215
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Microstructural Analysis of Natural Rubber/Millable Polyurethane Blends Using Positron Annihilation Lifetime Spectroscopy

, , , &

References

  • Qiu, J.; Xing, C.; Cao, X.; Wang, H.; Wang, L.; Zhao, L. Miscibility and double glass transition temperature depression of poly(L-lactic acid)(PLLA)/poly(oxymethylene) (POM) blends. Macromolecules 2013, 46, 5806–5814.
  • Jen-Taut, Y.; Ching-Ju, W.; Chi-Hui, T.; Wan-Lan, C.; Jing-Dong, C.; Chi-Yuan, H.; Kan-Nan, C.; Chin-San, W. Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends. Polym. Plast. Technol. Eng. 2009, 48, 571–578.
  • Kinloch, A.J.; Lee, S.H.; Taylor, A.C. Improving the fracture toughness and the cyclic-fatigue resistance of epoxy-polymer blends. Polymer 2014, 55, 6325–6334.
  • Nuno Calcada, L.; Satyabrata, G.; Julio, C.V.; Jose, L.E. Thermal characterization of polyhydroxyalkanoates and poly(lactic acid) blends obtained by injection molding. Polym. Plast. Technol. Eng. 2015, 54, 350–356.
  • Thitithammawong, A.; Nakason, C.; Sahakaro, K.; Noordermeer, J. Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends. Polym. Test. 2007, 26, 537–546.
  • Parthajit, P.; Asish, M.; Anirban, M.; Chapal, K.D.; Vinita, N.; Arvind, K.S. Dual effect of polyphosphazene and halloysite nanotubes in the blends of poly(phenylene oxide)/liquid crystalline polymer. Polym. Plast. Technol. Eng. 2015, 54, 1765–1771.
  • Utracki, L.A. Text Book of Polymer Alloys and Blends (Thermodynamics and Rheology), Hanser Publishers: New York, 1990.
  • Kumari, P.; Radhakrishnan, C.K.; George, S.; Unnikrishnan, G. Mechanical and sorption properties of poly(ethylene-co-vinyl acetate) (EVA) compatibilized acrylonitrile butadiene rubber/natural rubber blend systems. J. Polym. Res. 2008, 15, 97–106.
  • Kumari, P.; Unnikrishnan, G. Thermal properties of compatibilized and filled natural rubber/acrylonitrile butadiene rubber blends. J. Therm. Anal. Calorim. 2013, 114, 67–75.
  • Nakason, C.; Wannavilai, P.; Kaesaman, A. Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: Effect of epoxide levels in ENR molecules. J. Appl. Polym. Sci. 2006, 101, 3046–3052.
  • Ismail, H. Thermoplastic elastomers based on polypropylene/natural rubber and polypropylene/recycle rubber blends. Polym. Test. 2002, 21, 389–395.
  • Phinyocheep, P.; Saelao, J.; Buzare, J.Y. Mechanical properties, morphology and molecular characteristics of poly(ethylene terephthalate) toughened by natural rubber. Polymer 2007, 48, 5702–5712.
  • Chumeka, W.; Pasetto, P.; Pilard, J.F.; Tanrattanakul, V. Bio-based triblock copolymers from natural rubber and poly(lactic acid): Synthesis and application in polymer blending. Polymer 2014, 55, 4478–4487.
  • Mathew, A.P.; Packirisamy, S.; Stephen, R.; Thomas, S. Transport of aromatic solvents through natural rubber/polystyrene (NR/PS) interpenetrating polymer network membranes. J. Membr. Sci. 2002, 201, 213–227.
  • Nakason, C.; Saiwaree, S.; Tatun, S.; Kaesaman, A. Rheological, thermal and morphological properties of maleated natural rubber and its reactive blending with poly(methyl methacrylate). Polym. Test. 2006, 25, 656–667.
  • Carone, E.; Kopcak, U.; Goncalves, M.; Nunes, S. In situ compatibilization of polyamide 6/natural rubber blends with maleic anhydride. Polymer 2000, 41, 5929–5935.
  • Nakason, C.; Nuansomsri, K.; Kaesaman, A.; Kiatkamjornwong, S. Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polym. Test. 2006, 25, 782–796.
  • Panwiriyarat, W.; Tanrattanakul, V.; Pilard, J.F.; Pasetto, P.; Khaokong, C. Preparation and properties of bio-based polyurethane containing polycaprolactone and natural rubber. J. Polym. Environ. 2013, 21, 807–815.
  • Engels, H.W.; Pirkl, H.G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441.
  • Ma, H.; Yang, Y. Rheology, morphology and mechanical properties of compatibilized poly(vinylidene fluoride) (PVDF)/thermoplastic polyurethane (TPU) blends. Polym. Test. 2008, 27, 441–446.
  • Wang, X.; Luo, X.; Wang, X. Study on blends of thermoplastic polyurethane and aliphatic polyester: Morphology, rheology, and properties as moisture vapor permeable films. Polym. Test. 2005, 24, 18–24.
  • Pielichowski, K.; Hamerton, I. Compatible poly (vinyl chloride)/chlorinated polyurethane blends: Thermal characteristics. Eur. Polym. J. 2000, 36, 171–181.
  • Emi, G.B.; Andela, P.; Ivan, S.; Mirela L. Blends of thermoplastic polyurethane and polypropylene. II. Thermal and morphological behavior. J. Appl. Polym. Sci. 2010, 117, 1378–1384.
  • Di, Y.; Kang, M.; Zhao, Y.; Yan, S.; Wang, X. Morphology and mechanical properties of blends of thermoplastic polyurethane and polyolefins. J. Appl. Polym. Sci. 2006, 99, 875–883.
  • Jaaoh, D.; Putson, C.; Muensit, N. Deformation on segment-structure of electrostrictive polyurethane/polyanilineblends. Polymer 2015, 61, 123–130.
  • Lu, Q.W.; Macosko, C.W. Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer 2004, 45, 1981–1991.
  • Turri, S.; Valsecchi, R.; Levi, M.; Cristini, M.; Sanguineti, A. Microstructure to property relations in a family of millable polyurethane fluoroelastomers. Eur. Polym. J. 2008, 44, 2951–2961.
  • Bakare, I.O.; Okieimen, F.E.; Pavithran, C.; Abdul Khalil, H.P.S.; Brahmakumar, M. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater. Des. 2010, 31, 4274–4280.
  • Desai, S.; Thakore, I.M.; Brennan, A.; Devi, S. Polyurethane-nitrile rubber blends. J. Macromol. Sci. A 2001, 38, 711–729.
  • Karger-Kocsis, J.; Felhos, D.; Xu, D. Mechanical and tribological properties of rubber blends composed of HNBR and in situ produced polyurethane. Wear 2010, 268, 464–472.
  • Sulkowski, W.W.; Mistarz, S.; Borecki, T.; Moczynski, M.; Danch, A.; Borek, J. Kinetic parameters from thermogravimetric study of used rubber granulates-polyurethane composites. J. Therm. Anal. Calorim. 2006, 84, 91–97.
  • Sulkowski, W.W.; Bartecka, G.; Sulkowska, A.; Maslanka, S.; Borek, J.; Moczynski, M. Thermogravimetric analysis of composites obtained from polyurethane and rubber waste. Mol. Cryst. Liq. Cryst. 2012, 556, 39–51.
  • Sombatsompop, N. Dynamic mechanical properties of ground flexible polyurethane foam particles and carbon-black-filled rubber vulcanisates. Polym. Plast. Technol. Eng. 1998, 37, 1–18.
  • Ekwipoo, K.; Nakason, C.; Kummerlöwe, C.; Vennemann, N. Development and preparation of high-performance thermoplastic vulcanizates based on blends of natural rubber and thermoplastic polyurethanes. J. Appl. Polym. Sci. 2013, 128, 2358–2367.
  • Skulrat, P.; Nakason, C.; Vennemann, N. Thermoplastic elastomers-based natural rubber and thermoplastic polyurethane blends. Iran. Polym. J. 2012, 21, 65–79.
  • Ekvipoo, K.; Vennemann, N.; Kummerlöwe, C.; Nakason, C. Novel thermoplastic natural rubber based on thermoplastic polyurethane blends: Influence of modified natural rubbers on properties of the blends. Iran. Polym. J. 2012, 21, 689–700.
  • Minnath, M.A.; Unnikrishnan, G.; Purushothaman, E. Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J. Membr. Sci. 2011, 379, 361–369.
  • Suresh, K.I.; Thachil, E.T. Study on blending of millable polyurethane derived from castor oil with natural rubber. Die Angew. Makromol. Chem. 1995, 224, 55–60.
  • Munirathnamma, L.M.; Ravikumar, H.B. Microstructural characterization of short glass fibre reinforced polyethersulfone composites: A positron lifetime study. J. Appl. Polym. Sci. 2016, 133, 43647.
  • Ravikumar, H.B.; Ranganathaiah, C.; Kumaraswamy, G.N.; Thomas, S. Positron annihilation and differential scanning calorimetric study of poly (trimethylene terephthalate)/EPDM blends. Polymer 2005, 46, 2372–2380.
  • Ya-Ping, Z.; Jiao-Xia, Z.; Pei-Ying, Y.; Wei, S.; Bo, W. Investigation of the microstructure of epoxy resin/MWNTs nanocomposite by the positron annihilation technique. Polym. Plast. Technol. Eng. 2010, 49, 1016–1021.
  • Aneesh Kumar, K.V.; Ravikumar, H.B.; Ganesh, S.; Ranganathaiah, C. Electron beam induced microstructural changes and electrical conductivity in bakelite RPC detector material. IEEE Trans. Nucl. Sci. 2015, 62, 306–313.
  • Ke-Mei, C.; Chunrong, T.; Yu, D.; Fang, H.; Jian-Hua, W.; Jie, S. Effect of OPS dispersion method on the free volume of polyurethane by positron annihilation life time spectroscopy (PALS). Polym. Plast. Technol. Eng. 2012, 51, 396–400.
  • Aneesh Kumar, K.V.; Ravikumar, H.B.; Ranganathaiah, C. Thermally induced microstructural changes and its influence on electrical conductivity of a polymer-based bakelite RPC detector material: A positron lifetime study. J. Appl. Polym. Sci. 2013, 130, 793–800.
  • Kirkegaard, P.; Pedersen, N.J.; Eldrup, M. Riso National Lab, Report No. Riso-M-2740; Denmark, 1989.
  • Fred, W.B. Rubber Compounding: Principles, Materials and Techniques, Marcel Dekker Inc.: New York, 1993.
  • Dlubek, G.; Stejny, J.; Lupke, T.H.; Bamford, D.; Petters, K.; Hubner, C.H.; Alam, M.A.; Hill, M.J. Free-volume variation in polyethylenes of different crystallinities: Positron lifetime, density, and X-ray studies. J. Polym. Sci. B Polym. Phys. 2002, 40, 65–81.
  • Halasa, A.F.; Wathen, G.D.; Hsu, W.L.; Matrana, B.A.; Massie, J.M. Relationship between interchain spacing of amorphous polymers and blend miscibility as determined by wide-angle X-ray scattering. J. Appl. Polym. Sci. 1991, 43, 183–90.
  • Budd, P.M. Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 2005, 15, 1977–1986.
  • Nakanishi, H.; Wang, S.J.; Jean, Y.C.; Sharma, S.C. Positron Annihilation in Fluids, World Scientific: Singapore, 1988.
  • Eldrup, M.; Lightbody, D.; Sherwood, J.N. The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981, 63, 51–58.
  • Tao, S.J. Positronium annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499–5508.
  • Kelly, F.N.; Bueche, F. Viscosity and glass temperature relations for polymer-diluent systems. J. Polym. Sci. B Polym. Phys. 1961, 50, 549–556.
  • Liu, J.; Jean, Y.C.; Yang, H.; Free-volume hole properties of polymer blends probed by positron annihilation spectroscopy: Miscibility. Macromolecules 1995, 28, 5774–5779.
  • Dai, Y.Q.; Wang, B.; Wang, S.J.; Jiang, T.; Cheng, S.Y. Study on the microstructure and miscibility of dynamically vulcanized EPDM/PP blend by positron annihilation. Radiat. Phys. Chem. 2003, 68, 493–496.
  • Emi, G.B.; Andela, P.; Ivan, S.; Mirela, L. Blends of thermoplastic polyurethane and polypropylene. II. Thermal and morphological behavior. J. Appl. Polym. Sci. 2010, 117, 1378–1384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.