140
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and Characterization of Polyvinylpyrrolidone/L-leucine Amino Acid–Modified Montmorillonite/Chiral Diacid–Functionalized Mg-Substituted Fluorapatite Nanocomposites by Ultrasonic-Assisted Rapid Process

, , &

References

  • Volkov, V.V.; Klechkovskaya, V.V.; Shtykova, E.V.; Dembo, K.A.; Arkharova, N.A.; Ivakin, G.I.; Smyslov, R.Y. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy. Crystallogr. Rep. 2009, 54, 169–173.
  • Kalfus, J.; Jancar, J. Elastic response of nanocomposite poly(vinylacetate) hydroxyapatite with varying particle shape. Polym. Composite. 2007, 28(3), 365–371.
  • Gul, S.; Kausar, A.; Muhammad B.; Jabeen, S. Research progress on properties and applications of polymer/clay nanocomposite. Polym. Plast. Technol. Eng. 2016, 55, 684–703.
  • Başaran, I.; Oral, A. Synthesis and characterization of poly(L-lactic acid)/clay nanocomposite via metal-free process. Polym. Plast. Technol. Eng. 2013, 52, 1271–1276.
  • Rego, B.T.; Neto, W.A.R.; de Paula, A.C.C.; Goes, A.M.; Bretas, R.E.S. Mechanical properties and stem cell adhesion of injection-molded poly(ether ether ketone) and hydroxyapatite nanocomposites. J. Appl. Polym. Sci. 2015, 132, 41748–41760.
  • Prabhu, S.M.; Elanchezhiyan, S.SD.; Lee, G.; Khan, A.; Meenakshi, S. Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ fabrication method and its prospective application for defluoridation studies. Chem. Eng. J. 2016, 300, 334–342.
  • Saber-Samandari, S.; Saber-Samandari, S.; Gazi, M. Cellulose-graft polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu (II) ions. React. Funct. Polym. 2013, 73(11), 1523–1530.
  • Włodarczyk, B.; Ferebee, R.; Bockstaller, M.R.; Pietrasik, J. Synthesis of hydroxyapatite particles with in situ immobilized ATRP initiator. Polymer 2015, 72, 348–355.
  • Zakharov, N.A.; Ezhova, Z.A.; Koval, E.M.; Kalinnikov, V.T.; Chalykh, A.E.; Hydroxyapatite–carboxymethyl cellulose nanocomposite biomaterial. Inorg. Mater. 2005, 41, 509–515. Translated from Neorganicheskie Materialy, 2005, 41, 592–599.
  • Pielichowska, K.; Dryzek, E.; Olejniczak, Z.; Pamula, E.; Pagacz, J. A study on the melting and crystallization of polyoxymethylene-copolymer/hydroxyapatite nanocomposites. Polym. Adv. Technol. 2013, 24, 318–330.
  • Khoobi, M.; Khalilvand-Sedagheh, M.; Ramazani, A.; Asadgol, Z.; Forootanfar, H.; Faramarzi, M.A. Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. J. Chem. Technol. Biotechnol. 2016, 91, 375–384.
  • Nasiri-Tabrizi, B.; Fahami, A. Crystallinity evaluation of cluster-like fluorapatite–titania nanocomposites. J. Clust. Sci. 2014, 25, 445–457.
  • Deng, X.; Hao, J.; Yuan, M. Influence of poly(d, l-lactide-b-ethylene glycol) copolymer on morphology and tensile moduli of poly(d,l-lactide) composites containing hydroxyapatite nanocrystals. J. Mat. Sci. Lett. 2001, 20, 281–282.
  • Waszkiel, D.; Opalko, K.; Lagocka, R.; Chlubek, D. Fluoride and magnesium content in superficial enamel layers of teeth with erosions. Fluoride, 2004, 37(4), 271–277.
  • Okada, M.; Furuzono, T. Hydroxylapatite nanoparticles: Fabrication methods and medical applications. Sci. Technol. Adv. Mater. 2012, 13, 064103–064116.
  • Fathi, M.H.; Mohammadi Zahrani, E. Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. J. Cryst. Growth. 2009, 311, 1392–1403.
  • Nasiri-Tabrizi, B. Thermal treatment effect on structural features of mechano-synthesized fluorapatite–titania nanocomposite: A comparative study. J. Adv. Ceram. 2014, 3(1), 31–42.
  • Farzadi, A.; Bakhshi, F.; Solati-Hashjin, M.; Asadi-Eydivand, M.; Osman, N.A. Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceram. Int. 2014, 40, 6021–6029.
  • Liao, J.; Hamada, K.; Senna, M. Synthesis of Ca–Mg apatite via a mechanochemical hydrothermal process. J. Mater. Synth. Proces. 2000, 8, 305–311.
  • Supova, M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J. Mater. Sci: Mater. Med. 2009, 20, 1201–1213.
  • Kim, S.R.; Lee, J.H.; Kim, Y.T.; Riu, D.H.; Jung, S.J.; Lee, Y.J.; Chung, S.C.; Kim, Y.H. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials, 2003, 24, 1389–1398.
  • Cacciotti, I.; Bianco, A.; Lombardi, M.; Montanaro, L. Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behavior. J. Eur. Ceram. Soc. 2009, 29, 2969–2978.
  • Abdal-Hay, A.; Pant, H.R.; Lim, J.K. Super-hydrophilic electrospun nylon-6/hydroxyapatite membrane for bone tissue engineering. Eur. Polym. J. 2013, 49, 1314–1321.
  • Mohandes, F.; Niasari, M.S. In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite. J. Nanopart. Res. 2014, 16, 2604–2615.
  • Zhu, A.; Lu, Y.; Zhou, Y.; Dai, S. Spherical N-carboxyethylchitosan/hydroxyapatite nanoparticles prepared by ionic diffusion process in a controlled manner. J. Mater. Sci: Mater. Med. 2010, 21, 3095–3101.
  • Pramanik, N.; Mohapatra, S.; Alam, S.; Pramanik, P. Synthesis of hydroxyapatite/poly(vinyl alcohol phosphate) nanocomposite and its characterization. Polym. Composite. 2008, 29(4), 429–436.
  • Pramanik, N.; Mohapatra, S.; Pramanikw, P.; Bhargava, P. Processing and properties of nano-hydroxyapatite(n-HAp)/ poly(Ethylene-Co-acrylic acid)(EAA) composite using a phosphonic acid coupling agent for orthopedic applications. J. Am. Ceram. Soc. 2007, 90(2), 369–375.
  • Abboud, M.; Turner, M.; Duguet, E.; Fontanille, M. Chemical modification and characterisation of ceramic particles. J. Mater. Chem. 1997, 7(8), 1527–1532.
  • Liu, Q.; de Wijn, J.R.; Bakker, D.; Blitters Wijk, C.A.V. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactive (TM)-70/30 in a biodegradable composite. J. Mater. Sci. Mater. Med. 1996, 7(9), 551–557.
  • Pramanik, N.; Biswas, S.K.; Pramanik, P. Synthesis and characterization of hydroxyapatite/ poly(vinyl alcohol phosphate) nanocomposite biomaterials. Int. J. Appl. Ceram. Technol. 2008, 5(1), 20–28.
  • Liu, Q.; de Wijn, J.R.; Bakker, D.; Toledo, M.V.; Blitters Wijk, C.A.V. Polyacids as bonding agents in hydroxyapatite polyester-ether (PolyactiveTM 30/70) composites. J. Mater. Sci. Mater. Med. 1998, 9, 23–30.
  • Haghighat, F.; Mokhtary, M. Preparation and characterization of polyvinylpyrrolidone functionalized multiwalled carbon nanotube (PVP/f-MWNT) nanocomposites. Polym. Plast. Technol. Eng. 2016, online manuscript.
  • Alsarra, I.A.; Hamed, A.Y.; Alanazi, F.K.; Neau, S.H. Rheological and mucoadhesive characterization of poly(vinylpyrrolidone) hydrogels designed for nasal mucosal drug delivery. Arch. Pharm. Res. 2011, 34(4), 573–582.
  • Wie, Q.B.; Luo, Y.L.; Fu, F.; Gao, L.J.; Song, Y.W. Assembly and characterization of Ag nanoparticles in PAMgPVA/PVP semi interpenetrating network hydrogels. Colloid J. 2013, 75(1), 34–39.
  • Holmes, R.L.; Campbell, J.A.; Burford, R.P.; Karatchevtseva, I. Pyrolysis behaviour of titanium dioxide–poly(vinyl pyrrolidone) composite materials. Polym. Degrad. Stab. 2009, 94, 1882–1889.
  • Patel, P.A.; Eckart, J.; Advincula, M.C.; Jon Goldberg, A.; Mather, P.T. Rapid synthesis of polymer-silica hybrid nanofibers by biomimetic mineralization. Polymer, 2009, 50, 1214–1222.
  • Mostafaa, A.A.; Oudadesse, H.; Mohamed, M.B.; Foad, E.S.; Le Gal, Y.; Cathelineau, G. Convenient approach of nanohydroxyapatite polymeric matrix composites. Chem. Eng. J. 2009, 153, 187–192.
  • Mendes, L.C.; Rodrigues, R.C.; Silva, E.P. Thermal, structural and morphological assessment of PVP/HA composites. J. Therm. Anal. Calorim. 2010, 101, 899–905.
  • Zakeri, M.; Shademan, M. Effect of ceramic particulate on the mechanical properties of PVP–HA–alumina nanocomposite. Arab. J. Sci. Eng. 2014, 39, 2227–2233.
  • Fereshteh, Z.; Mallakpour, F.; Fathi, M.H.; Mallakpour, S.; Bagri, A. Surface modification of Mg-doped fluoridated hydroxyapatite nanoparticles using bioactive amino acids as the coupling agent for biomedical applications. Ceram. Int. 2015, 41(8), 10079–10086.
  • Mallakpour, S.; Khani, M.; Mallakpour, F.; Fathi, M.H. Production of polyvinylpyrrolidone/chiral diacid modified nanocrystalline Mg-substituted fluorapatite nanocomposites: Morphological and thermal characterization. J. Appl. Polym. Sci. 2016, Inpress.
  • Pramanik, N.; Mohapatra, S.; Bhargava, P.; Pramanik, P. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly(ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications. Mater. Sci. Eng. C 2009, 29, 228–236.
  • Staubli, A.; Ron, E.; Langer, R. Hydrolytically degradable amino acid-containing polymers. J. Am. Chem. Soc. 1990, 112, 4419–4424.
  • Mallakpour, S.; Banihassan, K.; Sabzalian, M.R. Novel bioactive chiral poly(amide–imide)s containing different amino acids linkages: studies on synthesis, characterization and biodegradability. J. Polym. Environ. 2013, 21, 568–574.
  • Kheradmandfard, M.; Fathi, M.H. Fabrication and characterization of nanocrystalline Mg-substituted fluorapatite by high energy ball milling. Ceram. Int. 2013, 39(2), 1651–1658.
  • Mallakpour, S.; Khani, M. Characterization of nanocomposite laminates fabricated from aqueous dispersion of polyvinylpyrrolidone and l-leucine amino acid modified-montmorillonite. Polym. Bull. 2016, 73, 2677–2688.
  • Atif, R.; Inam, F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 2016, 7, 1174–1196.
  • Suchanek, W.L.; Byrappa, K.; Shuk, P.; Riman, R.E.; Janas, V.F.; TenHuisen, K.S. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials 2004, 25, 4647–4657.
  • Cai, X.; Tong, H.; Shen, X.; Chen, W.; Yan, J.; Hu, J. Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 2009, 5, 2693–2703.
  • Chen, F.; Wang, Z.C.; Lin, C.J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater. Lett. 2002, 57, 858–861.
  • Rapacz-Kmita, A.; Paluszkiewicz, C.; Slosarczyk, A.; Paszkiewicz, Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J. Mol. Struct. 2005, 744–747, 653–656.
  • Liu, Y.; Wang, W.; Zhan, Y.; Zheng, C.; Wang, G. A simple route to hydroxyapatite nanofibers. Mater. Lett. 2002, 56, 496–501.
  • Aissa, A.; Agougui, H.; Debbabi, M. Surface modification of calcium fluoro and hydroxyapatite by 1-octylphosphonic dichloride. Appl. Surf. Sci. 2011, 257, 9002–9007.
  • Choi, H.W.; Lee, H.J.; Kim, K.J.; Kim, H.M.; Lee, S.C. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups. J. Colloid Interf. Sci. 2006, 304, 277–281.
  • Kheradmandfard, M.; Fathi, M.H. Preparation and characterization of Mg-doped fluorapatite nanopowders by sol–gel method. J. Alloy. Compd. 2010, 504, 141–145.
  • Abd El-kader, M.F.H.; Abu-Abdeen, M. Thermal and mechanical studies of PVP/2-HEC blend films. Aust. J. Basic Appl. Sci. 2012, 6(13), 454–462.
  • Van Krevelen, D.W.; Hoftyzer, P.J. Properties of Polymers, 3rd ed., Elsevier, Amsterdam, 1976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.