114
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of ZnO-Vitamin B1 Nanoparticles on Bioactivity and Physiochemical Properties of the Polycaprolactone-Based Nanocomposites

&

References

  • Vert, M.; Feijen, J.; Albertsson, A.; Scott, G.; Chiellini, E. Biodegradable Polymers and Plastics, Royal Society of Chemistry Cambridge: London, 1992.
  • Bao, T.-Q.; Franco, R.A.; Lee, B.-T. Preparation and characterization of a novel 3D scaffold from poly (ϵ-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochem. Eng. J. 2012, 64, 76–83.
  • Machado, A.V.; Botelho, G.; Silva, M.M.; Neves, I.C.; Fonseca, A.M. Stability of nanocomposites of poly (ε-caprolactone) with tungsten trioxide. J. Polym. Res. 2011, 18 (6), 1743–1749.
  • Wu, D.; Zhang, Y.; Zhang, M.; Yu, W. Selective localization of multiwalled carbon nanotubes in poly (ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10 (2), 417–424.
  • Can, E.; Bucak, S.; Kınacı, E.; Çalıkoğlu, A.C.; Köse, G.T. Polybutylene succinate (PBS)–polycaprolactone (PCL) blends compatibilized with poly(ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide)(PEO-PPO-PEO) copolymer for biomaterial applications. Polym.-Plast. Technol. 2014, 53 (11), 1178–1193.
  • Labet, M.; Thielemans, W. Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym. Chem. 2012, 3 (3), 679–684.
  • Cai, J.; Xiong, Z.; Zhou, M.; Tan, J.; Zeng, F.; Lin, S.; Xiong, H. Thermal properties and crystallization behavior of thermoplastic starch/poly (ϵ-caprolactone) composites. Carbohydr. Polym. 2014, 102, 746–754.
  • Zoppe, J.O.; Peresin, M.S.; Habibi, Y.; Venditti, R.A.; Rojas, O.J. Reinforcing poly (ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl. Mater. Interfaces 2009, 1 (9), 1996–2004.
  • Abdolmohammadi, S.; Siyamak, S.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Rahman, M.Z.A.; Azizi, S.; Fatehi, A. Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. Int. J. Mol. Sci. 2012, 13 (4), 4508–4522.
  • Kumar, S.; Bose, S.; Chatterjee, K. Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly (ε-caprolactone) composites. RSC Adv. 2014, 4 (37), 19086–19098.
  • Xie, W.; Zhu, W.; Shen, Z. Synthesis, isothermal crystallization and micellization of mPEG–PCL diblock copolymers catalyzed by yttrium complex. Polymer 2007, 48 (23), 6791–6798.
  • Ray, S.S.; Bousmina, M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005, 50 (8), 962–1079.
  • Ci, L.; Suhr, J.; Pushparaj, V.; Zhang, X.; Ajayan, P. Continuous carbon nanotube reinforced composites. Nano Lett. 2008, 8 (9), 2762–2766.
  • Fujisawa, S.; Saito, T.; Kimura, S.; Iwata, T.; Isogai, A. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 2013, 14 (5), 1541–1546.
  • Goffin, A.-L.; Duquesne, E.; Raquez, J.-M.; Miltner, H.E.; Ke, X.; Alexandre, M.; Van Tendeloo, G.; Van Mele, B.; Dubois, P. From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites. J. Mater. Chem. 2010, 20 (42), 9415–9422.
  • Kaiser, A.B.; Skákalová, V. Electronic conduction in polymers, carbon nanotubes and graphene. Chem. Soc. Rev. 2011, 40 (7), 3786–3801.
  • Muñoz-Bonilla, A.; Cerrada, M.L.; Fernández-García, M.; Kubacka, A.; Ferrer, M.; Fernández-García, M. Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties. Int. J. Mol. Sci. 2013, 14 (5), 9249–9266.
  • Li, K.; Song, J.; Xu, M.; Kuga, S.; Zhang, L.; Cai, J. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly (ε-caprolactone) bionanocomposites. ACS Appl. Mater. Interfaces 2014, 6 (10), 7204–7213.
  • Zhang, Y.; Wu, Z.-F.; Gao, P.-F.; Zhang, E.-H.; Zhang, S.-L. Intrinsic magnetic properties of ZnO nanoislands: Insight from first-principles study. Phys. Lett. A 2016, 380 (13), 1324–1328.
  • Esmaili, M.; Habibi-Yangjeh, A. Preparation and characterization of ZnO nanocrystallines in the presence of an ionic liquid using microwave irradiation and photocatalytic activity. J. Iran Chem. Soc. 2010, 7 (2), S70–S82.
  • Handore, K.N.; Bhavsar, S.V.; Pande, N.; Chhattise, P.K.; Sharma, S.B.; Dallavalle, S.; Gaikwad, V.; Mohite, K.C.; Chabukswar, V.V. Polyindole-ZnO nanocomposite: Synthesis, characterization and heterogeneous catalyst for the 3,4-dihydropyrimidinone synthesis under solvent-free conditions. Polym.-Plast. Technol. 2014, 53 (7), 734–741.
  • Seçkin, T.; Kıvılcım, N.; Köytepe, S. Synthesis of triazine-based polyimide nanocomposites with flower-like ZnO by microwave-assisted solvothermal technique. Polym.-Plast. Technol. 2013, 52 (13), 1368–1375.
  • Shafei, A.E.; Abou-Okeil, A. ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr. Polym. 2011, 83 (2), 920–925.
  • Mikal, N.R.; Sadjadi, S.; Rajabi-Hamane, M.; Ahmadi, S.J.; Iravani, E. Decoration of electrospun polyacrylonitrile nanofibers with ZnO nanoparticles and their application for removal of Pb ions from waste water. J. Iran Chem. Soc. 2015, 552, 1–9.
  • Farhat, O.; Halim, M.; Abdullah, M.; Ali, M.; Ahmed, N.M.; Bououdina, M. Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate. Superlattices Microstruct. 2015, 86, 236–242.
  • Ocakoglu, K.; Mansour, S.A.; Yildirimcan, S.; Al-Ghamdi, A.A.; El-Tantawy, F.; Yakuphanoglu, F. Microwave-assisted hydrothermal synthesis and characterization of zno nanorods. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 148, 362–368.
  • Liu, T.; Li, Y.; Zhang, H.; Wang, M.; Fei, X.; Duo, S.; Chen, Y.; Pan, J.; Wang, W. Tartaric acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with tunable optical and oxygen vacancy-induced photocatalytic properties. Appl. Surf. Sci. 2015, 357, 516–529.
  • Suwanboon, S.; Klubnuan, S.; Jantha, N.; Amornpitoksuk, P.; Bangrak, P. Influence of alkaline solutions on morphology of ZnO prepared by hydrothermal method for using as photocatalyst and bactericidal agent. Mater. Lett. 2014, 115, 275–278.
  • Klubnuan, S.; Suwanboon, S.; Amornpitoksuk, P. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Opt. Mater. 2016, 53, 134–141.
  • Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14 (2), 158.
  • Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38 (10), 1504–1542.
  • Das, A.K.; Srinivasan, A. Evidence of oxygen defect induced ferromagnetism in heat treated electrospun ZnO nanowires. J. Magn. Magn. Mater. 2016, 404, 190–196.
  • Kantevari, S.; Vuppalapati, S.V.; Nagarapu, L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catal. Commun. 2007, 8 (11), 1857–1862.
  • Lei, M.; Ma, L.; Hu, L. Thiamine hydrochloride as a efficient catalyst for the synthesis of amidoalkyl naphthols. Tetrahedron. Lett. 2009, 50 (46), 6393–6397.
  • Chen, Y.; Shan, W.; Lei, M.; Hu, L. Thiamine hydrochloride (VB 1) as an efficient promoter for the one-pot synthesis of 2,3-dihydroquinazolin-4 (1H)-ones. Tetrahedron Lett. 2012, 53 (44), 5923–5925.
  • Köse, D.A.; Zumreoglu-Karan, B.; Sahin, O.; Büyükgüngör, O. Boric acid complexes with thiamine (vitamin B1) and pyridoxine (vitamin B6). Inorg. Chim. Acta. 2014, 413, 77–83.
  • Augustine, R.; Malik, H.N.; Singhal, D.K.; Mukherjee, A.; Malakar, D.; Kalarikkal, N.; Thomas, S. Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 2014, 21 (3), 1–17.
  • Augustine, R.; Dominic, E.A.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014, 4 (47), 24777–24785.
  • Augustine, R.; Kalarikkal, N.; Thomas, S. Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int. J. Polym. Mater. Polym. Biomater. 2016, 65 (1), 28–37.
  • Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27 (15), 2907–2915.
  • Mallakpour, S.; Nouruzi, N. Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer 2016, 89, 94–101.
  • Mallakpour, S.; Nouruzi, N. Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid-modified ZnO nanoparticles. J. Mater. Sci. 2016, 51 (13), 6400–6410.
  • Mallakpour, S.; Abdolmaleki, A.; Moosavi, S.E. Green route for the synthesis of alanine-based poly(amide-imide) nanocomposites reinforced with the modified ZnO by poly(vinyl alcohol) as a biocompatible coupling agent. Polym.-Plast. Technol. 2015, 54 (14), 1448–1456.
  • Al-Rashood, K.A.M.; Al-Shammary, F.J.; Mian, N.A.A. Analytical profile of thiamine hydrochloride. Anal. Profiles Drug Subst. 1990, 18, 413–458.
  • Mallakpour, S.; Abdolmaleki, A.; Rostami, M. Morphological and thermal properties of poly(amide-imide)/ZnO nanocomposites derived from 4,4′-methylenebis (3-chloro-2, 6-diethyl trimellitimidobenzene) and 3,5-diamino-N-(4-hydroxyphenyl) benzamide. Polym.-Plast. Technol. 2014, 53 (15), 1615–1624.
  • Thakur, S.; Barua, S.; Karak, N. Self-healable castor oil based tough smart hyperbranched polyurethane nanocomposite with antimicrobial attributes. RSC Adv. 2015, 5 (3), 2167–2176.
  • Laishram, K.; Mann, R.; Malhan, N. A novel microwave combustion approach for single step synthesis of α-Al2O3 nanopowders. Ceram. Int. 2012, 38 (2), 1703–1706.
  • Mallakpour, S.; Javadpour, M. Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid. Colloid. Polym. Sci. 2015, 293 (9), 2565–2573.
  • Abe, H.; Takahashi, N.; Kim, K.J.; Mochizuki, M.; Doi, Y. Effects of residual zinc compounds and chain-end structure on thermal degradation of poly (ε-caprolactone). Biomacromolecules 2004, 5 (4), 1480–1488.
  • Hong, R.; Qian, J.; Cao, J. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol. 2006, 163 (3), 160–168.
  • Mu, S.; Wu, D.; Qi, S.; Wu, Z. Preparation of polyimide/zinc oxide nanocomposite films via an ion-exchange technique and their photoluminescence properties. J. Nanomater. 2011, 2011, 38.
  • Mustafa, M.F.; Cook, W.D.; Schiller, T.L.; Siddiqi, H.M. Curing behavior and thermal properties of TGDDM copolymerized with a new pyridine-containing diamine and with DDM or DDS. Thermochim. Acta. 2014, 575, 21–28.
  • Das, B.; Chattopadhyay, P.; Upadhyay, A.; Gupta, K.; Mandal, M.; Karak, N. Biophysico-chemical interfacial attributes of Fe3O4 decorated MWCNT nanohybrid/bio-based hyperbranched polyurethane nanocomposite: An antibacterial wound healing material with controlled drug release potential. New J. Chem. 2014, 38 (9), 4300–4311.
  • Thapa, A.; Miller, D.C.; Webster, T.J.; Haberstroh, K.M. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 2003, 24 (17), 2915–2926.
  • Kheradmandfard, M.; Fathi, M.H. Preparation and characterization of Mg-doped fluorapatite nanopowders by sol–gel method. J. Alloys Compd. 2010, 504 (1), 141–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.