525
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Utilizing Vacuum Bagging Process to Prepare Carbon Fiber/CNT-Modified-epoxy Composites with Improved Mechanical Properties

, ORCID Icon &

References

  • Rana, S.; Fangueiro, R. Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications, Woodhead Publishing: Duxford, 2016.
  • Frketic, J.; Dickens, T.; Ramakrishnan, S. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing. Addit. Manuf. 2017, 14, 69–86. doi:10.1016/j.addma.2017.01.003.
  • Rafiee, R.; Tahani, M.; Moradi, M. Simulation of aeroelastic behavior in a composite wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2016, 151, 60–69. doi:10.1016/j.jweia.2016.01.010.
  • Hollaway, L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. doi:10.1016/j.conbuildmat.2010.04.062.
  • Irshidat, M.R.; Al-Saleh, M.H.; Al-Shoubaki, M. Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Compos. Struct. 2015, 134, 523–532. doi:10.1016/j.compstruct.2015.08.108.
  • Coope, T.S.; Wass, D.F.; Trask, R.S.; Bond, I.P. Repeated self-healing of microvascular carbon fibre reinforced polymer composites. Smart Mater. Struct. 2014, 23, 115002. doi:10.1088/0964-1726/23/11/115002.
  • Daniel, I.M.; Ishai, O. Engineering Mechanics of Composite Materials, 2nd ed., Oxford University Press: New York, 2005.
  • Salvetat, J.-P.; Bonard, J.-M.; Thomson, N.H.; Kulik, A.J.; Forró, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. Mater. Sci. Process 1999, 69, 255–260. doi:10.1007/s003390050999.
  • Tong, L.; Mouritz, A.; Bannister, M. 3D Fibre Reinforced Polymer Composites, Elsevier: Amsterdam, 2002.
  • Veedu, V.P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P.M.; Ghasemi-Nejhad, M.N. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 2006, 5, 457–462. doi:10.1038/nmat1650.
  • Chung, D.D.L. Carbon Fiber Compos, Butterworth-Heinemann: Newton, MA, 1994. doi:10.1016/B978-0-08-050073-7.50010-5.
  • Al-Saleh, M.H.; Irshidat, M.R. Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites. J. Polym. Eng. 2016, 36, 1–6. doi:10.1515/polyeng-2015-0245.
  • Njuguna, J.; Pielichowski, K.; Alcock, J.R. Epoxy-based fibre reinforced nanocomposites. Adv. Eng. Mater. 2007, 9, 835–847. doi:10.1002/adem.200700118.
  • Rafique, I.; Kausar, A.; Muhammad, B. Epoxy resin composite reinforced with carbon fiber and inorganic filler: Overview on preparation and properties. Polym. Plast. Technol. Eng. 2016, 55, 1653–1672. doi:10.1080/03602559.2016.1163597.
  • Withers, G.J.; Yu, Y.; Khabashesku, V.N.; Cercone, L.; Hadjiev, V.G.; Souza, J.M.; Davis, D.C. Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos. Part B Eng. 2015, 72, 175–182. doi:10.1016/j.compositesb.2014.12.008.
  • Thiagarajan, A.; Palaniradja, K.; Mathivanan, N.R. Effect of nanoclay on the impact properties of glass fiber-reinforced polymer composites. Polym. Plast. Technol. Eng. 2012, 51, 1403–1410. doi:10.1080/03602559.2012.696762.
  • Taraghi, I.; Fereidoon, A.; Taheri-Behrooz, F. Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Mater. Des. 2014, 53, 152–158. doi:10.1016/j.matdes.2013.06.051.
  • Madhukar, M.S.; Drzal, L.T. Fiber-matrix adhesion and its effect on composite mechanical properties: I. Inplane and interlaminar shear behavior of graphite/epoxy composites. J. Compos. Mater. 1991, 25, 932–957. doi:10.1177/002199839102500801
  • Yu, G.-C.; Wu, L.-Z.; Feng, L.-J.; Yang, W. Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Compos. Struct. 2016, 149, 213–219. doi:10.1016/j.compstruct.2016.04.010.
  • Lee, G.; Ko, K.D.; Yu, Y.C.; Lee, J.; Yu, W.R.; Youk, J.H. A facile method for preparing CNT-grafted carbon fibers and improved tensile strength of their composites. Compos. Part Appl. Sci. Manuf. 2015, 69, 132–138. doi:10.1016/j.compositesa.2014.11.015
  • Islam, M.E.; Mahdi, T.H.; Hosur, M.V.; Jeelani, S. Characterization of carbon fiber reinforced epoxy composites modified with nanoclay and carbon nanotubes. Procedia Eng. 2015, 105, 821–828. doi:10.1016/j.proeng.2015.05.078.
  • Li, Y.; Guo, L.J.; Wang, Y.W.; Li, H.J.; Song, Q. A novel multiscale reinforcement by in-situ growing carbon nanotubes on graphene oxide grafted carbon fibers and its reinforced carbon/carbon composites with improved tensile properties. J. Mater. Sci. Technol. 2016, 32, 419–424. doi:10.1016/j.jmst.2015.12.022.
  • Lee, G.; Ko, K.D.; Yu, Y.C.; Lee, J.; Yu, W.R.; Youk, J.H. A facile method for preparing CNT-grafted carbon fibers and improved tensile strength of their composites. Compos. Part Appl. Sci. Manuf. 2015, 69, 132–138. doi:10.1016/j.compositesa.2014.11.015.
  • Karapappas, P.; Vavouliotis, A.; Tsotra, P.; Kostopoulos, V.; Paipetis, A. Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J. Compos. Mater. 2009, 43, 977–985. doi:10.1177/0021998308097735.
  • Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645. doi:10.1002/pc.20058.
  • Lv, P.; Feng, Y.Y.; Zhang, P.; Chen, H.M.; Zhao, N.; Feng, W. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon 2011, 49, 4665–4673. doi:10.1016/j.carbon.2011.06.064.
  • Sager, R.J.; Klein, P.J.; Lagoudas, D.C.; Zhang, Q.; Liu, J.; Dai, L.; Baur, J.W. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 2009, 69, 898–904. doi:10.1016/j.compscitech.2008.12.021.
  • Zhang, F.H.; Wang, R.G.; He, X.D.; Wang, C.; Ren, L.N. Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid. J. Mater. Sci. 2009, 44, 3574–3577. doi:10.1007/s10853-009-3484-x.
  • Papadopoulos, A.; Gkikas, G.; Paipetis, A.S.; Barkoula, N.M. Effect of CNTs addition on the erosive wear response of epoxy resin and carbon fibre composites. Compos. Part Appl. Sci. Manuf. 2016, 84, 299–307. doi:10.1016/j.compositesa.2016.02.012.
  • Kim, K.J.; Kim, J.; Yu, W.R.; Youk, J.H.; Lee, J. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface. Carbon 2013, 54, 258–267. doi:10.1016/j.carbon.2012.11.037.
  • Godara, A.; Gorbatikh, L.; Kalinka, G.; Warrier, A.; Rochez, O.; Mezzo, L.; Luizi, F.; Van Vuure, A.W.; Lomov, S.V.; Verpoest, I. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 2010, 70, 1346–1352. doi:10.1016/j.compscitech.2010.04.010.
  • Thostenson, E.T.; Li, W.Z.; Wang, D.Z.; Ren, Z.F.; Chou, T.W. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037. doi:10.1063/1.1466880.
  • Shioya, M.; Yasui, S.; Takaku, A. Relation between interfacial shear strength and tensile strength of carbon fiber/resin composite strands. Compos. Interface. 1998, 6, 305–323. doi:10.1163/156855498X00333
  • Chambers, A.R.; Earl, J.S.; Squires, C.a.; Suhot, M.a. The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications. Int. J. Fatigue 2006, 28, 1389–1398. doi:10.1016/j.ijfatigue.2006.02.033.
  • Suhot, M.A. The effect of voids on the flexural fatigue properties of carbon/epoxy composites. Doctoral thesis. University of Southampton, 2010.
  • Yu, B.; Jiang, Z.; Tang, X.Z.; Yue, C.Y.; Yang, J. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. Compos. Sci. Technol. 2014, 99, 131–140. doi:10.1016/j.compscitech.2014.05.021.
  • Li, M.; Gu, Y.; Liu, Y.; Li, Y.; Zhang, Z. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 2013, 52, 109–121. doi:10.1016/j.carbon.2012.09.011.
  • Zhou, Y.X.; Wu, P.X.; Cheng, Z.Y.; Ingram, J.; Jeelani, S. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. Express Polym. Lett. 2008, 2, 40–48. doi:10.3144/expresspolymlett.2008.6.
  • Irshidat, M.R.; Al-Saleh, M.H. Effect of using carbon nanotube modified epoxy on bond-slip behavior between concrete and FRP sheets. Constr. Build. Mater. 2016, 105, 511–518. doi:10.1016/j.conbuildmat.2015.12.183.
  • Tehrani, M.; Boroujeni, A.Y.; Hartman, T.B.; Haugh, T.P.; Case, S.W.; Al-Haik, M.S. Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube-epoxy composite. Compos. Sci. Technol. 2013, 75, 42–48. doi:10.1016/j.compscitech.2012.12.005.
  • Sharma, K.; Shukla, M. Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: Processing, characterisation, and multiscale modeling. J. Nanomater. 2014, 2014, e837492. doi:10.1155/2014/837492.
  • Liao, Y.H.; Marietta-Tondin, O.; Liang, Z.; Zhang, C.; Wang, B. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater. Sci. Eng. A 2004, 385, 175–181. doi:10.1016/j.msea.2004.06.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.