197
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Chemically Functionalized Graphene Nanosheets and Their Influence on Thermal Stability, Mechanical, Morphological, and Electrical Properties of Poly(methyl methacrylate)/Poly(ethylene Oxide) Blend

, , , &

References

  • Malinauskas, A. Chemical deposition of conducting polymers. Polymer 2001, 42, 3957–3972.
  • Jin, J.; Rafiq, R.; Gill, Y.Q.; Song, M. Preparation and characterization of high performance of graphene/nylon nanocomposites. Eur. Polym. J. 2013, 49, 2617–2626.
  • Ponnamma, D.; Sadasivuni, K.K.; Strankowski, M.; Kasak, P.; Krupa, I.; Almaadeed, M. Eco-friendly electromagnetic interference shielding materials from flexible reduced graphene oxide filled polycaprolactone/polyaniline nanocomposites. Polym. Plast. Technol. Eng. 2016, 55, 920–928.
  • Keramati, M.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Sabzi, M. Dispersion of graphene nanoplatelets in polylactic acid with the aid of a zwitterionic surfactant: Evaluation of the shape memory behavior. Polym. Plast. Technol. Eng. 2016, 55, 1039–1047.
  • Suñer, S.; Joffe, R.; Tipper, J.L.; Emami, N. Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterization. Compos. B 2015, 78, 185–191.
  • Kausar, A.; Anwar, Z.; Muhammad, B. Recent developments in epoxy/graphite, epoxy/graphene, and epoxy/graphene nanoplatelet composites: A comparative review. Polym. Plast. Technol. Eng. 2016, 55, 1192–1210.
  • Rostampour, A.; Sharif, M.; Mouj, N. Synergetic effects of graphene oxide and clay on the microstructure and properties of HIPS/graphene oxide/clay nanocomposites. Polym. Plast. Technol. Eng. 2017, 56, 171–183.
  • Liu, P.; Yao, Z.; Li, L.; Zhou, J. In situ synthesis and mechanical, thermal properties of polyimide nanocomposite film by addition of functionalized graphene oxide. Polym. Compos. 2016, 37, 907–914.
  • Liu, X.; Zheng, Y.; Wang, X. Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chem. Eur. J. 2015, 21, 10408–10415.
  • Li, W.; Tang, X.Z.; Zhang, H.B.; Jiang, Z.G.; Yu, Z.Z.; Du, X.S.; Mai, Y.W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 2011, 49, 4724–4730.
  • Qiu, F.; Hao, Y.; Li, X.; Wang, B.; Wang, M. Functionalized graphene sheets filled isotactic polypropylene nanocomposites. Compos. B 2015, 71, 175–183.
  • Cao, Y.; Feng, J.; Wu, P. Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J. Mater. Chem. 2012, 22, 14997–15005.
  • Cao, Y.; Zhang, J.; Feng, J.; Wu, P. Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 2011, 5, 5920–5927.
  • Mao, C.; Zhu, Y.; Jiang, W. Design of electrical conductive composites: Tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl. Mater. Interf. 2012, 10, 5281–5286.
  • Mohamadi, S.; Sharifi-Sanjani, N.; Foyouhi, A. Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J. Polym. Res. 2013, 20, 1–10.
  • Aram, E.; Ehsani, M.; Khonakdar, H.A.; Jafari, S.H.; Riahi Nouri, N. Functionalization of graphene nanosheets and its dispersion in PMMA/PEO blend: Thermal, electrical, morphological and rheological analyses. Fiber. Polym. 2016, 17, 174–180.
  • Bao, C.; Guo, Y.; Song, L.; Hu, Y. Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: A comparative investigation of property and mechanism. J. Mater. Chem. 2011, 21, 13942–13950.
  • Huang, T.; Xin, Y.; Li, T.; Nutt, S.; Su, C.; Chen, H.; Liu, P.; Lai, Z. Modified graphene/polyimide nanocomposites: Reinforcing and tribological effects. ACS Appl. Mater. Interf. 2013, 5, 4878–4891.
  • Aram, E.; Ehsani, M.; Khonakdar, H.A. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte. Thermochim. Acta 2015, 615, 61–67.
  • Marcos, J.I.; Orlandi, E.; Zerbi, G. Poly(ethylene oxide)–poly(methyl methacrylate) interactions in polymer blends: An infra-red study. Polymer 1990, 31, 1899–1903.
  • Yang, X.; Shang, S.; Li, L. Layer-structured poly(vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J. Appl. Polym. Sci. 2011, 120, 1355–1360.
  • Achaby, M.E.; Arrakhiz, F.E.; Vaudreuil, S.; Qaiss, A.K.; Bousmina, M.; Fehri, O.F. Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym. Compos. 2012, 33, 734–744.
  • Yu, B.; Wang, X.; Xing, W.; Yang, H.; Song, L.; Hu, Y. UV-curable functionalized graphene oxide/polyurethane acrylate nanocomposite coatings with enhanced thermal stability and mechanical properties. Ind. Eng. Chem. Res. 2012, 51, 14629–14636.
  • Jeddi, K.; Taheri, N.; Jafari, H.; Khonakdar, H.A.; Seyfi, J.; Reuter, U. Investigating the effect of nanolayered silicates on blend segmental dynamics and minor component relaxation behavior in poly(ethylene oxide)/poly(methyl methacrylate) miscible blends. J. Polym. Sci. Pol. Phys. 2011, 49, 318–326.
  • Yang, X.; Zhan, Y.; Zhao, R.; Liu, X. Effects of graphene nanosheets on the dielectric, mechanical, thermal properties, and rheological behaviors of poly(arylene ether nitriles). J. Appl. Polym. Sci. 2012, 124, 1723–1730.
  • Sridhar, V.; Lee, I.; Chun, H.H.; Park, H. Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nanocomposites. Express Polym. Lett. 2013, 7, 320–328.
  • Kuila, T.; Bose, S.; Khanra, P.; Kim, N.H.; Rhee, K.Y.; Lee, J.H. Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos. A Appl. Sci. Manuf. 2011, 42, 1856–1861.
  • Calahorra, E.; Cortazar, M.; Guzman, G. Thermal decomposition of poly(ethylene oxide), poly(methyl methacrylate), and their mixtures by thermogravimetric method. J. Polym. Sci. Polym. Lett. Ed. 1985, 23, 257–260.
  • Morimune, S.; Nishino, T.; Goto, T. Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites. ACS Appl. Mater. Interf. 2012, 4, 3596–3601.
  • Bose, S.; Kuila, T.; Uddin, M.E.; Kim, N.H.; Lau, A.T.; Lee, J.H. In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 2010, 51, 5921–5928.
  • Konwer, S.; Boruah, R.; Dolui, S.K. Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J. Electron. Mater. 2011, 11, 2248–2255.
  • Zhao, X.; Zhang, Q.; Chen, D. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010, 43, 2357–2363.
  • Ha, H.W.; Choudhury, A.; Kamal, T.; Kim, D.H.; Park, S.Y. Effect of chemical modifiation of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl. Mater. Interf. 2012, 4, 4623–4630.
  • Lei, L.; Qiu, J.; Sakai, E. Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem. Eng. J. 2012, 209, 20–27.
  • Sabzi, M.; Jiang, L.; Liu, F.; Ghasemi, I.; Atai, M. Graphene nanoplatelets as poly(lactic acid) modifier: Linear rheological behavior and electrical conductivity. J. Mater. Chem. A 2013, 1, 8253–8261.
  • Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 2004, 37, 9048–9055.
  • Li, M.; Jeong, Y.G. Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties. Compos. A Appl. Sci. Manuf. 2011, 42, 560–566.
  • Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold. Materials 2010, 3, 1089–10103.
  • Yuan, X.Y.; Zou, L.L.; Liao, C.C.; Dai, J.W. Improved properties of chemically modified graphene/poly(methyl methacrylate) nanocomposites via a facile in-situ bulk polymerization. Exp. Polym. Lett. 2012, 6, 847–858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.