503
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Polymeric Nanocomposites (PNCs) for Wastewater Remediation: An Overview

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Bhattacharya, S.; Saha, I.; Mukhopadhyay, A.; Chattopadhyay, D.; Chand, U. Role of Nanotechnology in Water Treatment and Purification: Potential Applications and Implications. Int. J. Chem. Sci. Technol. 2013, 3, 59–64.
  • Qu, X.; Brame, J.; Li, Q.; Alvarez, P. J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 2012, 46, 834–843. DOI: 10.1021/ar300029v.
  • Zeng, Z.; Liu, J.; Savenije, H. H. G. A Simple Approach to Assess Water Scarcity Integrating Water Quantity and Quality. Ecol. Ind. 2013, 34, 441–449. DOI: 10.1016/j.ecolind.2013.06.012.
  • El Kharraz, J.; El-Sadek, A.; Ghaffour, N.; Mino, E. Water Scarcity and Drought in WANA Countries. Proced. Eng. 2012, 33, 14–29. DOI: 10.1016/j.proeng.2012.01.1172.
  • Qu, X.; Alvarez, P. J. J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931–3946. DOI: 10.1016/j.watres.2012.09.058.
  • Ebrahim, S.; Shokry, A.; Ibrahim, H.; Soliman, M. Polyaniline/Akaganéite Nanocomposite for Detoxification of Noxious Cr(VI) from Aquatic Environment. J. Polym. Res. 2016, 23, 79. DOI: 10.1007/s10965-016-0977-6.
  • Muliwa, A. M.; Leswifi, T. Y.; Onyango, M. S.; Maity, A. Magnetic Adsorption Separation (MAS) Process: An Alternative Method of Extracting Cr(VI) from Aqueous Solution using Polypyrrole Coated Fe3O4 Nanocomposites. Sep. Purif. Technol. 2016, 158, 250–258. DOI: 10.1016/j.seppur.2015.12.021.
  • Samiey, B.; Cheng, C.-H.; Wu, J. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review. Materials 2014, 7, 673–726. DOI: 10.3390/ma7020673.
  • Wu, J.; Yu, C.; Li, Q. Regenerable Antimicrobial Activity in Polyamide Thin Film Nanocomposite Membranes. J. Membr. Sci. 2015, 476, 119–127. DOI: 10.1016/j.memsci.2014.11.030.
  • Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-Supported Nanocomposites for Environmental Application: A Review. Chem. Eng. J. 2011, 170, 381–394. DOI: 10.1016/j.cej.2011.02.071.
  • Lin, C.-L.; Lee, C.-F.; Chiu, W.-Y. Preparation and Properties of Poly(acrylic acid) Oligomer Stabilized Superparamagnetic Ferrofluid. J. Colloid Interface Sci. 2005, 291, 411–420. DOI: 10.1016/j.jcis.2005.05.023.
  • Bhaumik, M.; McCrindle, R. I.; Maity, A. Enhanced Adsorptive Degradation of Congo Red in Aqueous Solutions using Polyaniline/Fe0 Composite Nanofibers. Chem. Eng. J. 2015, 260, 716–729. DOI: 10.1016/j.cej.2014.09.014.
  • Tang, L.; Yang, G.-D.; Zeng, G.-M.; Cai, Y.; Li, S.-S.; Zhou, Y.-Y.; Pang, Y.; Liu, Y.-Y.; Zhang, Y.; Luna, B. Synergistic Effect of Iron Doped Ordered Mesoporous Carbon on Adsorption-Coupled Reduction of Hexavalent Chromium and the Relative Mechanism Study. Chem. Eng. J. 2014, 239, 114–122. DOI: 10.1016/j.cej.2013.10.104.
  • Sharma, V. K.; McDonald, T. J.; Kim, H.; Garg, V. K. Magnetic Graphene–Carbon Nanotube Iron Nanocomposites as Adsorbents and Antibacterial Agents for Water Purification. Adv. Colloid Interface Sci. 2015, 225, 229–240. DOI: 10.1016/j.cis.2015.10.006.
  • Zhang, L.; Bao, Z.; Yu, X.; Dai, P.; Zhu, J.; Wu, M.; Li, G.; Liu, X.; Sun, Z.; Chen, C. Rational Design of α-Fe2O3/Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants. ACS Appl. Mater. Interfaces 2016, 8, 6431–6438. DOI: 10.1021/acsami.5b11292.
  • Bastami, T. R.; Ahmadpour, A. Preparation of Magnetic Photocatalyst Nanohybrid Decorated by Polyoxometalate for the Degradation of a Pharmaceutical Pollutant under Solar Light. Environ. Sci. Pollut. Res. 2016, 23, 8849–8860. DOI: 10.1007/s11356-015-5985-2.
  • Xu, T.; Qi, Y.; Zhao, X.; Zhang, Q. Controlled Fabrication of Nanostructures by Assembling Au Nanoparticles on Functionalized Polymeric Spheres. Colloids Surf. A: Physicochem. Eng. Aspects 2016, 498, 139–145. DOI: 10.1016/j.colsurfa.2016.03.034.
  • Oputu, O.; Chowdhury, M.; Nyamayaro, K.; Cummings, F.; Fester, V.; Fatoki, O. A Novel β-FeOOH/NiO Composite Material as a Potential Catalyst for Catalytic Ozonation Degradation of 4-Chlorophenol. RSC Adv. 2015, 5, 59513–59521. DOI: 10.1039/c5ra09177b.
  • Rashid, J.; Barakat, M. A.; Ruzmanova, Y.; Chianese, A. Fe3O4/SiO2/TiO2 Nanoparticles for Photocatalytic Degradation of 2-Chlorophenol in Simulated Wastewater. Environ. Sci. Pollut. Res. 2015, 22, 3149–3157. DOI: 10.1007/s11356-014-3598-9.
  • Abussaud, B.; Asmaly, H. A.; Saleh, T. A.; Gupta, V. K.; Laoui, T.; Atieh, M. A. Sorption of Phenol from Waters on Activated Carbon Impregnated with Iron Oxide, Aluminum Oxide and Titanium Oxide. J. Mol. Liq. 2016, 213, 351–359. DOI: 10.1016/j.molliq.2015.08.044.
  • Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Ghaedi, A. M.; Hajati, S.; Goudarzi, A.; Alipanahpour, E. Highly Efficient Simultaneous Ultrasonic Assisted Adsorption of Brilliant Green and Eosin B onto ZnS Nanoparticles Loaded Activated Carbon: Artificial Neural Network Modeling and Central Composite Design Optimization. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2016, 153, 257–267. DOI: 10.1016/j.saa.2015.08.024.
  • Nekouei, F.; Noorizadeh, H.; Nekouei, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Removal of Malachite Green from Aqueous Solutions by Cuprous Iodide–Cupric Oxide Nano-Composite Loaded on Activated Carbon as a New Sorbent for Solid Phase Extraction: Isotherm, Kinetics and Thermodynamic Studies. J. Mol. Liq. 2016, 213, 360–368. DOI: 10.1016/j.molliq.2015.07.058.
  • Darezereshki, E.; Tavakoli, F.; Bakhtiari, F.; Vakylabad, A. B.; Ranjbar, M. Innovative Impregnation Process for Production of γ-Fe2O3–Activated Carbon Nanocomposite. Mater. Sci. Semicond. Process. 2014, 27, 56–62. DOI: 10.1016/j.mssp.2014.05.049.
  • He, J.; Bardelli, F.; Gehin, A.; Silvester, E.; Charlet, L. Novel Chitosan Goethite Bionanocomposite Beads for Arsenic Remediation. Water Res. 2016, 101, 1–9. DOI: 10.1016/j.watres.2016.05.032.
  • Haldorai, Y.; Kharismadewi, D.; Tuma, D.; Shim, J.-J. Properties of Chitosan/Magnetite Nanoparticles Composites for Efficient Dye Adsorption and Antibacterial Agent. Korean J. Chem. Eng. 2015, 32, 1688–1693. DOI: 10.1007/s11814-014-0368-9.
  • Xiong, R.; Wang, Y.; Zhang, X.; Lu, C. Facile Synthesis of Magnetic Nanocomposites of Cellulose@ Ultrasmall Iron Oxide Nanoparticles for Water Treatment. RSC Adv. 2014, 4, 22632–22641. DOI: 10.1039/c4ra01397b.
  • Basti, H.; Tahar, L. B.; Smiri, L. S.; Herbst, F.; Nowak, S.; Mangeney, C.; Ammar, S. Surface Modification of γ-Fe2O3 Nanoparticles by Grafting from Poly-(hydroxyethylmethacrylate) and Poly-(methacrylic acid): Qualitative and Quantitative Analysis of the Polymeric Coating. Colloids Surf. A: Physicochem. Eng. Aspects. 2016, 490, 222–231. DOI: 10.1016/j.colsurfa.2015.11.013.
  • Taleb, K.; Markovski, J.; Hristovski, K. D.; Rajaković-Ognjanović, V. N.; Onjia, A.; Marinković, A. Aminated Glycidyl Methacrylates as a Support Media for Goethite Nanoparticle Enabled Hybrid Sorbents for Arsenic Removal: From Copolymer Synthesis to Full-Scale System Modeling. Resour.-Effic. Technol. 2016, 2, 15–22. DOI: 10.1016/j.reffit.2016.04.002.
  • Zhou, Q.; Yan, C.; Luo, W. Polypyrrole Coated Secondary Fly Ash–Iron Composites: Novel Floatable Magnetic Adsorbents for the Removal of Chromium (VI) from Wastewater. Mater. Des. 2016, 92, 701–709. DOI: 10.1016/j.matdes.2015.12.095.
  • Kim, M. K.; Shanmuga Sundaram, K.; Anantha Iyengar, G.; Lee, K.-P. A Novel Chitosan Functional Gel Included with Multiwall Carbon Nanotube and Substituted Polyaniline as Adsorbent for Efficient Removal of Chromium Ion. Chem. Eng. J. 2015, 267, 51–64. DOI: 10.1016/j.cej.2014.12.091.
  • Chiou, M.-S.; Ho, P.-Y.; Li, H.-Y. Adsorption of Anionic Dyes in Acid Solutions using Chemically Cross-Linked Chitosan Beads. Dyes Pigm. 2004, 60, 69–84. DOI: 10.1016/s0143-7208(03)00140-2.
  • Badruddoza, A. Z.; Shawon, Z. B.; Tay, W. J.; Hidajat, K.; Uddin, M. S. Fe3O4/Cyclodextrin Polymer Nanocomposites for Selective Heavy Metals Removal from Industrial Wastewater. Carbohydr. Polym. 2013, 91, 322–332. DOI: 10.1016/j.carbpol.2012.08.030.
  • Li, R.; Zhang, L.; Wang, P. Rational Design of Nanomaterials for Water Treatment. Nanoscale 2015, 7, 17167–17194. DOI: 10.1039/c5nr04870b.
  • Luo, X.; Zhang, L. High Effective Adsorption of Organic Dyes on Magnetic Cellulose Beads Entrapping Activated Carbon. J. Hazard. Mater. 2009, 171, 340–347. DOI: 10.1016/j.jhazmat.2009.06.009.
  • Kamat, P. V. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett. 2009, 1, 520–527. DOI: 10.1002/chin.201013227.
  • Yan, L.; Zheng, Y. B.; Zhao, F.; Li, S.; Gao, X.; Xu, B.; Weiss, P. S.; Zhao, Y. Chemistry and Physics of a Single Atomic Layer: Strategies and Challenges for Functionalization of Graphene and Graphene-Based Materials. Chem. Soc. Rev. 2012, 41, 97–114. DOI: 10.1039/c1cs15193b.
  • Li, X. H.; Antonietti, M. Metal Nanoparticles at Mesoporous N-Doped carbons and Carbon Nitrides: Functional Mott-Schottky Heterojunctions for Catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604. DOI: 10.1039/c3cs60067j.
  • Lofrano, G.; Carotenuto, M.; Libralato, G.; Domingos, R. F.; Markus, A.; Dini, L.; Gautam, R. K.; Baldantoni, D.; Rossi, M.; Sharma, S. K.; et al. Polymer Functionalized Nanocomposites for Metals Removal from Water and Wastewater: An Overview. Water Res. 2016, 92, 22–37. DOI: 10.1016/j.watres.2016.01.033.
  • Khezri, K.; Mahdavi, H. Polystyrene-Silica Aerogel Nanocomposites by In Situ Simultaneous Reverse and Normal Initiation Technique for ATRP. Microporous Mesoporous Mater. 2016, 228, 132–140. DOI: 10.1016/j.micromeso.2016.03.022.
  • Akl, Z. F.; El-Saeed, S. M.; Atta, A. M. In-Situ Synthesis of Magnetite Acrylamide Amino-Amidoxime Nanocomposite Adsorbent for Highly Efficient Sorption of U(VI) Ions. J. Ind. Eng. Chem. 2016, 34, 105–116. DOI: 10.1016/j.jiec.2015.10.042.
  • Atta, A. M.; Al-Lohedan, H. A.; Ezzat, A. O.; Issa, Z. A.; Oumi, A. B. Synthesis and Application of Magnetite Polyacrylamide Amino-Amidoxime Nano-Composites as Adsorbents for Water Pollutants. J. Polym. Res. 2016, 23, 69. DOI: 10.1007/s10965-016-0963-z.
  • Cho, S.; Kim, N.; Lee, S.; Lee, H.; Lee, S. H.; Kim, J.; Choi, J. W. Use of Hybrid Composite Particles Prepared using Alkoxysilane-Functionalized Amphiphilic Polymer Precursors for Simultaneous Removal of Various Pollutants from Water. Chemosphere 2016, 156, 302–311. DOI: 10.1016/j.chemosphere.2016.05.004.
  • Lü, T.; Zhang, S.; Qi, D.; Zhang, D.; Zhao, H. Thermosensitive Poly(N -Isopropylacrylamide)-Grafted Magnetic Nanoparticles for Efficient Treatment of Emulsified Oily Wastewater. J. Alloys Compd. 2016, 688, 513–520. DOI: 10.1016/j.jallcom.2016.07.262.
  • Reddy, P. M.; Chang, C.-J.; Chen, J.-K.; Wu, M.-T.; Wang, C.-F. Robust Polymer Grafted Fe3O4 Nanospheres for Benign Removal of Oil from Water. Appl. Surf. Sci. 2016, 368, 27–35. DOI: 10.1016/j.apsusc.2016.01.250.
  • Tran, M. T.; Nguyen, T. H. T.; Vu, Q. T.; Nguyen, M. V. Properties of Poly(1-naphthylamine)/Fe3O4 Composites and Arsenic Adsorption Capacity in Wastewater. Front. Mater. Sci. 2016, 10, 56–65. DOI: 10.1007/s11706-016-0320-5.
  • Wanna, Y.; Chindaduang, A.; Tumcharern, G.; Phromyothin, D.; Porntheerapat, S.; Nukeaw, J.; Hofmann, H.; Pratontep, S. Efficiency of SPIONs Functionalized with Polyethylene Glycol Bis(amine) for Heavy Metal Removal. J. Magn. Magn. Mater. 2016, 414, 32–37. DOI: 10.1016/j.jmmm.2016.04.064.
  • Yuan, Y.; Liu, F.; Xue, L.; Wang, H.; Pan, J.; Cui, Y.; Chen, H.; Yuan, L. Recyclable Escherichia coli-Specific-Killing AuNP-Polymer (ESKAP) Nanocomposites. ACS Appl. Mater. Interfaces. 2016, 8, 11309–11317. DOI: 10.1021/acsami.6b02074.
  • Yu, L.; Hao, G.; Gu, J.; Zhou, S.; Zhang, N.; Jiang, W. Fe3O4/PS Magnetic Nanoparticles: Synthesis, Characterization and their Application as Sorbents of Oil from Waste Water. J. Magn. Magn. Mater. 2015, 394, 14–21. DOI: 10.1016/j.jmmm.2015.06.045.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—A Review. Progress Polym. Sci. 2013, 38, 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
  • Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R. E. Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Comp. Mater. 2006, 40, 1511–1575. DOI: 10.1177/0021998306067321.
  • Ng, L. Y.; Mohammad, A. W.; Leo, C. P.; Hilal, N. Polymeric Membranes Incorporated with Metal/Metal Oxide Nanoparticles: A Comprehensive Review. Desalination 2013, 308, 15–33. DOI: 10.1016/j.desal.2010.11.033.
  • Jeon, I.-Y.; Baek, J.-B. Nanocomposites Derived from Polymers and Inorganic Nanoparticles. Materials 2010, 3, 3654–3674. DOI: 10.3390/ma3063654.
  • He, M. Q.; Bao, L. L.; Sun, K. Y.; Zhao, D. X.; Li, W. B.; Xia, J. X.; Li, H. M. Synthesis of Molecularly Imprinted Polypyrrole/Titanium Dioxide Nanocomposites and its Selective Photocatalytic Degradation of Rhodamine B under Visible Light Irradiation. Express Polym. Lett. 2014, 8, 850–861. DOI: 10.3144/expresspolymlett.2014.86.
  • Hosseini, S.; Ekramul Mahmud, N. H. M.; Binti Yahya, R.; Ibrahim, F.; Djordjevic, I. Polypyrrole Conducting Polymer and its Application in Removal of Copper Ions from Aqueous Solution. Mater. Lett. 2015, 149, 77–80. DOI: 10.1016/j.matlet.2015.02.113.
  • Sahmetlioglu, E.; Yilmaz, E.; Aktas, E.; Soylak, M. Polypyrrole/Multi-Walled Carbon Nanotube Composite for the Solid Phase Extraction of Lead(II) in Water Samples. Talanta 2014, 119, 447–451. DOI: 10.1016/j.talanta.2013.11.044.
  • Chauke, V. P.; Maity, A.; Chetty, A. High-Performance Towards Removal of Toxic Hexavalent Chromium from Aqueous Solution using Graphene Oxide-Alpha Cyclodextrin-Polypyrrole Nanocomposites. J. Mol. Liq. 2015, 211, 71–77. DOI: 10.1016/j.molliq.2015.06.044.
  • Nazarzadeh Zare, E.; Mansour Lakouraj, M.; Najafi Moghadam, P.; Hasanzadeh, R. Novel Conducting Nanocomposite based on Polypyrrole and Modified Poly (styrene‐alt‐maleic anhydride) via Emulsion Polymerization: Synthesis, Characterization, Antioxidant, and Heavy Metal Sorbent Activity. Polym. Comp. 2015, 36, 138–144. DOI: 10.1002/pc.22922.
  • Zhang, X.; Lin, M.; Lin, X.; Zhang, C.; Wei, H.; Zhang, H.; Yang, B. Polypyrrole-Enveloped Pd and Fe3O4 Nanoparticle Binary Hollow and Bowl-Like Superstructures as Recyclable Catalysts for Industrial Wastewater Treatment. ACS Appl. Mater. Interfaces. 2013, 6, 450–458. DOI: 10.1021/am404440d.
  • Hir, Z. A. M.; Moradihamedani, P.; Abdullah, A. H.; Mohamed, M. A. Immobilization of TiO2 into Polyethersulfone Matrix as Hybrid Film Photocatalyst for Effective Degradation of Methyl Orange Dye. Mater. Sci. Semicond. Process. 2017, 57, 157–165. DOI: 10.1016/j.mssp.2016.10.009.
  • Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E. Preparation of Antibiofouling Polyethersulfone Mixed Matrix NF Membrane using Photocatalytic Activity of ZnO/MWCNTs Nanocomposite. J. Membr. Sci. 2017, 529, 133–141. DOI: 10.1016/j.memsci.2017.01.047.
  • Rahimi, M.; Zinadini, S.; Zinatizadeh, A. A.; Vatanpour, V.; Rajabi, L.; Rahimi, Z. Hydrophilic Goethite Nanoparticle as a Novel Antifouling Agent in Fabrication of Nanocomposite Polyethersulfone Membrane. J. Appl. Polym. Sci. 2016, 133, 43592–43604. DOI: 10.1002/app.43592.
  • Jo, Y. J.; Choi, E. Y.; Choi, N. W.; Kim, C. K. Antibacterial and Hydrophilic Characteristics of Poly(ether sulfone) Composite Membranes Containing Zinc Oxide Nanoparticles Grafted with Hydrophilic Polymers. Ind. Eng. Chem. Res. 2016, 55, 7801–7809. DOI: 10.1021/acs.iecr.6b01510.
  • Basri, H.; Ismail, A. F.; Aziz, M.; Nagai, K.; Matsuura, T.; Abdullah, M. S.; Ng, B. C. Silver-Filled Polyethersulfone Membranes for Antibacterial Applications—Effect of PVP and TAP Addition on Silver Dispersion. Desalination 2010, 261, 264–271. DOI: 10.1016/j.desal.2010.05.009.
  • Venkatachaalam, S. Ultraviolet and Visible Spectroscopy Studies of Nanofillers and their Polymer Nanocomposites. In: Spectroscopy of Polymer Nanocomposites; Thomas, S., Rouxel, D., Ponnamma, D., Eds.; William Andrew Publications: Oxford, UK, 2016; pp 130–136.
  • Han, R. Formation and Characterization of (Melamine–TMC) Based Thin Film Composite NF Membranes for Improved Thermal and Chlorine Resistances. J. Membr. Sci. 2013, 425–426, 176–181. DOI: 10.1016/j.memsci.2012.08.017.
  • Mirmohseni, A.; Zavareh, S. Preparation and Characterization of an Epoxy Nanocomposite Toughened by a Combination of Thermoplastic, Layered and Particulate Nano-Fillers. Mater. Des. 2010, 31, 2699–2706. DOI: 10.1016/j.matdes.2010.01.035.
  • Wang, X.; Song, X.; Cheng, C.; Xu, W.; Liu, J.; Cao, T. Preparation of Carbon Microstructures by Thermal Treatment of Thermosetting/Thermoplastic Polymers and their Application in Water Purification. Micro Nano Lett. 2012, 7, 918–922. DOI: 10.1049/mnl.2012.0477.
  • Shenogina, N. B.; Tsige, M.; Patnaik, S. S.; Mukhopadhyay, S. M. Molecular Modeling of Elastic Properties of Thermosetting Polymers using a Dynamic Deformation Approach. Polymer 2013, 54, 3370–3376. DOI: 10.1016/j.polymer.2013.04.034.
  • Hameed, N.; Salim, N. V.; Walsh, T. R.; Wiggins, J. S.; Ajayan, P. M.; Fox, B. L. Ductile Thermoset Polymers via Controlling Network Flexibility. Chem. Commun. 2015, 51, 9903–9906. DOI: 10.1039/c4cc10192h.
  • Garcia, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M.; et al. Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines. Science 2014, 344, 732–735. DOI: 10.1126/science.1251484.
  • Halley, P. J. M. M. E. Chemorheology of Thermosets—An Overview. Polym. Eng. Sci. 1996, 36, 593–609.
  • Cheng, C.; Wang, S.; Wu, J.; Yu, Y.; Li, R.; Eda, S.; Chen, J.; Feng, G.; Lawrie, B.; Hu, A. Bisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration. ACS Appl. Mater. Interfaces. 2016, 8, 17784–17792. DOI: 10.1021/acsami.6b03743.
  • Benjwal, P.; Kar, K. K. Simultaneous Photocatalysis and Adsorption Based Removal of Inorganic and Organic Impurities from Water by Titania/Activated Carbon/Carbonized Epoxy Nanocomposite. J. Environ. Chem. Eng. 2015, 3, 2076–2083. DOI: 10.1016/j.jece.2015.07.009.
  • Muñoz, J.; Céspedes, F.; Baeza, M. Modified Multiwalled Carbon Nanotube/Epoxy Amperometric Nanocomposite Sensors with CuO Nanoparticles for Electrocatalytic Detection of Free Chlorine. Microchem. J. 2015, 122, 189–196. DOI: 10.1016/j.microc.2015.05.001.
  • Motoc, S.; Remes, A.; Pop, A.; Manea, F.; Schoonman, J. Electrochemical Detection and Degradation of Ibuprofen from Water on Multi-Walled Carbon Nanotubes-Epoxy Composite Electrode. J. Environ. Sci. 2013, 25, 838–847. DOI: 10.1016/s1001-0742(12)60068-0.
  • Coiai, S.; Passaglia, E.; Pucci, A.; Ruggeri, G. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications. Materials 2015, 8, 3377–3427. DOI: 10.3390/ma8063377.
  • Cogswell, F. N. Thermoplastic Aromatic Polymer Composites: A Study of the Structure, Processing, and Properties of Carbon Finre Reinforced Polyetherketone and Related Materials; Butterworth-Heineman: Oxford, 1992; pp pp6.
  • Najafi, S. K. Use of Recycled Plastics in Wood Plastic Composites—A Review. Waste Manag. 2013, 33, 1898–1905. DOI: 10.1016/j.wasman.2013.05.017.
  • de Lannoy, C. F.; Jassby, D.; Gloe, K.; Gordon, A. D.; Wiesner, M. R. Aquatic Biofouling Prevention by Electrically Charged Nanocomposite Polymer Thin Film Membranes. Environ. Sci. Technol. 2013, 47, 2760–2768. DOI: 10.1021/es3045168.
  • Lee, J.; Chae, H.-R.; Won, Y. J.; Lee, K.; Lee, C.-H.; Lee, H. H.; Kim, I.-C.; Lee, J.-M. Graphene Oxide Nanoplatelets Composite Membrane with Hydrophilic and Antifouling Properties for Wastewater Treatment. J. Membr. Sci. 2013, 448, 223–230. DOI: 10.1016/j.memsci.2013.08.017.
  • Pule, B. O.; Degni, S.; Torto, N. Electrospun Fibre Colorimetric Probe Based on Gold Nanoparticles for On-Site Detection of 17β-Estradiol Associated with Dairy Farming Effluents. Water SA 2014, 41, 27. DOI: 10.4314/wsa.v41i1.5.
  • Devi, J. M.; Umadevi, M. Synthesis and Characterization of Silver–PVA Nanocomposite for Sensor and Antibacterial Applications. J. Cluster Sci. 2013, 25, 639–650. DOI: 10.1007/s10876-013-0660-6.
  • Ravishankar, H.; Wang, J.; Shu, L.; Jegatheesan, V. Removal of Pb (II) Ions using Polymer Based Graphene Oxide Magnetic Nano-Sorbent. Process Safety Environ. Protect. 2016, 104, 472–480. DOI: 10.1016/j.psep.2016.04.002.
  • Pathania, D.; Gupta, D.; Al-Muhtaseb, A. A. H.; Sharma, G.; Kumar, A.; Naushad, M.; Ahamad, T.; Alshehri, S. M. Photocatalytic Degradation of Highly Toxic Dyes using Chitosan-g-poly(acrylamide)/ZnS in Presence of Solar Irradiation. J. Photochem. Photobiol. A: Chem. 2016, 329, 61–68. DOI: 10.1016/j.jphotochem.2016.06.019.
  • Ummartyotin, S.; Pechyen, C. Role of ZnO on Nylon 6 Surface and the Photocatalytic Efficiency of Methylene Blue for Wastewater Treatment. Colloid Polym. Sci. 2016, 294, 1217–1224. DOI: 10.1007/s00396-016-3881-z.
  • Ghaffari-Moghaddam, M.; Eslahi, H. Synthesis, Characterization and Antibacterial Properties of a Novel Nanocomposite Based on Polyaniline/Polyvinyl alcohol/Ag. Arab. J. Chem. 2014, 7, 846–855. DOI: 10.1016/j.arabjc.2013.11.011.
  • Schiffman, J. D.; Elimelech, M. Antibacterial Activity of Electrospun Polymer Mats with Incorporated Narrow Diameter Single-Walled Carbon Nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 462–468. DOI: 10.1021/am101043y.
  • Yin, J.; Zhu, G.; Deng, B. Graphene Oxide (GO) Enhanced Polyamide (PA) Thin-Film Nanocomposite (TFN) Membrane for Water Purification. Desalination 2016, 379, 93–101. DOI: 10.1016/j.desal.2015.11.001.
  • Kim, H. J.; Choi, K.; Baek, Y.; Kim, D. G.; Shim, J.; Yoon, J.; Lee, J. C. High-Performance Reverse Osmosis CNT/Polyamide Nanocomposite Membrane by Controlled Interfacial Interactions. ACS Appl. Mater. Interfaces 2014, 6, 2819–2829. DOI: 10.1021/am405398f.
  • Pant, H. R.; Pandeya, D. R.; Nam, K. T.; Baek, W.-I.; Hong, S. T.; Kim, H. Y. Photocatalytic and Antibacterial Properties of a TiO2/nylon-6 Electrospun Nanocomposite Mat Containing Silver Nanoparticles. J. Hazard. Mater. 2011, 189, 465–471. DOI: 10.1016/j.jhazmat.2011.02.062.
  • Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P.; Longo, S.; Venditto, V.; Guerra, G. N-Doped TiO2/s-PS Aerogels for Photocatalytic Degradation of Organic Dyes in Wastewater under Visible Light Irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1175–1181. DOI: 10.1002/jctb.4372.
  • Gutierrez-Capitan, M.; Baldi, A.; Gomez, R.; Garcia, V.; Jimenez-Jorquera, C.; Fernandez-Sanchez, C. Electrochemical Nanocomposite-Derived Sensor for the Analysis of Chemical Oxygen Demand in Urban Wastewaters. Anal. Chem. 2015, 87, 2152–2160. DOI: 10.1021/ac503329a.
  • Sharma, G.; Kumar, A.; Naushad, M.; Pathania, D.; Sillanpää, M. Polyacrylamide@Zr(IV) Vanadophosphate Nanocomposite: Ion Exchange Properties, Antibacterial Activity, and Photocatalytic Behavior. J. Ind. Eng. Chem. 2016, 33, 201–208. DOI: 10.1016/j.jiec.2015.10.011.
  • Kumar, A.; Sharma, G.; Naushad, M.; Singh, P.; Kalia, S. Polyacrylamide/Ni0.02Zn0.98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal. Ind. Eng. Chem. Res. 2014, 53, 15549–15560. DOI: 10.1021/ie5018173.
  • Huang, P.; Ye, L. In Situ Polymerization of Cationic Polyacrylamide/Montmorillonite Composites and its Flocculation Characteristics. J. Thermoplast. Compos. Mater. 2014, 29, 58–73. DOI: 10.1177/0892705713518787.
  • Abdullah, N.; Gohari, R. J.; Yusof, N.; Ismail, A. F.; Juhana, J.; Lau, W. J.; Matsuura, T. Polysulfone/Hydrous Ferric Oxide Ultrafiltration Mixed Matrix Membrane: Preparation, Characterization and its Adsorptive Removal of Lead (II) from Aqueous Solution. Chem. Eng. J. 2016, 289, 28–37. DOI: 10.1016/j.cej.2015.12.081.
  • Yao, W.; Ni, T.; Chen, S.; Li, H.; Lu, Y. Graphene/Fe3O4@polypyrrole Nanocomposites as a Synergistic Adsorbent for Cr(VI) Ion Removal. Compos. Sci. Technol. 2014, 99, 15–22. DOI: 10.1016/j.compscitech.2014.05.007.
  • Setshedi, K. Z.; Bhaumik, M.; Songwane, S.; Onyango, M. S.; Maity, A. Exfoliated Polypyrrole-Organically Modified Montmorillonite Clay Nanocomposite as a Potential Adsorbent for Cr(VI) Removal. Chem. Eng. J. 2013, 222, 186–197. DOI: 10.1016/j.cej.2013.02.061.
  • Mthombeni, N. H.; Mbakop, S.; Onyango, M. S. Magnetic Zeolite-Polymer Composite as an Adsorbent for the Remediation of Wastewaters Containing Vanadium. Int. J. Environ. Sci. Dev. 2015, 6, 602–605. DOI: 10.7763/ijesd.2015.v6.665.
  • Chavan, A. A.; Li, H.; Scarpellini, A.; Marras, S.; Manna, L.; Athanassiou, A.; Fragouli, D. Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water. ACS Appl. Mater. Interfaces 2015, 7, 14778–14784. DOI: 10.1021/acsami.5b03003.
  • Hsu, L.; Selvaganapathy, P. R.; Brash, J.; Fang, Q.; Xu, C.-Q.; Deen, M. J.; Chen, H. Development of a Low-Cost Hemin-Based Dissolved Oxygen Sensor with Anti-Biofouling Coating for Water Monitoring. IEEE Sens. J. 2014, 14, 3400–3407. DOI: 10.1109/jsen.2014.2332513.
  • Scott, A.; Gupta, R.; Kulkarni, G. U. A Simple Water-Based Synthesis of Au Nanoparticle/PDMS Composites for Water Purification and Targeted Drug Release. Macromol. Chem. Phys. 2010, 211, 1640–1647. DOI: 10.1002/macp.201000079.
  • Jung, G.; Kim, H. I. Synthesis and Photocatalytic Performance of PVA/TiO2/graphene‐MWCNT Nanocomposites for Dye Removal. J. Appl. Polym. Sci. 2014, 131, 40715–40721. DOI: 10.1002/app.40715.
  • Mondal, S.; Madhuri, R.; Sharma, P. K. Electrochemical Sensing of Cyanometalic Compound using TiO2/PVA Nanocomposite-Modified Electrode. J. Appl. Electrochem. 2016, 47, 75–83. DOI: 10.1007/s10800-016-1022-5.
  • Liang, B.; Zhang, P.; Wang, J.; Qu, J.; Wang, L.; Wang, X.; Guan, C.; Pan, K. Membranes with Selective Laminar Nanochannels of Modified Reduced Graphene Oxide for Water Purification. Carbon 2016, 103, 94–100. DOI: 10.1016/j.carbon.2016.03.001.
  • Zhang, L.; Luo, J.; Menkhaus, T. J.; Varadaraju, H.; Sun, Y.; Fong, H. Antimicrobial Nano-Fibrous Membranes Developed from Electrospun Polyacrylonitrile Nanofibers. J. Membr. Sci. 2011, 369, 499–505. DOI: 10.1016/j.memsci.2010.12.032.
  • Bagheripour, E.; Moghadassi, A. R.; Hosseini, S. M.; Nemati, M. Fabrication and Characterization of Novel Mixed Matrix Polyethersulfone Nanofiltration Membrane Modified by Iron-Nickel Oxide Nanoparticles. J. Membr. Sci. Res. 2016, 2, 14–19.
  • Toroghi, M.; Raisi, A.; Aroujalian, A. Preparation and Characterization of Polyethersulfone/Silver Nanocomposite Ultrafiltration Membrane for Antibacterial Applications. Polym. Adv. Technol. 2014, 25, 711–722. DOI: 10.1002/pat.3275.
  • Dzinun, H.; Othman, M. H. D.; Ismail, A. F.; Puteh, M. H.; Rahman, M. A.; Jaafar, J. Photocatalytic Degradation of Nonylphenol by Immobilized TiO2 in Dual Layer Hollow Fibre Membranes. Chem. Eng. J. 2015, 269, 255–261.
  • Alpatova, A.; Meshref, M.; McPhedran, K. N.; Gamal El-Din, M. Composite Polyvinylidene Fluoride (PVDF) Membrane Impregnated with Fe2O3 Nanoparticles and Multiwalled Carbon Nanotubes for Catalytic Degradation of Organic Contaminants. J. Membr. Sci. 2015, 490, 227–235. DOI: 10.1016/j.memsci.2015.05.001.
  • Yan, L.; Hong, S.; Li, M. L.; Li, Y. S. Application of the Al2O3–PVDF Nanocomposite Tubular Ultrafiltration (UF) Membrane for Oily Wastewater Treatment and its Antifouling Research. Sep. Purif. Technol. 2009, 66, 347–352. DOI: 10.1016/j.seppur.2008.12.015.
  • Obaid, M.; Ghouri, Z. K.; Fadali, O. A.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. Amorphous SiO2 NP-Incorporated Poly(vinylidene fluoride) Electrospun Nanofiber Membrane for High Flux Forward Osmosis Desalination. ACS Appl. Mater. Interfaces. 2016, 8, 4561–4574. DOI: 10.1021/acsami.5b09945.
  • Pathania, D.; Sharma, G.; Kumar, A.; Kothiyal, N. C. Fabrication of Nanocomposite Polyaniline Zirconium(IV) Silicophosphate for Photocatalytic and Antimicrobial Activity. J. Alloys Compd. 2014, 588, 668–675. DOI: 10.1016/j.jallcom.2013.11.133.
  • Haspulat, B.; Gulce, A.; Gulce, H. Efficient Photocatalytic Decolorization of Some Textile Dyes using Fe Ions Doped Polyaniline Film on ITO Coated Glass Substrate. J. Hazard. Mater. 2013, 260, 518–526. DOI: 10.1016/j.jhazmat.2013.06.011.
  • Gülce, H.; Eskizeybek, V.; Haspulat, B.; Sarı, F.; Gülce, A.; Avcı, A. Preparation of a New Polyaniline/CdO Nanocomposite and Investigation of Its Photocatalytic Activity: Comparative Study under UV Light and Natural Sunlight Irradiation. Ind. Eng. Chem. Res. 2013, 52, 10924–10934. DOI: 10.1021/ie401389e.
  • Tovide, O.; Jaheed, N.; Mohamed, N.; Nxusani, E.; Sunday, C. E.; Tsegaye, A.; Ajayi, R. F.; Njomo, N.; Makelane, H.; Bilibana, M.; et al. Graphenated Polyaniline-Doped Tungsten Oxide Nanocomposite Sensor for Real Time Determination of Phenanthrene. Electrochim. Acta. 2014, 128, 138–148. DOI: 10.1016/j.electacta.2013.12.134.
  • Khan, A.; Khan, A. A. P.; Rahman, M. M.; Asiri, A. M. High Performance Polyaniline/Vanadyl Phosphate (PANI–VOPO4) Nano Composite Sheets Prepared by Exfoliation/Intercalation Method for Sensing Applications. Eur. Polym. J. 2016, 75, 388–398. DOI: 10.1016/j.eurpolymj.2016.01.003.
  • Zheng, J.; Li, G.; Ma, X.; Wang, Y.; Wu, G.; Cheng, Y. Polyaniline–TiO2 Nano-Composite-Based Trimethylamine QCM Sensor and its Thermal Behavior Studies. Sens. Actuat. B: Chem. 2008, 133, 374–380. DOI: 10.1016/j.snb.2008.02.037.
  • Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N. C. Fabrication, Characterization and Antimicrobial Activity of Polyaniline Th(IV) Tungstomolybdophosphate Nanocomposite Material: Efficient Removal of Toxic Metal Ions from Water. Chem. Eng. J. 2014, 251, 413–421. DOI: 10.1016/j.cej.2014.04.074.
  • Naffakh, M.; Díez-Pascual, A. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes. Inorganics 2014, 2, 291–312. DOI: 10.3390/inorganics2020291.
  • Ali, A. E.-H.; Raafat, A. I.; Mahmoud, G. A.; Badway, N. A.; El-Mottaleb, M. A.; Elshahawy, M. F. Photocatalytic Decolorization of Dye Effluent Using Radiation Developed Polymeric Nanocomposites. J. Inorgan. Organometal. Polym. Mater. 2016, 26, 606–615. DOI: 10.1007/s10904-016-0346-2.
  • Naffakh, M.; Díez-Pascual, A. M.; Marco, C.; Ellis, G. J.; Gómez-Fatou, M. A. Opportunities and Challenges in the use of Inorganic Fullerene-Like Nanoparticles to Produce Advanced Polymer Nanocomposites. Progress Polym. Sci. 2013, 38, 1163–1231. DOI: 10.1016/j.progpolymsci.2013.04.001.
  • Erdem, B.; Erdem, M.; Özcan, A. S. Adsorption of Reactive Black 5 onto Quaternized 2-Dimethylaminoethyl Methacrylate Based Polymer/Clay Nanocomposites. Adsorption 2016, 22, 767–776. DOI: 10.1007/s10450-016-9773-1.
  • Aditya Kiran, S.; Lukka Thuyavan, Y.; Arthanareeswaran, G.; Matsuura, T.; Ismail, A. F. Impact of Graphene Oxide Embedded Polyethersulfone Membranes for the Effective Treatment of Distillery Effluent. Chem. Eng. J. 2016, 286, 528–537. DOI: 10.1016/j.cej.2015.10.091.
  • San Roman, I.; Galdames, A.; Alonso, M. L.; Bartolome, L.; Vilas, J. L.; Alonso, R. M. Effect of Coating on the Environmental Applications of Zero Valent Iron Nanoparticles: The Lindane Case. Sci. Total Environ. 2016, 565, 795–803. DOI: 10.1016/j.scitotenv.2016.04.034.
  • Mogha, N. K.; Gosain, S.; Masram, D. T. Gold Nanoworms Immobilized Graphene Oxide Polymer Brush Nanohybrid for Catalytic Degradation Studies of Organic Dyes. Appl. Surf. Sci. 2017, 396, 1427–1434. DOI: 10.1016/j.apsusc.2016.11.182.
  • Teixeira, S.; Martins, P. M.; Lanceros-Méndez, S.; Kühn, K.; Cuniberti, G. Reusability of Photocatalytic TiO2 and ZnO Nanoparticles Immobilized in Poly(vinylidene difluoride)- co -Trifluoroethylene. Appl. Surf. Sci. 2016, 384, 497–504. DOI: 10.1016/j.apsusc.2016.05.073.
  • Liu, F.; Jamal, R.; Wang, Y.; Wang, M.; Yang, L.; Abdiryim, T. Photodegradation of Methylene Blue by Photocatalyst of D-A-D type Polymer/Functionalized Multi-Walled Carbon Nanotubes Composite under Visible-Light Irradiation. Chemosphere 2017, 168, 1669–1676. DOI: 10.1016/j.chemosphere.2016.11.068.
  • Chan, W.-F.; Marand, E.; Martin, S. M. Novel Zwitterion Functionalized Carbon Nanotube Nanocomposite Membranes for Improved RO Performance and Surface Anti-Biofouling Resistance. J. Membr. Sci. 2016, 509, 125–137. DOI: 10.1016/j.memsci.2016.02.014.
  • Lee, J.; Ye, Y.; Ward, A. J.; Zhou, C.; Chen, V.; Minett, A. I.; Lee, S.; Liu, Z.; Chae, S.-R.; Shi, J. High Flux and High Selectivity Carbon Nanotube Composite Membranes for Natural Organic Matter Removal. Sep. Purif. Technol. 2016, 163, 109–119. DOI: 10.1016/j.seppur.2016.02.032.
  • Xie, P.; C. F. de Lannoy; Ma, J.; Wang, Z.; Wang, S.; Li, J.; Wiesner, M. R. Improved Chlorine Tolerance of a Polyvinyl Pyrrolidone-Polysulfone Membrane Enabled by Carboxylated Carbon Nanotubes. Water Res. 2016, 104, 497–506. DOI: 10.1016/j.watres.2016.08.029.
  • Khan, S. R.; Farooqi, Z. H.; Waheed, U. Z. Z.; Ali, A.; Begum, R.; Kanwal, F.; Siddiq, M. Kinetics and Mechanism of Reduction of Nitrobenzene Catalyzed by Silver-poly(N-isopropylacryl amide-co-allylacetic acid) Hybrid Microgels. Mater. Chem. Phys. 2016, 171, 318–327. DOI: 10.1016/j.matchemphys.2016.01.023.
  • Tang, Y.; Wu, T.; Hu, B.; Yang, Q.; Liu, L.; Yu, B.; Ding, Y.; Ye, S. Synthesis of Thermo- and pH-Responsive Ag Nanoparticle-Embedded Hybrid Microgels and their Catalytic Activity in Methylene Blue Reduction. Mater. Chem. Phys. 2015, 149–150, 460–466. DOI: 10.1016/j.matchemphys.2014.10.045.
  • Qu, S.; Yang, H.; Ren, D.; Kan, S.; Zou, G.; Li, D.; Li, M. Magnetite Nanoparticles Prepared by Precipitation from Partially Reduced Ferric Chloride Aqueous Solutions. J. Colloid Interface Sci. 1999, 215, 190–192. DOI: 10.1006/jcis.1999.6185.
  • Shou, J.; Jiang, C.; Wang, F.; Qiu, M.; Xu, Q. Fabrication of Fe3O4/MgAl-layered Double Hydroxide Magnetic Composites for the Effective Decontamination of Co(II) from Synthetic Wastewater. J. Mol. Liq. 2015, 207, 216–223. DOI: 10.1016/j.molliq.2015.03.047.
  • Glasgow, W.; Fellows, B.; Qi, B.; Darroudi, T.; Kitchens, C.; Ye, L.; Crawford, T. M.; Mefford, O. T. Continuous Synthesis of Iron Oxide (Fe3O4) Nanoparticles Via Thermal Decomposition. Particuology 2016, 26, 47–53. DOI: 10.1016/j.partic.2015.09.011.
  • Liang, S.; Li, J.; Wang, F.; Qin, J.; Lai, X.; Jiang, X. Highly Sensitive Acetone Gas Sensor Based on Ultrafine α-Fe2O3 Nanoparticles. Sens. Actuat. B: Chem. 2017, 238, 923–927. DOI: 10.1016/j.snb.2016.06.144.
  • Grabis, J.; Heidemane, G.; Rašmane, D. Preparation of Fe3O4 and γ-Fe2O3 Nanoparticles by Liquid and Gas Phase Processes. Mater. Sci., 2008, 14, 292–295.
  • Basak, S.; Chen, D.-R.; Biswas, P. Electrospray of Ionic Precursor Solutions to Synthesize Iron Oxide Nanoparticles: Modified Scaling Law. Chem. Eng. Sci. 2007, 62, 1263–1268. DOI: 10.1016/j.ces.2006.11.029.
  • Cheng, W.; Xu, X.; Wu, F.; Li, J. Synthesis of Cavity-Containing Iron Oxide Nanoparticles by Hydrothermal Treatment of Colloidal Dispersion. Mater. Lett. 2016, 164, 210–212. DOI: 10.1016/j.matlet.2015.10.170.
  • Cui, H.; Liu, Y.; Ren, W. Structure switch between a-Fe2O3, c-Fe2O3 and Fe3O4 during the Large Scale and Low Temperature Sol–Gel Synthesis of Nearly Monodispersed Iron Oxide Nanoparticles. Adv Powder Technol. 2013, 24, 93–97. DOI: 10.1016/j.apt.2012.03.001.
  • Carmen Bautista, M.; Bomati-Miguel, O.; del Puerto Morales, M.; Serna, C. J.; Veintemillas-Verdaguer, S. Surface Characterisation of Dextran-Coated Iron Oxide Nanoparticles Prepared by Laser Pyrolysis and Coprecipitation. J. Magn. Magn. Mater. 2005, 293, 20–27. DOI: 10.1016/j.jmmm.2005.01.038.
  • Shafi, K. V.; Ulman, A.; Yan, X.; Yang, N.-L.; Estournes, C.; White, H.; Rafailovich, M. Sonochemical Synthesis of Functionalized Amorphous Iron Oxide Nanoparticles. Langmuir: ACS J. Surf. Colloids 2001, 17, 5093–5097. DOI: 10.1021/la010421+.
  • Rao, J. P.; Geckeler, K. E. Polymer Nanoparticles: Preparation Techniques and size-Control Parameters. Progress Polym. Sci. 2011, 36, 887–913. DOI: 10.1016/j.progpolymsci.2011.01.001.
  • Yang, Z.; Zhai, D.; Wang, X.; Wei, J. In Situ Synthesis of Highly Monodispersed Nonaqueous Small-Sized Silver Nano-Colloids and Silver/Polymer Nanocomposites by Ultraviolet Photopolymerization. Colloids Surf. A: Physicochem. Eng. Aspects 2014, 448, 107–114. DOI: 10.1016/j.colsurfa.2014.02.017.
  • Zhu, C. H.; Hai, Z. B.; Cui, C. H.; Li, H. H.; Chen, J. F.; Yu, S. H. In Situ Controlled Synthesis of Thermosensitive Poly(N-isopropylacrylamide)/Au Nanocomposite Hydrogels by Gamma Radiation for Catalytic Application. Small 2012, 8, 930–936. DOI: 10.1002/smll.201102060.
  • Sangermano, M.; Yagci, Y.; Rizza, G. In Situ Synthesis of Silver—Epoxy Nanocomposites by Photoinduced Electron Transfer and Cationic Polymerization Processes. Macromolecules 2007, 40, 8827–8829. DOI: 10.1021/ma702051g.
  • Morselli, D.; Scarpellini, A.; Athanassiou, A.; Fragouli, D. Single Step in Situ Formation of Porous Zinc Oxide/PMMA Nanocomposites by Pulsed Laser Irradiation: Kinetic Aspects and Mechanisms. RSC Adv. 2016, 6, 11412–11418. DOI: 10.1039/c5ra23125f.
  • Shimizu, R.; Kawakami, T.; Takashima, Y.; Tsuruoka, T.; Akamatsu, K. In Situ Synthesis of Cu/Ni Alloy Nanoparticles Embedded in Thin Polymer Layers. RSC Adv. 2016, 6, 18895–18898. DOI: 10.1039/c6ra00240d.
  • Hwang, S.-S.; Hsu, P. P. Effects of Silica Particle Size on the Structure and Properties of Polypropylene/Silica Composites Foams. J. Ind. Eng. Chem. 2013, 19, 1377–1383. DOI: 10.1016/j.jiec.2012.12.043.
  • Zu, L.; Li, R.; Jin, L.; Lian, H.; Liu, Y.; Cui, X. Preparation and Characterization of Polypropylene/Silica Composite Particle with Interpenetrating Network via Hot Emulsion Sol–Gel Approach. Progress Nat. Sci.: Mater. Int. 2014, 24, 42–49. DOI: 10.1016/j.pnsc.2014.01.001.
  • Chen, S.; Wang, X.; Ma, X.; Wang, K. Morphology and Properties of Polypropylene/Nano-CaCO3 Composites Prepared by Supercritical Carbon Dioxide-Assisted Extrusion. J. Mater. Sci. 2016, 51, 708–718. DOI: 10.1007/s10853-015-9272-x.
  • Chen, C.; Baird, D. G. Dispersion of Nano-Clay at Higher Levels into Polypropylene with Carbon Dioxide in the Presence of Maleated Polypropylene. Polymer 2012, 53, 4178–4186. DOI: 10.1016/j.polymer.2012.07.048.
  • Chen, C.; Samaniuk, J.; Baird, D. G.; Devoux, G.; Zhang, M.; Moore, R. B.; Quigley, J. P. The Preparation of Nano-Clay/Polypropylene Composite Materials with Improved Properties using Supercritical Carbon Dioxide and a Sequential Mixing Technique. Polymer 2012, 53, 1373–1382. DOI: 10.1016/j.polymer.2012.01.049.
  • Ma, J.; Bilotti, E.; Peijs, T.; Darr, J. A. Preparation of Polypropylene/Sepiolite Nanocomposites using Supercritical CO2 Assisted Mixing. Eur. Polym. J. 2007, 43, 4931–4939. DOI: 10.1016/j.eurpolymj.2007.09.010.
  • Nguyen, Q. T.; Baird, D. G. An Improved Technique for Exfoliating and Dispersing Nanoclay Particles into Polymer Matrices using Supercritical Carbon Dioxide. Polymer 2007, 48, 6923–6933. DOI: 10.1016/j.polymer.2007.09.015.
  • Mittal, V. Characterization Techniques for Polymer Nanocomposites, 1st ed.; Wiley-VCH verlag & Co. KGaA: Weinheim, Germany, 2012.
  • Monticelli, O.; Musina, Z.; Russo, S.; Bals, S. On the use of TEM in the Characterization of Nanocomposites. Mater. Lett. 2007, 61, 3446–3450. DOI: 10.1016/j.matlet.2006.11.086.
  • García-Gutiérrez, M.; Nogales, A.; Hernández, J.; Rueda, D.; Ezquerra, T. X-Ray Scattering Applied to the Analysis of Carbon Nanotubes, Polymers and Nanocomposites. Networks 2004, 384, 185–189.
  • Corcione, C.; Frigione, M. Characterization of Nanocomposites by Thermal Analysis. Materials 2012, 5, 2960–2980. DOI: 10.3390/ma5122960.
  • Wang, F.; Wang, Y. T.; Yu, H.; Chen, J. X.; Gao, B. B.; Lang, J. P. One Unique 1D Silver(I)-Bromide-Thiol Coordination Polymer Used for Highly Efficient Chemiresistive Sensing of Ammonia and Amines in Water. Inorgan. Chem. 2016, 55, 9417–9423. DOI: 10.1021/acs.inorgchem.6b01688.
  • Gao, H.; Zhao, S.; Cheng, X.; Wang, X.; Zheng, L. Removal of Anionic Azo Dyes from Aqueous Solution using Magnetic Polymer Multi-Wall Carbon Nanotube Nanocomposite as Adsorbent. Chem. Eng. J. 2013, 223, 84–90. DOI: 10.1016/j.cej.2013.03.004.
  • Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091. DOI: 10.1021/cr300133d.
  • Anbia, M.; Ghaffari, A. Adsorption of Phenolic Compounds from Aqueous Solutions using Carbon Nanoporous Adsorbent Coated with Polymer. Appl. Surf. Sci. 2009, 255, 9487–9492. DOI: 10.1016/j.apsusc.2009.07.070.
  • Hasanzadeh, R.; Moghadam, P. N.; Bahri-Laleh, N.; Sillanpaa, M. Effective Removal of Toxic Metal Ions from Aqueous Solutions: 2-Bifunctional Magnetic Nanocomposite Base on Novel Reactive PGMA-MAn Copolymer@Fe3O4 Nanoparticles. J. Colloid Interface Sci. 2017, 490, 727–746. DOI: 10.1016/j.jcis.2016.11.098.
  • Hayati, B.; Maleki, A.; Najafi, F.; Daraei, H.; Gharibi, F.; G. McKay. Synthesis and Characterization of PAMAM/CNT Nanocomposite as a Super-Capacity Adsorbent for Heavy Metal (Ni 2+, Zn 2+, As 3+, Co 2 +) Removal from Wastewater. J. Mol. Liq. 2016, 224, 1032–1040. DOI: 10.1016/j.molliq.2016.10.053.
  • Zoromba, M. S.; Ismail, M. I. M.; Bassyouni, M.; Abdel-Aziz, M. H.; Salah, N.; Alshahrie, A.; Memic, A. Fabrication and Characterization of Poly(aniline-co- o -anthranilic acid)/Magnetite Nanocomposites and their Application in Wastewater Treatment. Colloids Surf. A: Physicochem. Eng. Aspects. 2017, 520, 121–130. DOI: 10.1016/j.colsurfa.2017.01.075.
  • Yang, W.; Yu, Z.; Pan, B.; Lv, L.; Zhang, W. Simultaneous Organic/Inorganic Removal from Water using a New Nanocomposite Adsorbent: A Case Study of p-Nitrophenol and Phosphate. Chem. Eng. J. 2015, 268, 399–407. DOI: 10.1016/j.cej.2015.01.051.
  • Kyzas, G. Z.; Bikiaris, D. N.; Seredych, M.; Bandosz, T. J.; Deliyanni, E. A. Removal of Dorzolamide from Biomedical Wastewaters with Adsorption onto Graphite Oxide/poly(acrylic acid) Grafted Chitosan Nanocomposite. Bioresour. Technol. 2014, 152, 399–406. DOI: 10.1016/j.biortech.2013.11.046.
  • Zhao, X.; Liu, P. Hydrophobic-Polymer-Grafted Graphene Oxide Nanosheets as an Easily Separable Adsorbent for the Removal of Tetrabromobisphenol A. Langmuir: ACS J. Surf. Colloids 2014, 30, 13699–13706. DOI: 10.1021/la504077x.
  • Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. Recent Developments in Heterogeneous Photocatalytic Water Treatment using Visible Light-Responsive Photocatalysts: A Review. RSC Adv. 2015, 5, 14610–14630. DOI: 10.1039/c4ra13734e.
  • Ghanem, A. F.; Badawy, A. A.; Ismail, N.; Rayn Tian, Z.; Abdel Rehim, M. H.; Rabia, A. Photocatalytic Activity of Hyperbranched Polyester/TiO2 Nanocomposites. Appl. Catal. A: General 2014, 472, 191–197. DOI: 10.1016/j.apcata.2013.12.023.
  • Zhang, X.; Wang, D. K.; Lopez, D. R. S.; Diniz da Costa, J. C. Fabrication of Nanostructured TiO2 Hollow Fiber Photocatalytic Membrane and Application for Wastewater Treatment. Chem. Eng. J. 2014, 236, 314–322. DOI: 10.1016/j.cej.2013.09.059.
  • Kanakaraju, D.; Glass, B. D.; Oelgemöller, M. Titanium Dioxide Photocatalysis for Pharmaceutical Wastewater Treatment. Environ. Chem. Lett. 2013, 12, 27–47. DOI: 10.1007/s10311-013-0428-0.
  • Riaz, U.; Ashraf, S. M.; Kashyap, J. Enhancement of Photocatalytic Properties of Transitional Metal Oxides using Conducting Polymers: A Mini Review. Mater. Res. Bull. 2015, 71, 75–90. DOI: 10.1016/j.materresbull.2015.06.035.
  • Chao, Z.; Wang, L.; Song, L.; Zhou, Y.; Nie, W.; Chen, P. Facile Method to Prepare Poly(S-co-HEA)/Ag Nanocomposite Particles with High Efficient Catalytic Activity and Surface Enhanced Raman Scattering. Appl. Surf. Sci. 2015, 329, 158–164. DOI: 10.1016/j.apsusc.2014.12.118.
  • Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S. Novel Functionalized Nano-TiO2 Loading Electrocatalytic Membrane for Oily Wastewater Treatment. Environ. Sci. Technol. 2012, 46, 6815–6821. DOI: 10.1021/es3000504.
  • Padaki, M.; Surya Murali, R.; Abdullah, M. S.; Misdan, N.; Moslehyani, A.; Kassim, M. A.; Hilal, N.; Ismail, A. F. Membrane Technology Enhancement in Oil–Water Separation. A Review. Desalination 2015, 357, 197–207. DOI: 10.1016/j.desal.2014.11.023.
  • Ghaemi, N. A New Approach to Copper Ion Removal from Water by Polymeric Nanocomposite Membrane Embedded with γ-Alumina Nanoparticles. Appl. Surf. Sci. 2016, 364, 221–228. DOI: 10.1016/j.apsusc.2015.12.109.
  • Crock, C. A.; Rogensues, A. R.; Shan, W.; Tarabara, V. V. Polymer Nanocomposites with Graphene-Based Hierarchical Fillers as Materials for Multifunctional Water Treatment Membranes. Water Res. 2013, 47, 3984–3996. DOI: 10.1016/j.watres.2012.10.057.
  • Feng, K.; Hou, L.; Tang, B.; Wu, P. A Self-Protected Self-Cleaning Ultrafiltration Membrane by using Polydopamine as a Free-Radical Scavenger. J. Membr. Sci. 2015, 490, 120–128. DOI: 10.1016/j.memsci.2015.04.056.
  • Chae, H.-R.; Lee, J.; Lee, C.-H.; Kim, I.-C.; Park, P.-K. Graphene Oxide-Embedded Thin-Film Composite Reverse Osmosis Membrane with High Flux, Anti-Biofouling, and Chlorine Resistance. J. Membr. Sci. 2015, 483, 128–135. DOI: 10.1016/j.memsci.2015.02.045.
  • Safarpour, M.; Khataee, A.; Vatanpour, V. Thin Film Nanocomposite Reverse Osmosis Membrane Modified by Reduced Graphene Oxide/TiO 2 with Improved Desalination Performance. J. Membr. Sci. 2015, 489, 43–54. DOI: 10.1016/j.memsci.2015.04.010.
  • Emadzadeh, D.; Lau, W. J.; Matsuura, T.; Rahbari-Sisakht, M.; Ismail, A. F. A Novel Thin Film Composite Forward Osmosis Membrane Prepared from PSf–TiO2 Nanocomposite Substrate for Water Desalination. Chem. Eng. J. 2014, 237, 70–80. DOI: 10.1016/j.cej.2013.09.081.
  • Ma, N.; Wei, J.; Liao, R.; Tang, C. Y. Zeolite-Polyamide Thin Film Nanocomposite Membranes: Towards Enhanced Performance for Forward Osmosis. J. Membr. Sci. 2012, 405–406, 149–157. DOI: 10.1016/j.memsci.2012.03.002.
  • Fischer, K.; Grimm, M.; Meyers, J.; Dietrich, C.; Gläser, R.; Schulze, A. Photoactive Microfiltration Membranes via Directed Synthesis of TiO2 Nanoparticles on the Polymer Surface for Removal of Drugs from Water. J. Membr. Sci. 2015, 478, 49–57. DOI: 10.1016/j.memsci.2015.01.009.
  • Daraei, P.; Madaeni, S. S.; Salehi, E.; Ghaemi, N.; Ghari, H. S.; Khadivi, M. A.; Rostami, E. Novel Thin Film Composite Membrane Fabricated by Mixed Matrix Nanoclay/Chitosan on PVDF Microfiltration Support: Preparation, Characterization and Performance in Dye Removal. J. Membr. Sci. 2013, 436, 97–108. DOI: 10.1016/j.memsci.2013.02.031.
  • Gholami, A.; Moghadassi, A. R.; Hosseini, S. M.; Shabani, S.; Gholami, F. Preparation and Characterization of Polyvinyl Chloride Based Nanocomposite Nanofiltration-Membrane Modified by Iron Oxide Nanoparticles for Lead Removal from Water. J. Ind. Eng. Chem. 2014, 20, 1517–1522. DOI: 10.1016/j.jiec.2013.07.041.
  • Peyravi, M.; Jahanshahi, M.; Rahimpour, A.; Javadi, A.; Hajavi, S. Novel Thin Film Nanocomposite Membranes Incorporated with Functionalized TiO2 Nanoparticles for Organic Solvent Nanofiltration. Chem. Eng. J. 2014, 241, 155–166. DOI: 10.1016/j.cej.2013.12.024.
  • Dulebohn, J.; Ahmadiannamini, P.; Wang, T.; Kim, S.-S.; Pinnavaia, T. J.; Tarabara, V. V. Polymer Mesocomposites: Ultrafiltration Membrane Materials with Enhanced Permeability, Selectivity and Fouling Resistance. J. Membr. Sci. 2014, 453, 478–488. DOI: 10.1016/j.memsci.2013.11.042.
  • Goei, R.; Dong, Z.; Lim, T.-T. High-Permeability Pluronic-Based TiO2 Hybrid Photocatalytic Membrane with Hierarchical Porosity: Fabrication, Characterizations and Performances. Chem. Eng. J. 2013, 228, 1030–1039. DOI: 10.1016/j.cej.2013.05.068.
  • Zhang, X.; Wang, D. K.; Diniz da Costa, J. C. Recent Progresses on Fabrication of Photocatalytic Membranes for Water Treatment. Catal. Today 2014, 230, 47–54. DOI: 10.1016/j.cattod.2013.11.019.
  • Alonso, A.; Munoz-Berbel, X.; Vigues, N.; Macanas, J.; Munoz, M.; Mas, J.; Muraviev, D. N. Characterization of Fibrous Polymer Silver/Cobalt Nanocomposite with Enhanced Bactericide Activity. Langmuir: ACS J. Surf. Colloids 2012, 28, 783–790. DOI: 10.1021/la203239d.
  • Mauter, M. S.; Wang, Y.; Okemgbo, K. C.; Osuji, C. O.; Giannelis, E. P.; Elimelech, M. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials. ACS Appl. Mater. Interfaces 2011, 3, 2861–2868. DOI: 10.1021/am200522v.
  • Harsányi, G. Polymeric Sensing Films: New Horizons in Sensors? Sens. Actuat. A 1995, 46–47, 85–88. DOI: 10.1016/0254-0584(95)01629-9.
  • Raoufi, N.; Surre, F.; Rajarajan, M.; Sun, T.; Grattan, K. T. V. Optical Sensor for pH Monitoring using a Layer-by-layer Deposition Technique Emphasizing Enhanced Stability and Re-Usability. Sens. Actuat. B: Chem. 2014, 195, 692–701. DOI: 10.1016/j.snb.2014.01.080.
  • Raoufi, N.; Surre, F.; Sun, T.; Rajarajan, M.; Grattan, K. T. V. Wavelength Dependent pH Optical Sensor using the Layer-by-layer Technique. Sens. Actuat. B: Chem. 2012, 169, 374–381. DOI: 10.1016/j.snb.2012.05.024.
  • Zamarreño, C. R.; Hernáez, M.; Del Villar, I.; Matías, I. R.; Arregui, F. J. Optical Fiber pH Sensor Based on Lossy-Mode Resonances by Means of Thin Polymeric Coatings. Sens. Actuat. B: Chem. 2011, 155, 290–297. DOI: 10.1016/j.snb.2010.12.037.
  • Dutta Chowdhury, A.; Doong, R. A. Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 21002–21010. DOI: 10.1021/acsami.6b06266.
  • Khan, A. A.; Khan, A.; Rahman, M. M.; Asiri, A. M.; Oves, M. Lead Sensors Development and Antimicrobial Activities Based on Graphene Oxide/Carbon Nanotube/Poly(O-toluidine) Nanocomposite. Int. J. Biol. Macromol. 2016, 89, 198–205. DOI: 10.1016/j.ijbiomac.2016.04.064.
  • Nie, D.; Han, Z.; Yu, Y.; Shi, G. Composites of Multiwalled Carbon Nanotubes/Polyethyleneimine (MWCNTs/PEI) and Molecularly Imprinted Polymers for Dinitrotoluene Recognition. Sens. Actuat. B: Chem. 2016, 224, 584–591. DOI: 10.1016/j.snb.2015.10.103.
  • Kochan, J.; Scheidle, M.; J. van Erkel; Bikel, M.; Buchs, J.; Wong, J. E.; Melin, T.; Wessling, M. Characterization of Antibacterial Polyethersulfone Membranes using the Respiration Activity Monitoring System (RAMOS). Water Res. 2012, 46, 5401–5409. DOI: 10.1016/j.watres.2012.07.019.
  • Olowu, R. A.; Arotiba, O.; Mailu, S. N.; Waryo, T. T.; Baker, P.; Iwuoha, E. Electrochemical Aptasensor for Endocrine Disrupting 17beta-Estradiol based on a Poly(3,4-ethylenedioxylthiopene)-Gold Nanocomposite Platform. Sensors 2010, 10, 9872–9890. DOI: 10.3390/s101109872.
  • Baig, U.; Wani, W. A.; Ting Hun, L. Facile Synthesis of an Electrically Conductive Polycarbazole–Zirconium(iv)phosphate Cation Exchange Nanocomposite and its Room Temperature Ammonia Sensing Performance. New J. Chem. 2015, 39, 6882–6891. DOI: 10.1039/c5nj01029b.
  • Lacy, F. Preparation and Assessment of Thin Films for Use as Ammonia Sensors. Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, October 23–25, 2013.
  • Rehman, S. U.; Siddiq, M.; Al-Lohedan, H.; Sahiner, N. Cationic Microgels Embedding Metal Nanoparticles in the Reduction of Dyes and Nitro-Phenols. Chem. Eng. J. 2015, 265, 201–209. DOI: 10.1016/j.cej.2014.12.061.
  • Dubey, A.; Goswami, M.; Yadav, K.; Chaudhary, D. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line. PloS One 2015, 10, e0127493. DOI: 10.1371/journal.pone.0127493.
  • Poynton, H. C.; Lazorchak, J. M.; Impellitteri, C. A.; Blalock, B. J.; Rogers, K.; Allen, H. J.; Loguinov, A.; Heckman, J. L. Govindasmawy, S. Toxicogenomic Responses of Nanotoxicity in Daphnia Magna Exposed to Silver Nitrate and Coated Silver Nanoparticles. Environ. Sci. Technol. 2012, 46, 6288–6296. DOI: 10.1021/es3001618.
  • Fischer, H. C.; Chan, W. C. W. Nanotoxicity: The Growing Need for In Vivo Study. Curr. Opin. Biotechnol. 2007, 18, 565–571. DOI: 10.1016/j.copbio.2007.11.008.
  • Karlsson, H. L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-Dependent Toxicity of Metal Oxide Particles—A Comparison between Nano- and Micrometer Size. Toxicol. Lett. 2009, 188, 112–118. DOI: 10.1016/j.toxlet.2009.03.014.
  • Fu, P. P.; Xia, Q.; Hwang, H.-M.; Ray, P. C.; Yu, H. Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. J. Food Drug Anal. 2014, 22, 64–75. DOI: 10.1016/j.jfda.2014.01.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.