Moudgil, B.M. Effects of polyacrylamide and polyethylene oxide polymers on coal flotation. Colloids Surf. 1989, 8, 225–228.
  • Snow, G.F.; Bell, H.L. Recovery of clean coal from flotation circuits, European Patent No. EP 20275 A1.
  • Li, H.; Hu, Y.; Wang, D.; Jing, X. Effect of hydroxamic acid polymers on reverse flotation of bauxite. J. Cent. South Univ. Technol. 2004, 11, 291–294.
  • Boulton, A.; Fornasiero, D.; Ralston, J. Selective depression of pyrite with polyacrylamide polymers. Int. J. Miner. Process. 2001, 61, 13–22.
  • Wang, M.; Qian, J.; Zheng, B.; Yang, W. Preparation, characteristics, and flocculation behavior of modified palygorskite–polyacrylamide ionic hybrids. J. Appl. Polym. Sci. 2006, 101, 1494–1500.
  • Molatlhegi, O.; Alagha, L. Ash depression in fine coal flotation using a novel polymer aid. Int. J. Clean Coal Energy 2016, 5, 65–85.
  • Wightman, E.M.; Grano, S.R.; Ralston, J. Selectivity in the polymer assisted separation of galena from quartz by flotation. Miner. Eng. 2000, 13, 843–856.
  • Jones, F.; Farrow, J.B.; van Bronswijk, W. An infrared study of a polyacrylate flocculant adsorbed on hematite. Langmuir 1998, 14, 6512–6517.
  • Oliveira, C.; Rubio, J. Kaolin aerated flocs formation assisted by polymer-coated microbubbles. Int. J. Miner. Process. 2012, 106–109, 31–36.
  • Yang, W.Y.; Qian, J.W.; Shen, Z.Q. A novel flocculant of Al(OH)3–polyacrylamide ionic hybrid. J. Colloid Interface Sci. 2004, 273, 400–405.
  • Alagha, L.; Wang, S.; Xu, Z.; Masliyah, J. Adsorption kinetics of a novel organic–inorganic hybrid polymer on silica and alumina studied by quartz crystal microbalance. J. Phys. Chem. C 2011, 115, 15390–15402.
  • Alagha, L.; Guo, L.; Ghuzi, M.; Molatlhegi, O.K.; Xu, Z. Adsorption of hybrid polyacrylamides on anisotropic kaolinite surfaces: Effect of polymer characteristics and solution properties. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498, 285–296.
  • Wang, S.; Alagha, L.; Xu, Z. Adsorption of organic–inorganic hybrid polymers on kaolin from aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 453, 13–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.